Lecture 5: Intro to Transfer Learning: Basic
Transfer Learning and SOTA Models
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Quote of the Day

“I am still learning”

- Michelangelo -
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Outline

1: Communications
2: Recap
3: Motivation

3: The Basics idea for Transfer Learning
4: Representation Learning
S: Transfer Learning Strategies
6: Transfer Learning for Deep Learning
7: SOTA Deep Models
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Classify Rarest Animals

7 VGG16

conv2

NOT ENOUGH DATA

N

1127 112 x 128

=

00

@ convolution4+ReLLU

@ max pooling
@ fully connected+ReLLU

L
224 % 224 x 64

Number of parameters: 134,268,737
dvanced Practical Data Science Data Set: FeW hund red images
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Classify Cats, Dogs, Chinchillas etc

conv1 VGG16

TAKES TOO LONG .=,

S
56 x 56 x 256 Fxixal2

1127% 112 % 128

@ convolution+ReLU
@ max pooling

7 fully connected+ReL.U

L
224 x 224 x 64

Number of parameters: 134,268,737
Enough training data. ImageNet approximate 1.2M
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Transfer Learning To The Rescue

How do you build an image classifier that can be trained in a
few minutes on a CPU with very little data?
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Basic idea of Transfer Learning

Wikipedia:

Transfer learning (TL) is a research
problem in machine learning (ML)
that focuses on storing knowledge
gained while solving one problem and
applying it to a different but related
problem !

Train a ML model M for a
task 7'using a dataset Dy

Use M on a new dataset Dy
for the same task T

Use part of M on original
dataset D, for a new task T,

Use part of M on a new
m:Advanced Practical Data Science dataset DT for a neW taSk Tn
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https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Transfer_learning#cite_note-1
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Key Idea: Representation Learning

Relatively difficult task

Cartesian Coordinates
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Easier task

Polar Coordinates

360- e e
270- :
180-
O- o3 oo, . :,. .,@-::r.:

2

AC

&

3 50¢ B

=
8




Representation Learning

Task: classify cars, people, animals and objects

CNN Layer 1 CNN Layer 2

P(Y = ()

tElephants
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Transfer Learning To The Rescue

How do you make an image classifier that can be trained in a
few minutes on a CPU with very little data?

Use pre-trained models, i.e., models with known weights.

Main Idea: earlier layers of a network learn low level features,
which can be adapted to new domains by changing weights at
later and fully-connected layers.

Example: use ImageNet trained with any sophisticated huge
network. Then retrain it on a few images

i i 3 120t B8
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Machine Learning Setup

Transfer learning

Source task /
domain Target task /
domain

Storing knowledge gained solving
one problem and applying it to a
different but related problem.

Knowledge
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Transfer Learning To The Rescue

* train on a big "source” data set, with a big model, on one particular
downstream tasks (say classification). Do it once and save the
parameters. This is called a pre-trained model.

* use these parameters for other smaller "target " datasets, say, for
classification on new images (possibly different domain, or training
distribution), or for image segmentation on old images(new task), or
new images (new task and new domain).

* less helpful if you have a large target dataset with many labels.

 will fail if source domain (where you trained big model) has nothing in
common with target domain (that you want to train on smaller data set).
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Transfer Learning

Traditional ML

Task / domain A
Task / domain B

Training and
evaluation on the same
task or domain.
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Transfer Learning

Not a new idea! a,

It has been there in the ML and stats
literature for a while.

« an exemplaris hierarchical glm
models in stats, where information ¢
flows from higher data units to lower 6, 6, 03

data units to the lower data.

