
Lecture 1
Tuesday, September 8th, 2020

Unix

Last Time
● Course introduction / policies
● Unix and Linux terminology
● The ls command

2

Today
● More on Unix / Linux

○ Unix commands
○ Interacting with the shell
○ File attributes
○ Text editors

After this lecture, you will know more about working with Unix and how to edit files.

3

Unix Commands

4

Basic Unix Commands

http://cheatsheetworld.com/programming/unix-linux-cheat-sheet/
5

http://cheatsheetworld.com/programming/unix-linux-cheat-sheet/

Absolutely Essential Commands
These commands should be at your fingertips at all times

6

man and More Information
● man pages (manual pages) provide extensive documentation
● The Unix command to display a manual page is man
● Man pages are split into 8 numbered sections

○ 1. General commands
○ 2. System calls
○ 3. C library functions
○ 4. Special files (usually devices found in /dev)
○ 5. File formats and conventions
○ 6. Games
○ 7. Miscellaneous
○ 8. Sys admin commands and daemons

● You can request pages from specific sections, e.g.
○ man 3 printf (shows man page for C library function)

7

Breakout Room
● Figure out who is at the most northern latitude in your group.
● Choose one of the Unix commands from the cheatsheet. Read about it using

man. Try it out a bit as a group. Make sure you can all provide a short
summary of what it does. What is one interesting option that this command
provides?

8

Interacting with the Shell

9

Running a Unix Program
● Type in the name of a program and some command line options
● The shell reads this line, finds the program, and runs it feeding it the options

you specified
● The shell establishes three I/O streams:

○ 1. Standard input
○ 2. Standard output
○ 3. Standard error

● File descriptors associated with each stream:
○ 0 = STDIN (standard input)
○ 1 = STDOUT (standard output)
○ 2 = STDERR (standard error)

10

Unix Pipes
● A pipe is a holder for a stream of data
● A Unix pipeline is a set of processes chained by their standard streams

○ The output of each process (stdout) feeds directly as input (stdin) to the next one

● Very useful for using multiple Unix commands together to perform a task

program1 program2

STDOUT STDIN
11

Building Commands
● More complicated commands can be built up by using one or more pipes
● The | character is used to pipe two commands together
● The shell does the rest for you!

● Note: wc prints the number of newlines, words, and bytes in a file 12

More Unix Commands: find
● find searches the filesystem for files whose name matches a specific pattern
● It can do much more than this and is one of the most useful commands in

Unix
○ e.g. It can find files and then perform operations on them

● Example:

13

find

● find can also scan for certain file types:
○ Find directories with find . -type d
○ Find files with find . -type f

● The exec option can be used to make very powerful commands on files
○ find . -type f -exec wc -l {} \;

● What does this command do?

14

● Find files (-type f) in the current directory (.) and execute (-exec) the
word count command (wc) on them with the line count option (-l).

○ The current file gets put into the {}
○ The ; is used to terminate the command invoked by -exec
○ Need the \ in front of ; to tell the shell to interpret ; correctly

The Famous grep
● “Global regular expression print”
● grep extracts lines from a file that match a given string or pattern
● grep can also use a regular expression for the pattern search

● grep isn’t the only Unix command that supports regular expressions
○ sed
○ awk
○ perl 15

Regular Expressions
● General search pattern characters

○ Any character
○ . matches any character except a newline
○ * matches zero or more occurrences of the single preceding character
○ + matches one or more of the proceeding character
○ ? matches zero or one of the proceeding character

● More special characters
○ () are used to quantify a sequence of characters
○ | functions as an OR operator
○ {} are used to indicate ranges in the number of occurrences

16

More on Regular Expressions
● To match a special character, you should use the backslash \

○ To match a period do \.
○ a\.b matches a.b because . is special

● A character class (a.k.a. character set) can be used to match only one out of
several characters

● Place the characters you want to match between square brackets []
● A hyphen can be used to specify a range of characters
● A caret, ^, after the opening square bracket will negate the class

○ The result is that the character will match any character that is not in the character class

● Examples
○ [abc] matches a single a, b, c
○ [0-9] matches a single digit between 0 and 9
○ [^A-Za-z] matches a single character as long as it’s not a letter 17

Regular Expressions Continued
● Some shorthand character classes are available for convenience

○ \d a digit, e.g. [0-9]
○ \D a non-digit, e.g. [^0-9]
○ \w a word character, matches letters and digits
○ \W a non-word character
○ \s a whitespace character
○ \S a non-whitespace character

● Some shorthand classes are available for matching boundaries
○ ^ the beginning of a line
○ $ the end of a line
○ \b a word boundary
○ \B a non-word boundary

● Some references
○ https://regexone.com/

○ Mastering Regular Expressions, 3rd Edition [Book]
18

https://regexone.com/
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/

File Attributes

19

File Attributes
Every file has a specific list of attributes:

● Access times
○ when the file was created
○ when the file was last changed
○ when the file was last read

● Size
● Owners

○ user (remember UID?)
○ group (remember GID?)

● Permissions

20

Quick Examples
For example, time attributes access with ls

● ls -l shows when the file was last changed
● ls -lc shows when the file was created
● ls -lu shows when the file was last accessed

21

File Permissions
● Each file has a set of permissions that control who can access the file
● There are three different types of permissions:

○ read, abbreviated r
○ write, abbreviated w
○ execute, abbreviated x

● In Unix, there are permission levels associated with three types of people that
might access a file:

○ owner (you)
○ group (a group of other users that you set up)
○ world (anyone else browsing around on the file system)

22

File Permissions Display Format

● The first entry specifies the type of file:
○ - is a plain file
○ d is a directory
○ c is a character device
○ b is a block device
○ l is a symbolic link

 - rwx rwx rwx
Owner Group Others

● Meaning for files
○ r - allowed to read
○ w - allowed to write
○ x - allowed to execute

● Meaning for directories
○ r - allowed to see the names of files
○ w - allowed to add and remove files
○ x - allowed to enter the directory 23

Changing File Permissions
● The chmod command changes the permissions associated with a file or

directory
● Basic syntax: chmod <mode> <file>
● The <mode> can be specified in two ways:

○ Symbolic representation
○ Octal number

● It’s up to you which method you use
● Multiple symbolic operations can be given, separated by commas

24

https://en.wikipedia.org/wiki/Octal#:~:text=The%20octal%20numeral%20system%2C%20or,for%20decimal%2074%20is%201001010.

Symbolic Representation
● Symbolic representation has the following form

○ [ugoa] [+-=] [rwxX]

● u=user g=group o=other a=all
● + add permission - remove permission = set permission
● r=read w=write x=execute
● X sets to execute only if the file is a directory or already has execute

permission
○ Very useful when using recursively

25

Symbolic Representation Examples

26

Octal Representation
● Octal mode uses a single-argument string which describes the permissions

for a file (3 digits)
● Each digit is a code for each of the three permission levels
● Permissions are set according to the following numbers:

○ read=4 write=2 execute=1

● Sum the individual permissions to get the desired combination

0 = no permission at all

1 = execute only

2 = write only

3 = write and execute (1+2)

4 = read only

5 = read and execute (4+1)

6 = read and write (4+2)

7 = read, write and execute (4+2+1) 27

Octal Representation Examples

28

Breakout Room
● Figure out who is in the most southern latitude.
● What does chmod 777 do? Discuss some of the repercussions.

29

Text Editors

30

Text Editors
● We need to make use of available Unix text editors for programming and

changing of various text files
● Two of the most popular and available text editors are vi and emacs
● You should familiarize yourself with at least one of the two

○ Editor Wars

● We will have very short introductions to each

31

https://en.wikipedia.org/wiki/Vi
https://en.wikipedia.org/wiki/Emacs
https://en.wikipedia.org/wiki/Editor_war

A Brief Text Editor History
● ed: line mode editor
● ex: extended version of ed
● vi: full screen version of ex
● vim: Vi IMproved
● emacs: another very popular editor (but it’s more than that…)

ed/ex/vi share lots of syntax, which can be found in sed/awk --- useful to
know

32

vi overview
● The big thing to remember about vi is that it has two different modes of

operation
○ 1.) Insert mode
○ 2.) Command mode

● The insert mode puts anything typed on the keyboard into the current file
● The command mode allows the entry of command to manipulate text
● Note that vi starts out in command mode by default

33

vim Quickstart Commands
● vim <filename>
● Press i to enable insert mode
● Type text (use arrow keys to move around)
● Press Esc to enable command mode
● Press :w (followed by return) to save the file
● Press :q (followed by return) to exit vim

This may feel strange at first, but you have to start somewhere. You’ll quickly learn
to love it.

34

Useful vim commands
● :q! - exit without saving the document. Very handy for beginners!
● :wq - save and exit
● / <string> - search within the document for text.

○ n goes to the next result

● dd - delete the current line
● yy - copy the current line
● p - past the last cut/deleted line
● :1 - goto first line in the file
● :$ - goto last line in the file
● $ - end of current line
● ^ - beginning of line
● % - show matching brace, bracket, parentheses 35

Useful vim resources
Vim Cheat Sheet

Other Vim Cheat Sheets

vimtutor

VIM Adventures: Learn VIM while playing a game

36

https://vim.rtorr.com/
https://devhints.io/vim
https://levelup.gitconnected.com/a-day-with-vim-tutor-vimtutor-25aa2e6ce52c
https://vim-adventures.com/

A Note on IDEs
Many people use Interactive Development Environments (IDEs)

Examples include:

● Spyder
● Eclipse
● PyCharm

These can be very convenient and powerful, but they can also be rather bulky.

A lightweight text editor like vim (also nano, atom, etc) is quick and easy to use.

vim has the additional advantage of being available on almost any system by
default. 37

Recap
Now you can:

● Learn even more Unix commands and really start using them
● Interact with the shell by searching for files and patterns
● Change file permissions and access
● Start editing files!

38

