
AC295

Lecture 3: Kubernetes

AC295
Advanced Practical Data Science

Pavlos Protopapas

AC295 Advanced Practical Data Science
Pavlos Protopapas

Outline

1: Communications

2: Recap

3: Introduction to Kubernetes

4: Creating and Running Containers | Review

5: Anatomy of a Kubernetes Cluster

6: Deploying a Kubernetes Cluster

7: Common kubectl Commands

AC295 Advanced Practical Data Science
Pavlos Protopapas

Communications

Feedback from week 1 reading

A. More user cases

B. Difficulty: For some right for some needed searching
many terms.

Exercise week 1 (DockerHub)

AC295 Advanced Practical Data Science
Pavlos Protopapas

Outline

1: Communications

2: Recap

3: Introduction to Kubernetes

4: Creating and Running Containers | Review

5: Anatomy of a Kubernetes Cluster

6: Deploying a Kubernetes Cluster

7: Common kubectl Commands

AC295 Advanced Practical Data Science
Pavlos Protopapas

Recap

Virtual Environment

Pros: remove complexity
Cons: does not isolate from OS

Virtual Machines

Pros: isolate OS guest from host
Cons: intensive use hardware

Containers

Pros: lightweight
Cons: issues with security, scalability,

and control

Monolithic

container

microservices

How to manage
microservices?

AC295 Advanced Practical Data Science
Pavlos Protopapas

Recap

We talked about pros/cons of environments (removed complexity/does
not isolate from OS), virtual machines (isolate OS guest from
host/intensive use of the hardware), and containers (lightweight/issue
with security, scalability, and control)

Goal: find effective ways to deploy our apps (more difficult than we
might initially imagine) and to break down a complex application into
smaller ones (i.e. microservices)

Issues we have fixed so far:
• conflicting/different operating system
• different dependencies
• "inexplicable" strange behavior

AC295 Advanced Practical Data Science
Pavlos Protopapas

Outline

1: Communications

2: Recap

3: Introduction to Kubernetes

4: Creating and Running Containers | Review

5: Anatomy of a Kubernetes Cluster

6: Deploying a Kubernetes Cluster

7: Common kubectl Commands

AC295 Advanced Practical Data Science
Pavlos Protopapas

Introduction to Kubernetes <K8s>

K8s manages containers

K8s is an open-source platform for container management
developed by Google and introduced in 2014. It has become the
standard API for building cloud-native applications, present in
nearly every public cloud.

K8s users define rules for how container management should
occur, and then K8s handles the rest!

> link to website <

https://kubernetes.io/

AC295 Advanced Practical Data Science
Pavlos Protopapas

Introduction to Kubernetes <cont>

There are many reasons why people come to use
containers and container APIs like Kubernetes:

• Velocity
• Scaling (of both software and teams)
• Abstracting the infrastructure
• Efficiency

k8s

User

API
<kube-service>

AC295 Advanced Practical Data Science
Pavlos Protopapas

Velocity

It is the speed with which you can respond to innovations developed by
others (e.g. change in software industry from shipping CDs to delivering
over the network)

Velocity is measured not in terms of the number of things you can ship
while maintaining a highly available service

K8s

Maggie

API
<kubectl>

K8s <nodes>

VM
<database>

VM
<model1>

VM
<frontend>

VM
<model2>

ML Application

AC295 Advanced Practical Data Science
Pavlos Protopapas

Velocity <cont>

Velocity is enabled by:

• Immutable system: you can't change running container, but you
create a new one and replace it in case of failure (allows for keeping
track of the history and load older images)

VM
<database>

VM
<model_v2.0>

VM
<frontend>

VM
<model_v1.0>

K8s <nodes>

AC295 Advanced Practical Data Science
Pavlos Protopapas

Velocity <cont>

Velocity is enabled by:

• Declarative configuration: you can define the desired state of the
system restating the previous declarative state to go back. Imperative
configuration are defined by the execution of a series of instructions,
but not the other way around.

VM
<database>

VM
<model_v1.0>

VM
<frontend>

YAML
<app.yaml>
2 database

1 model
1 frontend

K8s <nodes>

VM
<database>

AC295 Advanced Practical Data Science
Pavlos Protopapas

Velocity <cont>

Velocity is enabled by:

• Online self-healing systems: k8s takes actions to ensure that the
current state matches the desired state (as opposed to an operator
enacting the repair)

VM
<database>

VM
<model_v2.0>

VM
<frontend>

YAML
<app.yaml>
2 database

1 model
1 frontend

K8s <nodes>

VM
<database>

VM
< database >

AC295 Advanced Practical Data Science
Pavlos Protopapas

Velocity <recap>

Velocity is enabled by:

• Immutable system
• Declarative configuration
• Online self-healing systems

All these aspects relate to each other to speed up process that can reliably
deploy software.

AC295 Advanced Practical Data Science
Pavlos Protopapas

Scaling

As your product grows, it’s inevitable that you will need to scale:

• Software
• Team/s that develop it

AC295 Advanced Practical Data Science
Pavlos Protopapas

Scaling

Kubernetes provides numerous advantages to address scaling:

• Decoupled architectures: each component is separated from other
components by defined APIs and service load balancers.

• Easy scaling for applications and clusters: simply changing a
number in a configuration file, k8s takes care of the rest (part of
declarative).

• Scaling development teams with microservices: small team is
responsible for the design and delivery of a service that is consumed
by other small teams (optimal group size: 2 pizzas team).

AC295 Advanced Practical Data Science
Pavlos Protopapas

Scaling <cont>

Microservice 1

Container 1

Microservice 2

Container 2

LOAD
BALANCER

API

Team John

Team Maggie

API

k8s

AC295 Advanced Practical Data Science
Pavlos Protopapas

Scaling <cont>

Kubernetes provides numerous abstractions and APIs that help building
these decoupled microservice architectures:

• