
Lecture 2
Thursday, September 10th, 2020

Shell Customization, I/O, Job control, Environment
Variables, Bash scripting

Recap
Last time:

● More Unix commands
● Interacting with the shell
● File attributes

This time:

● Shell customization
● I/O
● Job Management
● Environment variables
● Bash scripting

2

Shell Customization

3

Shell Recap
Users interact with the shell!

Different types of shells:

● zsh
● bash
●

Shell

Kernel

4

Shell Customization
● Each shell supports some customization

○ user prompt settings
○ environment variable settings
○ aliases

● The customization takes place in startup files, which are read by the shell
when it starts up

○ Global files are read first - these are provided by the system administrators (e.g.
/etc/profile)

○ Local files are then read in the user’s HOME directory to allow for additional customization

5

Shell Startup Files (I)
● Different startup files are read depending on which shell you are using
● Wikipedia has a nice summary: Shell Configuration Files
● The bash shell has two configuration files:

○ ~/.bash_profile - Read at login
○ ~/.bashrc - Read at login and when a new window is opened

● The zsh shell uses:
○ ~/.zprofile - Read at login
○ ~/.zshrc - Read at login and when a new window is opened

● It can sometimes be confusing to keep in mind what all the files do. Here are
some refs:

○ Moving to zsh – Scripting OS X

○ What should/shouldn't go in .zshenv, .zshrc, .zlogin, .zprofile, .zlogout?

○ ZSH: .zprofile, .zshrc, .zlogin - What goes where?

○ bash(1) - Linux man page, About bash_profile and bashrc on macOS
6

https://en.wikipedia.org/wiki/Unix_shell#Configuration_files
https://scriptingosx.com/2019/06/moving-to-zsh/
https://unix.stackexchange.com/questions/71253/what-should-shouldnt-go-in-zshenv-zshrc-zlogin-zprofile-zlogout
https://apple.stackexchange.com/questions/388622/zsh-zprofile-zshrc-zlogin-what-goes-where
https://linux.die.net/man/1/bash
https://scriptingosx.com/2017/04/about-bash_profile-and-bashrc-on-macos/

Breakout Room: Shell Startup Files
1. Note your breakout room number.
2. Figure out who’s birthday is next.
3. Create an alias for ls (e.g. ll). Put this in the appropriate startup file!

a. Example: How to Create and Use Alias Command in Linux

4. Change the command line prompt format. Put it in the appropriate startup file!
a. Example: How to Change / Set up bash custom prompt (PS1) in Linux

The examples above may use a different shell from yours, but the basic ideas are the same. You will need
to figure out where to put the commands.

I like and use this shell theme: https://draculatheme.com/

Windows users may want to check this out if you’re using Git Bash: How do I modify my Git Bash profile
in Windows? 7

https://www.tecmint.com/create-alias-in-linux/
https://www.cyberciti.biz/tips/howto-linux-unix-bash-shell-setup-prompt.html
https://draculatheme.com/
https://superuser.com/questions/602872/how-do-i-modify-my-git-bash-profile-in-windows
https://superuser.com/questions/602872/how-do-i-modify-my-git-bash-profile-in-windows

I/O

8

I/O

● File descriptors are associated with each stream
○ 0=STDIN 1=STDOUT 2=STDERR

● When a shell runs a program for you:
○ Standard input is the keyboard
○ Standard output is your screen
○ Standard error is your screen

● To end the input, press Ctrl-D on a line; this ends the input stream

ProgramStandard Input
(STDIN)

Standard Output
(STDOUT)

Standard Error
(STDERR)

9

Shell Stream Redirection
● The shell can attach things other than the keyboard to standard input or

output
○ e.g. a file or a pipe

● Use > to tell the shell to store the output of your program in a file
○ ls > ls_out

● Use < to tell the shell to get standard input from a file
○ sort < nums

● You can combine both forms together!
○ sort < nums > sortednums

10

Modes of Output Redirection
● There are two modes of output redirection

○ > - create mode
○ >> - append mode

● ls > foo creates a new file foo, possibly deleting any existing file named
foo while ls >> foo appends output to foo

● > only applies to stdout (not stderr)
● To redirect stderr to a file, you must specify the request directly

○ 2> redirects stderr (e.g. ls foo 2> err)
○ &> redirects stdout and stderr (e.g. ls foo &> /dev/null)
○ ls foo > out 2> err redirects stdout to out and stderr to err

11

Wildcards
● The shell treats some characters as special
● These special characters make it easy to specify filenames
● * matches anything
● Giving the shell * by itself removes * and replaces it with all the filenames in

the current directory
● echo prints out whatever you give it (e.g. echo hi prints out hi)
● echo * prints out the entire working directory!
● ls *.txt lists all files that end with .txt

12

Job Control

13

Job Control
● The shell allows you to manage jobs:

○ Place jobs in the background
○ Move a job to the foreground
○ Suspend a job
○ Kill a job

● Putting an & after a command on the command line will run the job in the
background

● Why do this?
○ You don’t want to wait for the job to complete
○ You can type in a new command right away
○ You can have a bunch of jobs running at once

● e.g. ./program > output &

14

Job Control: nohup and Terminal Multiplexers
● Use nohup if the job will run longer than your session

