
Environments, Virtual Machines and
Containers

AC295
Guest Lecture for CS107/AC207

Pavlos Protopapas

AC295 Advanced Practical Data Science
Pavlos Protopapas

Outline

1: Virtual environments

2: Virtual machines

3: Containers

4: Demo

AC295 Advanced Practical Data Science
Pavlos Protopapas

Outline

1: Virtual environments

2: Virtual machines

3: Containers

4: Demo

AC295 Advanced Practical Data Science
Pavlos Protopapas

Why should we use virtual environment?

• Virtual environments help to make development and use of code
more streamlined.

• Virtual environments keep dependencies in separate “sandboxes” so
you can switch between both applications easily and get them
running.

• Given an operating system and hardware, we can get the exact code
environment set up using different technologies. This is key to
understand the trade off among the different technologies presented
in this class.

AC295 Advanced Practical Data Science
Pavlos Protopapas

Why should we use virtual environment?

• Maggie took cs109a, she used to run her Jupyter notebooks from
anaconda prompt. Every time she installed a module it was placed in
the either of bin, lib, share, include folders and she could
import it in and used it without any issue.

Operating System

Maggie

bins

lib1 lib2 lib3

$ which python
/c/Users/maggie/Anaconda3/python

AC295 Advanced Practical Data Science
Pavlos Protopapas

$ which python
/c/Users/maggie/Anaconda3/envs/env_ac295/python

Why should we use virtual environment?

• Maggie starts taking ac295 and she thinks that would be good to isolate
the new environment from the previous environments avoiding any
conflict with the installed packages. She adds a layer of abstraction called
virtual environment that helps her keep the modules organized and avoid
misbehaviors while developing a new project.

Operating System

Maggie

bins

lib1 lib2 lib3

env_ac295

bins

lib1 lib2

AC295 Advanced Practical Data Science
Pavlos Protopapas

Why should we use virtual environment?

• Maggie collaborates with John for the final project and shares with
him the environment she is working on through .yml file.

Operating System

Maggie

bins

lib1 lib2 lib3

env_ac295

bins

lib1 lib2

Operating System

John

env_ac295

bins

lib1 lib2

AC295 Advanced Practical Data Science
Pavlos Protopapas

Why should we use virtual environment?

Operating System

Maggie

bins

lib1 lib2 lib3

env_ac295

bins

lib1 lib2

Operating System

John

env_ac295

bins

lib1 lib2

env_am207

bins

lib2 lib3lib1lib3lib3

• John experiments with a new method he learned in another class and
adds a new library to the working environment. After seeing a
tremendous improvements he sends Maggie back his code and a
new .yml file. She can now update her environment and replicate the
experiment.

AC295 Advanced Practical Data Science
Pavlos Protopapas

Why should we use virtual environment?

• What could go wrong? Unfortunately, Maggie and John reproduce
different results and they think the issue relates to their operating
systems. Indeed while Maggie has a MacOS, John uses a Win10.

Operating System (Win10)

John

env_ac295

bins

lib1 lib2

env_am207

bins

lib1 lib2 lib3lib3

Operating System (MacOs)

Maggie

bins

lib1 lib2 lib3

env_ac295

bins

lib1 lib2 lib3

AC295 Advanced Practical Data Science
Pavlos Protopapas

Cons

• Difficulty setting up your
environment

• Not isolation
• Does not work across different OS

Virtual environments

Pros

• Reproducible research
• Explicit dependencies

• Improved engineering collaboration
• Broader skill set

AC295 Advanced Practical Data Science
Pavlos Protopapas

What are virtual environments then?

A virtual environment is a directory with the following components:

• site_packages/ directory where third-party libraries are installed

• links [really symlinks] to the executables on your system

• some scripts that ensure that the code uses the interpreter and site

packages in the virtual environment

AC295 Advanced Practical Data Science
Pavlos Protopapas

Virtual environments: virtualenv vs conda

virtualenv
• virtual environments manager embedded in Python
• incorporated into broader tools such as pipenv
• allow to install modules using pip package manager

how to use virtualenv
• create an environment within your project folder virtualenv your_env_name
• it will add a folder called environment_name in your project directory
• activate environment: source env/bin/activate
• install requirements using: pip install package_name=version
• deactivate environment once done: deactivate

AC295 Advanced Practical Data Science
Pavlos Protopapas

Virtual environments in practice (virtualenv vs conda)

conda environment

• virtual environments manager embedded in Anaconda

• allow to use both conda and pip to manage and install packages

how to use conda

• create an environment conda create --name your_env_name python=3.7

• it will add a folder located within your anaconda installation /Users/your_username
/anaconda3/envs/your_env_name

• activate environment conda activate your_env_name (should appear in your shell)

• install requirements using conda install package_name=version

• deactivate environment once done conda deactivate

• duplicate your environment using YAML file conda env export >
my_environment.yml

• to recreate the environment now use conda env create -f environment.yml

AC295 Advanced Practical Data Science
Pavlos Protopapas

More on Virtual environments

Further readings

• For detailed discussions on similarities and differences among virtualenv and conda
https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/

• More on venv and conda environments
https://towardsdatascience.com/virtual-environments-104c62d48c54
https://towardsdatascience.com/getting-started-with-python-environments-using-
conda-32e9f2779307

https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/
https://towardsdatascience.com/getting-started-with-python-environments-using-conda-32e9f2779307

AC295 Advanced Practical Data Science
Pavlos Protopapas

Outline

1: Virtual environments

2: Virtual machines

3: Containers

4: Demo

AC295 Advanced Practical Data Science
Pavlos Protopapas

Why should we use virtual machines?

Motivation
• we have our isolated systems and after we set up a similar

environment into our colleagues' machines we should get similar
results, right? Unfortunately, it is not always the case. Why? Most
likely because we run it on different operating system.

• even though by using virtual environments we are isolating our
computations, we might need to use the same operating system
which requires to run "like if" we are in a different machines.

• How can we run the same experiment? Virtual Machines!
• Isolation!

AC295 Advanced Practical Data Science
Pavlos Protopapas

Why should we use virtual machines?(cont)

Advantages
• full autonomy: it works like a separate computer system, it is like

run a computer within a computer.
• very secure: the software inside the virtual machines can't affect

the actual computer.
• lower costs: buy one machine and run multiple operating

systems.

AC295 Advanced Practical Data Science
Pavlos Protopapas

What are virtual machines?

• virtual machines have their own virtual
hardware: CPUs, memory, hard drives, etc.

• you need a hypervisor that manages
different virtual machines on server

• hypervisor can run as many virtual
machines as you wish

• operating system is called the "host" while
those running in a virtual machine are
called "guest“

• You can install a completely different
operating system on this virtual machine

https://towardsdatascience.com/how-to-install-a-free-windows-
virtual-machine-on-your-mac-bf7cbc05888

Infrastructure

Hypervisor

Machine Virtualization

Guest
OS

Guest
OS

Guest
OS

Bins/lib Bins/lib Bins/lib

App1 App2 App3

https://towardsdatascience.com/how-to-install-a-free-windows-virtual-machine-on-your-mac-bf7cbc05888

Limitations

• Uses hardware in your local machine

• There is overhead associated with virtual machines

1. guest is not as fast as the host system

2. takes long time to start up

3. may not have the same graphics capabilities

AC295 Advanced Practical Data Science
Pavlos Protopapas

Outline

1: Virtual environments

2: Virtual machines

3: Containers

4: Demo

AC295 Advanced Practical Data Science
Pavlos Protopapas

Successful Software Application

• Imagine you are building a large complex application (e.g. Online Store)

Slide is tare taken from Ajeet Singh Raine

s
Architecture

OrganizationProcess

AC295 Advanced Practical Data Science
Pavlos Protopapas

Successful Software Application

• Imagine you are building a large complex application (e.g. Online Store)

Slide is tare taken from Ajeet Singh Raine

s
Architecture

Monolithic or Microservices

Organization
Small Autonomous Teams

Process
Agile Continuous Delivery

AC295 Advanced Practical Data Science
Pavlos Protopapas

Monolithic Architecture

Slide is tare taken from Ajeet Singh Raine

AC295 Advanced Practical Data Science
Pavlos Protopapas

Monolithic Architecture

Slide is tare taken from Ajeet Singh Raine

AC295 Advanced Practical Data Science
Pavlos Protopapas

Benefits of Monolithic

Simple to Develop, Test, Deploy and Scale:

1. Simple to develop because all the tools and IDEs support the
applications by default

2. Easy to deploy because all components are packed into one
bundle

3. Easy to scale the whole application

AC295 Advanced Practical Data Science
Pavlos Protopapas

Disadvantages of Monolithic

1. Very difficult to maintain

2. One component failure will cause the whole system to fail

3. Very difficult to create the patches for monolithic architecture

4. Adapting to new technologies is challenging

5. Take a long time to startup because all the components needs
to get started

AC295 Advanced Practical Data Science
Pavlos Protopapas

Today

Apps are constantly being developed

Build from loosely coupled components

Newer version are deployed often

Deployed to a multitude of servers

Applications have changed dramatically

A decade ago

Apps were monolithic
Built on a single stack (e.e. .NET or Java)

Long lived
Deployed to a single server

AC295 Advanced Practical Data Science
Pavlos Protopapas

Microservice Architecture

AC295 Advanced Practical Data Science
Pavlos Protopapas

What is container

• Standardized packaging for
software dependencies

• Isolate apps from each other
• Works for all major Linux

distributions, MacOS, Windows

AC295 Advanced Practical Data Science
Pavlos Protopapas

Images and Containers

Docker Image is a template aka blueprint to create a running
Docker container. Docker uses the information available in the
Image to create (run) a container.

Image is like a recipe, container is like a dish

You can think of an image as a class and a container is an
instance of that class.

AC295 Advanced Practical Data Science
Pavlos Protopapas

How to build an image

We use the Dockerfile, a simple text file, to build the Docker
Image, which are iso files and other files. We run the Docker
Image to get Docker Container.

Docker file Docker Image Docker container

÷÷÷÷:÷:÷÷÷÷÷÷÷÷÷÷÷.

AC295 Advanced Practical Data Science
Pavlos Protopapas

Inside the Dockerfile

FROM: This instruction in the Dockerfile tells the daemon, which
base image to use while creating our new Docker image. In the
example here, we are using a very minimal OS image called alpine
(just 5 MB of size). You can also replace it with Ubuntu, Fedora,
Debian or any other OS image.

RUN: This command instructs the Docker daemon to run the
given commands as it is while creating the image. A Dockerfile
can have multiple RUN commands, each of these RUN commands
create a new layer in the image.

ENTRYPOINT: The ENTRYPOINT instruction is used when you
would like your container to run the same executable every time.
Usually, ENTRYPOINT is used to specify the binary and CMD to
provide parameters.

CMD: The CMD sets default command and/or parameters when a
docker container runs. CMD can be overwritten from the
command line via the docker run command.

Docker file Docker Image Docker container

÷÷÷÷:÷:÷÷÷÷÷÷÷÷÷÷÷.

AC295 Advanced Practical Data Science
Pavlos Protopapas

Multiple containers from same image

How can you run multiple containers from the same image?
Wouldn’t they all be identical?

Yes, you could think of an image as instating a class. You could instate
it with different parameters using the CMD and therefore different
containers will be different.

FROM ubuntu:latest
RUN apt-get update
ENTRYPOINT ["/bin/echo", "Hello"]
CMD ["world"]

> docker build -t hello_world_cmd:first -f
Dockerfile_cmd .

> docker run -it hello_world_cmd:first
> Hello world
> docker run -it hello_world_cmd:first Pavlos
> Hello Pavlos

Docker file Docker Image Docker container

÷÷÷÷:÷:÷÷÷÷÷÷÷÷÷÷÷.

AC295 Advanced Practical Data Science
Pavlos Protopapas

Docker Image as Layers

'÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷.¥⑧
When we execute the build command, the daemon reads the Dockerfile and creates a layer for
every command.

Docker file Docker Image Docker container

÷÷÷÷:÷:÷÷÷÷÷÷÷÷÷÷÷.
Docker file Docker Image Docker container

÷÷÷÷:÷:÷÷÷÷÷÷÷÷÷÷÷.

>docker build -t hello_world_cmd -f Dockerfile_cmd .

Sending build context to Docker daemon 34.3kB
Step 1/4 : FROM ubuntu:latest
latest: Pulling from library/ubuntu
54ee1f796a1e: Already exists
f7bfea53ad12: Already exists
46d371e02073: Already exists
b66c17bbf772: Already exists
Digest: sha256:31dfb10d52ce76c5ca0aa19d10b3e6424b830729e32a89a7c6eee2cda2be67a5
Status: Downloaded newer image for ubuntu:latest
---> 4e2eef94cd6b

Step 2/4 : RUN apt-get update
---> Running in e3e1a87e8d6e

Get:1 http://archive.ubuntu.com/ubuntu focal InRelease [265 kB]
Get:2 http://security.ubuntu.com/ubuntu focal-security InRelease [107 kB]
Get:3 http://security.ubuntu.com/ubuntu focal-security/universe amd64 Packages [67.5
kB]
Get:4 http://archive.ubuntu.com/ubuntu focal-updates InRelease [111 kB]
Get:5 http://archive.ubuntu.com/ubuntu focal-backports InRelease [98.3 kB]
Get:6 http://security.ubuntu.com/ubuntu focal-security/main amd64 Packages [231 kB]
Get:7 http://archive.ubuntu.com/ubuntu focal/restricted amd64 Packages [33.4 kB]
Get:8 http://archive.ubuntu.com/ubuntu focal/main amd64 Packages [1275 kB]
Get:9 http://security.ubuntu.com/ubuntu focal-security/multiverse amd64 Packages [1078
B]
…

Step1: Instruction 1

Step2: Instruction 2

>docker build -t hello_world_cmd -f Dockerfile_cmd .

….
Step 3/4 : ENTRYPOINT ["/bin/echo", "Hello"]
---> Running in 52c7a98397ad

Removing intermediate container 52c7a98397ad
---> 7e4f8b0774de

Step 4/4 : CMD ["world"]
---> Running in 353adb968c2b

Removing intermediate container 353adb968c2b
---> a89172ee2876

Successfully built a89172ee2876
Successfully tagged hello_world_cmd:latest

Step3: Instruction 3

Step4: Instruction 4

PAVLOS PROTOPAPAS, FIUBA, JUNE 2018

> docker image history hello_world_cmd
IMAGE CREATED CREATED
BY SIZE COMMENT
a89172ee2876 8 minutes ago /bin/sh -c #(nop) CMD ["world"] 0B
7e4f8b0774de 8 minutes ago /bin/sh -c #(nop) ENTRYPOINT ["/bin/echo" "… 0B
cfc0c414a914 8 minutes ago /bin/sh -c apt-get update 22.8MB
4e2eef94cd6b 3 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B
<missing> 3 weeks ago /bin/sh -c mkdir -p /run/systemd && echo 'do… 7B
<missing> 3 weeks ago /bin/sh -c set -xe && echo '#!/bin/sh' > /… 811B
<missing> 3 weeks ago /bin/sh -c [-z "$(apt-get indextargets)"] 1.01MB
<missing> 3 weeks ago /bin/sh -c #(nop) ADD file:9f937f4889e7bf646… 72.9MB

> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello_world_cmd latest a89172ee2876 7 minutes ago 96.7MB
ubuntu latest 4e2eef94cd6b 3 weeks ago 73.9MB

Why Layers

Why build an image with multiple layers when we can just build it in a single layer?
Let’s take an example to explain this concept better, let us try to change the Dockerfile_cmd
we created and rebuild a new Docker image.

> docker build -t hello_world_cmd -f Dockerfile_cmd .
Sending build context to Docker daemon 34.3kB
Step 1/4 : FROM ubuntu:latest
---> 4e2eef94cd6b

Step 2/4 : RUN apt-get update
---> Using cache
---> cfc0c414a914

Step 3/4 : ENTRYPOINT ["/bin/echo", "Hello"]
---> Using cache
---> 7e4f8b0774de

Step 4/4 : CMD ["world"]
---> Using cache
---> a89172ee2876

Successfully built a89172ee2876
Successfully tagged hello_world_cmd:latest

Have seen this before. Use cache

As you can see that the image was built using the existing layers from our previous docker image
builds. If some of these layers are being used in other containers, they can just use the existing
layer instead of recreating it from scratch.

AC295 Advanced Practical Data Science
Pavlos Protopapas

Traditional Software Development Workflow
(without Docker)

Slide is tare taken from Ajeet Singh Raine

AC295 Advanced Practical Data Science
Pavlos Protopapas

Traditional Software Development Workflow
(with Docker)

Slide is tare taken from Ajeet Singh Raine

AC295 Advanced Practical Data Science
Pavlos Protopapas

Docker Registry Services

AC295 Advanced Practical Data Science
Pavlos Protopapas

Docker Containers are not Virtual Machines

Virtual Machines Containers

AC295 Advanced Practical Data Science
Pavlos Protopapas

Docker Container vs Virtual Machines (VM)

VMs

• Each VM runs its own OS

• Boot up time is in minutes

• Not version controlled

• Cannot run more than couple of VMs on
an average laptop

• Only one VM can be started from one set
of VMX and VMDK files

Docker

• Container is just a user space of OS

• Containers instantiate in seconds

• Images are built incrementally on
top of another like layers. Lots of
images/snapshots

• Images can be diffed and can be
version controlled. Docker hub is
like Github

• Can run many Dockers in a laptop

• Multiple docker containers can be
started from one Docker image

AC295 Advanced Practical Data Science
Pavlos Protopapas

Docker Container vs Virtual Machines

Infrastructure

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Bins/lib Bins/lib Bins/lib

App1 App2 App3

Infrastructure

Operating System

Container Engine

Bins/lib Bins/lib Bins/lib

App1 App2 App3

Virtual MachineContainer

AC295 Advanced Practical Data Science
Pavlos Protopapas

What Makes Containers so Small?

Container = User Space of OS

• User space refers to all of the code in an operating system that
lives outside of the kernel

AC295 Advanced Practical Data Science
Pavlos Protopapas

Why should we use containers?

• It has the best of the two worlds because it allows:
1. to create isolate environment using the preferred operating

system

2. to run different operating system without sharing hardware

• The advantage of using containers is that they only virtualize the
operating system and do not require dedicated piece of hardware

because they share the same kernel of the hosting system.

• Containers give the impression of a separate operating system

however, since they're sharing the kernel, they are much cheaper
than a virtual machine.

Kernel

Containers

Libraries

App

Libraries

App

Libraries

App

Libraries

App

AC295 Advanced Practical Data Science
Pavlos Protopapas

Why should we use containers? (cont)

• With container images, we confine the application code, its
runtime, and all its dependencies in a pre-defined format.

• With the same image, you can reproduce as many containers as

you wish. Think about the image as the recipe, and the container

as the cake ;-) you can make as many cakes as you’d like with a

given recipe.

• A container orchestrator (see next lecture) is a single

controller/management unit that connects multiple nodes

together.

• You can create a container on a Window but install an image of a

Linux OS inside that container. The container still works on the
Window

Kernel

Containers

Libraries

App

Libraries

App

Libraries

App

Libraries

App

AC295 Advanced Practical Data Science
Pavlos Protopapas

Why should we use containers? (cont)

• Containers are application-centric methods to
deliver high-performing, scalable applications on
any infrastructure of your choice.

• Containers are best suited to deliver microservices
by providing portable, isolated virtual environments
for applications to run without interference from
other running applications.

• Containers run container images, it bundles the
application along with its runtime and
dependencies.

• Because they're so lightweight, you can have many
containers running at once on your system.

Kernel

Containers

Libraries

App

Libraries

App

Libraries

App

Libraries

App

AC295 Advanced Practical Data Science
Pavlos Protopapas

Why containers recap?
• Their startup time is on the order of seconds (vs. minutes for Virtual

Machines).

• They provide pseudo-isolation. This means they're still pretty secure,
but not as secure at a Virtual Machines.

• A container is deployed from the container image offering an isolated
executable environment for the application.

• Containers can be deployed from a specific image on many platforms,
such as workstations, Virtual Machines, public cloud, etc.

• Containers are extremely popular, and their popularity is growing.

• One of the first widely used containers was provided by Docker.

• Docker containers can be used to run websites and web applications.

• Multiple containers can be managed by a service called Kubernetes
(see next lecture)

AC295 Advanced Practical Data Science
Pavlos Protopapas

Comparison

The Docker Engine Architecture

https://nickjanetakis.com/blog/understanding-how-the-docker-daemon-and-docker-cli-work-together

The client allows to
run various Docker
commands (installed
in any OS).

The docker host is
the server running
the Docker daemon.

The registry is place
to find and download
Docker images.

https://nickjanetakis.com/blog/understanding-how-the-docker-daemon-and-docker-cli-work-together

Some Docker Vocabulary

Docker Image
The basis of a Docker container. Represent a full application

Docker Container
The standard unit in which the application service resides and executes

Docker Engine
Creates, ships and runs Docker containers deployable on a physical or
virtual, host locally, in a datacenter or cloud service provider

Registry Service (Docker Hub or Docker Trusted Registry)
Cloud or server-based storage and distribution service for your images

Docker Image
The basis of a Docker container. Represent a full application

Docker Container
The standard unit in which the application service resides and executes

Docker Engine
Creates, ships and runs Docker containers deployable on a physical or
virtual, host locally, in a datacenter or cloud service provider

Registry Service (Docker Hub or Docker Trusted Registry)
Cloud or server-based storage and distribution service for your images

Docker Image
The basis of a Docker container. Represent a full application

Docker Container
The standard unit in which the application service resides and executes

Docker Engine
Creates, ships and runs Docker containers deployable on a physical or
virtual, host locally, in a datacenter or cloud service provider

Registry Service (Docker Hub or Docker Trusted Registry)
Cloud or server-based storage and distribution service for your images

Docker Image
The basis of a Docker container. Represent a full application

Docker Container
The standard unit in which the application service resides and executes

Docker Engine
Creates, ships and runs Docker containers deployable on a physical or
virtual, host locally, in a datacenter or cloud service provider

Registry Service (Docker Hub or Docker Trusted Registry)
Cloud or server-based storage and distribution service for your images

Docker Image
The basis of a Docker container. Represent a full application

Docker Container
The standard unit in which the application service resides and executes

Docker Engine
Creates, ships and runs Docker containers deployable on a physical or
virtual, host locally, in a datacenter or cloud service provider

Registry Service (Docker Hub or Docker Trusted Registry)
Cloud or server-based storage and distribution service for your images

AC295 Advanced Practical Data Science
Pavlos Protopapas

Outline

1: Class organization

2: Recap

3: Software Development

4: Demo

Hands on Containers

Exercise 1: Pull, modify, and push a Docker image from DockerHub

Exercise 2: Build a Docker Image and push it to DockerHub

CLIENT

docker pull

DOCKER HOST REGISTRY

Exercise 1: pull, modify, and push an image

https://nickjanetakis.com/blog/understanding-how-the-docker-daemon-and-docker-cli-work-together

Docker daemon

ImagesContainers

docker run

docker push

https://nickjanetakis.com/blog/understanding-how-the-docker-daemon-and-docker-cli-work-together

Exercise 2: build a Docker Image

CLIENT

docker build

DOCKER HOST REGISTRY

https://nickjanetakis.com/blog/understanding-how-the-docker-daemon-and-docker-cli-work-together

Docker daemon

ImagesContainers

https://nickjanetakis.com/blog/understanding-how-the-docker-daemon-and-docker-cli-work-together

Hands on Containers | Instructions

Exercise set up
• install docker (https://hub.docker.com/)
• have docker up and running
• create a class repository in docker hub (yourhubusername/ac295_playground)

Exercise 1: modify images from Docker Hub
• Step 1 | pull image pavlosprotopapas/ac295_l2:latest
• Step 2 | run container in interactive mode (-it)
• Step 3 | open Readme.txt file and follow instructions to modify image
• Step 4 | push modified image (pavlosprotopapas/ac295_l2)

Exercise 2: Docker Do It Yourself
• Step 1 | pull course repository and cd to lecture2/exercises/exercise1
• Step 2 | build an image using Dockerfile (for MacOs)
• Step 3 | push image to docker hub (yourhubusername/ac295_playground)

https://hub.docker.com/

AC295 Advanced Practical Data Science
Pavlos Protopapas

THANK YOU