070 6071

* neural networks learn hierarchical
representations and thus are
particularly suited to this kind of | | | | L
learning. Furthermore, since we learn VI Y2 Y3 er Y10 Ym
representations, we can deal with

domain adaptation/covariate shift.
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Transfer Learning

Application

* learning from simulations (self driving cars)

 domain adaptation: bikes -> bikes with backgrounds, bikes
at night, etc

* speech recognition for immigrants and minorities

» cross-lingual adaptation for few shot learning of resource
poor languages (english->nepali for example)
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Transfer Learning: using a pre-trained net

 create a classifier to distinguish dogs and cats

* use a convnet previously trained (expensive for you to learn)
« e.g. Imagenet (1.4 M images and 1000 classes) >> more later

* in NLP, you might use a language model trained on Wikipedia
and reddit, and then look at legal documents
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A Formal Definition

A Domain consists of two components: D = {y, P(X)}
* Feature space: y
* Marginal Distribution: P(X); X = {x; ...,x,},x; € x

For a given Domain, a Task is defined by two components:
T={Y,PY|X)}={Yn);Y ={yy,..ym}yi €Y

* Label space: Y
« A predictive function n, learned from feature vector/label pairs (x;,y;), x; €

X,Vi € y
* For each feature vector in the domain, n predicts its corresponding label

n(x;) = y;.

AC295 Advanced Practical Data Science . 03100 18
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Scenarios

Different features spaces among source and target

XSOUT’C@ * Xtarget

Scenario: document A - the source - is written in one language while
document B - the target - is written in a different language

Task: can we use the weights learned training a model that distinguish
phonemes on the source to distinguish those in the target written in another
language? In NLP this method is called cross lingual adaptation.
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Scenarios

Different marginal probabilities among source and target

B.(x) + P.(Xt)

Scenario: Consider two different telescopes, in which one is equipped with a
sensor with higher sensitivity than the other.

Task: can we use the weights learned training a model learned training a
model on the source data that distinguish topics in another target document?
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Scenarios

Different labels among source and target

ysource * ytarget

Scenario: farm animals versus wild forest animals or different level of
classification, e.g. {dogs, cats} different breeds {Retriever, Bulldog, ..., Persian,
Siamese}.
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Scenarios

Different conditional probabilities distribution among source and target
task

Fs(Y|X) # P (Y]X)
Scenario: source and target are documents are unbalanced regarding their

labels. Common scenario in practice, approachable with sampling techniques
(e.g. under, over).

Probability Shift: P,(Y) # P.(Y) not the same class distribution
Conditional Shift: P,(X|Y) # P:(X|Y)
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Key Takeaways

During the process of transfer learning, the following three
Important questions must be answered:

* What to transfer: identify which portion of knowledge is source-specific
and what is common between the source and the target.

* When to transfer: aim at utilizing transfer learning to improve target
task performance/results and not degrade them. We need to be careful
about when to transfer and when not to.

* How to transfer: changes to existing algorithms and different
techniques, which we will cover in later sections of this article.
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Key Takeaways

During the process of transfer learning, the following three
Important questions must be answered:

* What to transfer: identify which portion of knowledge is source-specific
and what is common between the source and the target.

* When to transfer: we need to be careful about when to transfer and when
not to. aim at utilizing transfer learning to improve target task
performance/results and not degrade them (negative transfer).

* How to transfer: Identify ways of transferring the knowledge across
domains/tasks (more later).
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Transfer Learning Strategies

There are different transfer learning strategies and techniques, which can be applied
based on the domain, task at hand, and the availability of data:

* Inductive Transfer learning: the source and target have same domains, yet the
they have different tasks (e.g. documents written in the same language, but
unbalanced labels). The algorithms utilize the inductive biases of the source
domain to help improve the target task.

* Unsupervised Transfer Learning: the source and target have same domains, with
a focus on unsupervised tasks in the target domain. The source and target
domains are similar, but the tasks are different. In this scenario, labeled data is
unavailable in either of the domains.

* Transductive Transfer Learning: In this scenario, there are similarities between
the source and target tasks, but the corresponding domains are different. In this
setting, the source domain has a lot of labeled data, while the target domain has
none.

Advanced Practical Data Science _ 3} {20 2
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Transfer Learning Strategies

il

> Self-taught

No labeled data in a source domain

Inductive Transfer
Learning

/

AN

Labeled data are available
in a target domain

Labeled data are available in a source domain

/

Transfer e ||
Learning

Labeled data are

\

available only in a
source domain

LN

No labeled data in
both source and
target domain

dvanced Practical Data Science

A
AC295 Pavlos Protopapas

N\

Transductive

Transfer Learning <

i< Learning
Source and Multi-task
Case 2 — target tasks are 3> ;
et Learning
simultaneously
Assumption:
different > Domain

domains but
single task

Adaptation

Unsupervised
Transfer Learning

\

Assumption: single
domain and single task

Pan and Yang, A Survey on Transfer Learning

Sample Selection Bias
'Covariance Shift
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Transfer Learning Strategies

The approaches for Transfer Learning can be defined in few categories:

* Instance transfer: Reusing knowledge from the source domain to the target
task (ideal scenario). In most cases, the source domain data cannot be reused
directly.

* Feature-representation transfer: This approach aims to minimize domain
divergence and reduce error rates by identifying good feature representations
that can be utilized from the source to target domains.

* Parameter transfer: This approach works on the assumption that the models
for related tasks share some parameters or prior distribution of
hyperparameters.

* Relational-knowledge transfer attempts to handle non-IID data, such as data
that is not independent and identically distributed.
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Transfer Learning for Deep Learning

What people thinks
* you can’t do deep learning unless you have a million labeled examples.

What people can do, instead

* You can learn representations from unlabeled data

* You can train on a nearby objective for which is easy to generate labels
(imageNet).

* You can transfer learned representations from a relate task.
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Transfer Learning for Deep Learning

Instead of training a network from scratch:
* Take a network trained on a different domain for a different source task
* Adapt it for your domain and your target task

o 4 Target |

Variations . . | Source labels | labels ]

 Same domain, different task. /-1\ — ;

« Different domain, same task. S nm.m.m.d> e
Knowledge J

L / model

Source data — }
E.g. ImageNet

Advanced Practical Data Science M 13
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Representation Extraction

Prediction Prediction Prediction Prediction
HE El.d Trairned i MNeaw classifier
classifier sifi {randomly initialized)
Trainad Trained Trained Trained
convolutional convalulional convalutional convolutonal
base base hasa hase
(frazen)
- i
Base

! t ! !

Inpul Input Input Input
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Representation Extraction

Use representations learned by big net to extract features from
new samples, which are then fed to a new classifier:

 keep (frozen) convolutional base from big model

» generally throw away head FC layers since these have no notion
of space, and convolutional base is more generic

* since there are both dogs and cats in ImageNet you could get
away with using the head FC layers as well

« but by throwing it away you can learn more from other dog/cat
Images

H P 10 {20 BB
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Fine-tuning

Convolution2D

Corv block 1:

Convolution2D frozen

* up to now we have frozen the entire convolutional ——
base. comaserad

« remember that earlier layers learn highly generic e J| i
feature maps (edges, colors, textures).

* later layers learn abstract concepts (dog’s ear).
* to particularize the model to our task, its often
worth tuning the later layers as well.

* but we must be very careful not to have big
gradient updates.

il

|I

I

Conv block 3:
frozen

i

I

Conv block 4:
frozen

We fine-tune
Conv block 5.

Flattan
‘We fine-tune

our own fully AC

connected *

[N T ] [

$$ S| |®|[F|IF[]|IF] | &
glIal 12 2] [lIg]]2

ol 12 | o]l ]l]112e| | 92
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3.
4,
5.

Procedure for Fine-tuning

freeze the convolutional base

first train the fully connected head you added, keeping the
convolutional base fixed. This will get their parameters away
from random and in a

regime of smaller gradients

unfreeze some "later” layers in the base net and

now train the base net and FC net together

Since you are now in a better part of the loss surface already,
gradients won't be terribly high, but we still need to be careful. Thus
use a very low learning rate.
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Transfer Learning for Deep Learning: Differential Learning Rates

* Alow learning rate can take a lot of
time to train on the "later" layers.
Since we trained the FC head earlier,
we could probably retrain them at a

. ] relatively largest
higher learning rate. oing Jrger optmal
* General Idea: Train different layers e : rate : rate

at different rates.

* Each "earlier" layer or layer group
(the color-coded layers in the image)
can be trained at 3x-10x smaller

learning rate than the next "later”
one C - ConvolutionLayers

c—rc—rc—:r-c-—rc+c—:-—n+n+n

D - Dense Layers

* One could even train the entire
network again this way until we
overfit and then step back some
epochs.

Advanced Practical Data Science M 3 {0
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SOTA Deep Models: Pre-trained Models

Let us have a quick look at some of the best performing and popular
state of the art deep image classification architecture:

AlexNet: credited for opening the floodgates. Designed by Geoffrey
Hinton, this network reduced the top-five error rate to 15.3%. Was also
one of the first using GPUs to speed up computing.

VGGs (16-19): network from Oxford’s Visual Geometry is one of the best
performing architectures, widely used to for benchmarking other
designs. VGG-16 uses simple 3x3 convolutional layers stacked one on
the other (16 channels), followed by one maxpooling.

Inception (AKA Google-Net): introduced for ImageNet Large Scale
Visual Recognition Challenge (ILSVCR), it was one of the first to
achieve near human performances (top-five error rate of 6.67%). The

AC295 |

Innovation was to concatenate different kernel size at the same level.
[IACS | s
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SOTA Deep Models: Pre-trained Models

ResNets: introduced by Microsoft Research Asia, the residual network
(ResNet) was a novel architecture using batch normalization and
skipping connections (top-five error rate of 3.57%). With its 152 layers,
It is way deeper than VGG.

MobileNet: designed to be suitable for mobile and embedded system.
This network utilizes a novel idea of using depth-wise separable
convolutions to reduce the overall number of parameters required to
train the network.

DenseNets:

03 {0 108
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SOTA Deep Models: AlexNet

1.2 million high-resolution (227x227x3) images in the ImageNet 2010 contest;
1000 different classes, NN with 60 million parameters to optimize (~ 255 MB);

Uses Relu activation functions; GPUs for training, 12 layers.

conv. layer max-pool conv. layer max-pool
—>
' ' ’ -
55x55x96 27x27x96 2Tx27x256 13x13x256
227x227x3
conv. layer conv. layer conv. layer max-pool
O O (| Softmax
O O O 1000
—> —> —> : —> : —> : _>O
f=3 f=3 ' ' '
s=1 =2 O O @,
13x13x384 13x13x384 13x13x256  6x6x256 9216 4096 4096

Advanced Practical Data Science
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SOTA Deep Models: VGG 16-19

* ImageNet Challenge 2014; 16 or 19 layers; 138 million parameters (~ 522 MB).
* Convolutional layers use ‘same’ padding and stride s=1.
* Max-pooling layers use a filter size f=2 and strie s=2.

CONYV = 3x3 filter, s = 1, same
MAX-POOL = 2x2 filter, s = 2

—> 224x224x64 —» 112x112x64 —» 112x112x128 —» 56x56x128

[CONV 64] POOL [CONV 128] POOL
X2 X2
224x224x3
——>  56x56x256 ——>  28x28x256 ————» ——>  14x14x512
[CONV 256] o OOL XEXEOD [conys1p] 28Xe8x81Z T Xlax

3 x3

—>  14x14x512 ———» 7x7x512 ———» FC ——» FC —» Softmax
[CONV 512] POOL 4096 4096 1000
X3

Advanced Practical Data Science
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SOTA Deep Models: Inception (GooglLeNet)

The motivation behind inception networks is to use more than a singe type of
convolution layer at each layer.

Use 1x 1,3 x 3,5 x convolutional layers, and max-pooling layers in parallel.

All modules use same convolution.

Basic implementation:

1x1
64 ch.

/—> s L
same 64

128 ch.

\} By > 128

‘same’ 39

32 ch. 32
28

28x28x192 MAX-POO 28x28x256

‘same’, s =1
32 ch.

Advanced Practical Data Science
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SOTA Deep Models: Inception (GooglLeNet)

e Uselx1convolutions that reduce the size of the channel dimension.
* The number of channels can vary from the input to the output.

Previous Channel

Activation Concat

Advanced Practical Data Science
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SOTA Deep Models: Inception (GooglLeNet)

* The inception network is formed by concatenating other inception modules.
* Itincludes several softmax output units to enforce regularization.
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SOTA Deep Models: ResNets

* Residual nets appeared in 2016 to train very deep NN (100 or more layers)
* Their architecture uses ‘residual blocks’.
* Plain network structure:

Al S [ o l+1] S _142] o 142
' linear RelLu — linear “— RelLu “—
* Residual network block:
identity
‘ o0 L] i+ J g+l —— i+ f—() ‘ﬂ:f-:{
linear Rel.lu linear Rel.u

AC295 Advanced Practical Data Science
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SOTA Deep Models: ResNets

* Aresidual network stacks residual blocks sequentially.

Ol O IOL O] O
X Olud O h:d® Ohed©®
O & O O ©O

* Theidea is to allow the network to become deeper without increasing the
training complexity.

|—» gl

Plain ResNet

.
!

“practice’
.-‘H/

training error

training error

“theory™

¥

[
L

# layers # layers
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SOTA Deep Models: ResNets

* Residual nets implement blocks with convolutional layers that use ‘same’
padding option (even when max-pooling).
* This allows the block to learn the identity function.
* The designer may want to reduce the size of features and use ‘valid’ padding.
* Insuch case, the shortcut path can implement a new set of convolutional
layers that reduces the size appropriately.

Number of Layers Number of Parameters
HesNet 18 11.174M
ResNet 34 21.282M
ResMNet 50 | 23.521M
ResNet 101 42.513M
ResNet 152 58.157M

Advanced Practical Data Science
Pavlos Protopapas %g ﬁ
we



e ==

i

_ worty | [ " 3
) " "3
jond B Eﬂp.- E__.__hu_.
£16 i pE | l E.HEE |
ElfAmpE | l E_HEE |
15 MmpE | _ E.z._..uﬂ |
A5 Mg | [ ggmmpy |
-~ _._Iﬂm.ah_..ﬂ ] | ﬂm._..__._ﬂ__..ﬂ |
».........H_..ﬂﬂm.EE _ [ gas wesps | 21'peod

SOTA Deep Models: ResNets

Erpiseu afe|HE

i

Source: He2016

Advanced Practical Data Science

Pavlos Protopapas

N
(2]
N
&)
<




SOTA Deep Models: MobileNet, a lightweight model

ImageNet Top-1 Accuracy (%)

75
70
65
60
e
50
45

40
101

10°

10°

MobileNet
AlexNet
GoogleNet
VGG 16

104

MACs: Multiply-Accumulates (#operations)

Table 1. MobileNet Body Architecture
Type / Stride Filter Shape Input Size
Conv /s2 IxJdx3x32 224 % 224 x 3
Conv dw / s1 3 x 3 x32dw 112 % 112 = 32
Conv / sl 1x1x32x64 112 % 112 x 32
Conv dw [/ s2 3 x 3 x 64 dw 112 % 112 = 64
Conv / sl 1x1=x64x128 56 x 56 = 64
Conv dw / sl 3 xJ3x 128 dw 56 x Hb x 128
Conv / sl 1x1x128 = 128 56 x 56 x 128
Conv dw / s2 3 x 3 x 128 dw 56 x Hb x 128
Conv / sl 1x1x128 x 256 28 x 28 x 128
Conv dw / s1 3 x 3 x 256 dw 28 x 28 x 256
Conv / sl 1 x 1 x 256 x 256 28 x 28 x 256
Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256
Conv / sl 1x1x256x512 14 x 14 x 256

5 Conv dw / sl
" Conv /sl

3 x 3 x512dw
1x1x512x512

14 x 14 x 512
14 x 14 x 512

Conv dw / s2 3 xJx512dw 14 x 14 x 512
Conv / sl 1 x1x512x 1024 TxTx 512
Conv dw / s2 3 x 3 x 1024 dw TxTx 1024
Conv / sl 1x1x1024 % 1024 | 7= 7T x 1024
Avg Pool / 51 Pool 7 x 7 Tx7Tx1024
FC /sl 1024 x 1000 1x1x1024
Softmax / sl Classifier 1 x 1 x 1000

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (arXiv.1704.04861)



SOTA Deep Models: MobileNet <cont>

Standard Convolution Depth-Wise Separable Convolution (DW)
Filters and combines inputs into a new set of outputs in one step It combines a depth wise convolution and a pointwise convolution

Input: 12x12x3 Output: 8x8x3
Filter: 5x5x3 (no padding)

Input: 12x12x3 Output: 8x8x256 i @

Filter: 5x5x3x256 (no padding) . : . 256
Input: 8x8x3 " Output: 8x8x256
Filter: 1X1x3x256 (no padding)

MACs:  (5x5)x3x256x(12x12) ~ 2.8M MACs: (5x5)x3x(12x12) + 3x256x(8x8) ~ 60K

Parameters: (5x5x3)x256 + 256 ~ 20K Parameters: (5x5x3 + 3) + (IxXIx3x256+256) ~ 1K



SOTA Deep Models: MobileNet <cont>

Depthwise Convolution

Computation Reduction

M input channels

N output channels.

X\
> — | DK the filter (kernel) size
\ Pointwise Convolution DF the feature map size
\ D¢x Dy conv
1x1 conv
> oD

N ' D2

/

) S

:> The computation Reduction comparing to standard
convolution is

/
/



SOTA Deep Models: DenseNets

Goal: allow maximum information (and gradient) flow >> connect every layer
directly with each other.

* DenseNets exploit the potential of the network through feature reuse >> no
need to learn redundant feature maps.

* DenseNets layers are very narrow (e.g. 12 filters), and they just add a small set
of new feature-maps.

- ~ : -”'
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SOTA Deep Models: DenseNets

* DenseNets do not sum the output feature maps of the layer with the incoming
feature maps but concatenate them:

alll = g( [, aM, ..., a"" ")

 Dimensions of the feature maps remains constant within a block, but the
number of filters changes between them >> growth rate:

U=k 4 k- (1-1)

q Dense
256 o0 Avg Pooling ] Softmax
64 B4+32'6 1024
128 +32° 1024
256 mewa g, :
22 - T2 D3 T3E Dﬂ.f Y. |
| o3 p———
56 56 28 28 14 14 7 7 1

i i 1
Advanced Practical Data Science
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SOTA Deep Models: DenseNets

3
256 Bwg th'rg
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SOTA Deep Models: Summary Networks

* We are now reaching top-5 error rates lower than human manual classification.

‘ |
Year CNN Developed Place | Top-5 emor No. of
by rate parameters
1998 LeNet(8) ' Yann LeCun 60 thousand
et al
2012 AlexNet(7) Alex 1st 15.3% 60 million
Krizhevsky,
Geoflrey
Hinton, llya
Sutskever
2013 ZFNet() Matthew 1st 14 8%
Zeiler and
Rob Fergus
2014 GoogLeNet(1 | Google 1st | 6.67% 4 million
9)
2014 VGG Net(16) | Simonyan, | 2nd | 7.3% 138 million
| Zisserman
[ | |
2015 ResNet(152) | Kaiming He | 1st | 3.6%
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