○ nohup ./program &> output &

● Terminal multiplexers are great for this
○ 6 Best terminal multiplexers as of 2020

○ Screen

○ tmux

15

https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Terminal_multiplexer
https://www.slant.co/topics/4018/~terminal-multiplexers
https://www.gnu.org/software/screen/
https://github.com/tmux/tmux/wiki

Listing Jobs
The shell assigns a number to each job

The jobs command lists all background jobs

kill the foreground job using Ctrl-C

Kill a background job using the kill command
16

Breakout Room: Practice Listing Jobs
1. Use the sleep command to suspend the terminal session for 60 seconds

a. Hint: If you’re never met sleep before, type man sleep at the command line

2. Suspend the job using Ctrl-Z
3. Now list the jobs using the jobs command
4. The job isn’t in the background; it’s just suspended. Send the job to the

background with bg %n where n is the job id that you obtained from the jobs
command

5. Bring the sleep command (your job) back to the foreground with fg %n
6. You could let the job finish (since it’s only sleeping for 60 seconds after all), or

you can kill it. Up to you.

17

Environment Variables

18

Environment Variables
● Unix shells maintain a list of environment variables that have a unique name

and value associated with them
○ Some of these parameters determine the behavior of the shell
○ They also determine which programs get run when commands are entered
○ The can provide information about the execution environment to programs

● We can access these variables
○ Set new values to customize the shell
○ Find out the value to accomplish a task

● Use env to view environment variables
● Use echo to print variables

○ echo $PWD
○ The $ is needed to access the value of the variable

19

PATH
● Each time you provide the shell a command to execute, it does the following:

○ Checks to see if the command is a built-in shell command
○ If it’s not a built-in shell command, the shell tries to find a program whose name matches the

desired command

● How does the shell know where to look on the filesystem?
● The PATH variable tells the shell where to search for programs

● The PATH is a list of directories delimited by colons
○ It defines a list and search order
○ Directories specified earlier in PATH take precedence
○ The search terminates once the matching command is found

● Add more search directories to your path using export:
○ export PATH=”$PATH:/Users/dsondak”

20

Setting Environment Variables
● Setting a Unix environment in bash uses the export command

○ export USE_CUDA=OFF

● Environment variables that you set interactively are only available in your
current shell

○ These settings will be lost if you spawn a new shell
○ To make more lasting changes, alter the login scripts that affect your particular shell (in bash

this is .bashrc, in zsh this is .zshrc)

● An environment variable can be deleted with the unset command
○ unset USE_CUDA

21

Unix Scripting

22

Unix Scripting
● Place all the Unix commands in a file instead of typing them interactively
● Useful for automating tasks

○ Repetitive operations on files, etc
○ Performing small post-processing operations

● Shells provide basic control syntax for looping, if constructs, etc

23

More on Unix Scripting
● Shell scripts must begin with a specific line to indicate which shell should be

used to execute the remaining commands in the file
○ Use #!/bin/bash in Bash
○ Use #!/bin/zsh in Zsh
○ These are called shebang lines
○ Comment out lines with #

● To run a shell script, it must have execute permission
● Excellent resources are available. Here is a recent one:

○ Moving to zsh

○ On the Shebang

24

https://scriptingosx.com/2019/08/moving-to-zsh-part-8-scripting-zsh/
https://scriptingosx.com/2017/10/on-the-shebang/

Unix Scripting Permissions

25

Unix Scripting: Conditionals

if [condition_A]; then
 # code to run if condition_A true
elif [condition_B]; then
 # code to run if condition_A false and
condition_B true
else
 # code to run if both conditions false
fi

26

Unix Scripting: String Comparisons

Test identity

string1=string2

Test inequality

string1!=string2

The length of string is nonzero

-n string
The length of string is zero

-z string

You may want to use these in your conditional statements sometimes.

27

String Comparisons: Example

#!/bin/zsh

today="monday"
if ["$today" = "monday"]; then
 echo "Today is Monday!"
fi

28

Integer Comparisons
Test identity

int1 -eq int2
Test inequality

int1 -ne int2
Less than

int1 -lt int2

Greater than

int1 -gt int2
Less than or equal

int1 -le int2
Greater than or equal

int1 -ge int2

29

Integer Comparisons: Example

#!/bin/zsh

x=13
y=25
if [$x -lt $y]; then
 echo "$x is less than $y"
fi

30

Common File Tests (I)
Sometimes you want to check the state of files and directories:

Test if the file is a directory

-d file
Test if the file is not a directory

-f file
Test if the file has nonzero length

-s file

Test if the file is readable

-r file
Test if the file is writable

-w file
Test if the file is executable

-x file 31

Common File Tests (II)
Test if the file is owned by the user

-o file

Test if the file exists

-e file

#!/bin/zsh

foo=$1 # read from command line

if [-f $foo]; then
 echo "$foo exists and is a file."
fi 32

Recap
Today we covered:

● Shell customization - have fun making your terminal be useful and look great
● Redirecting the I/O streams
● Controlling jobs: Putting them in the background / foreground, cancelling

them, suspending them
● Quick tour through Unix environment variables
● Some of the essentials of Unix scripting

33

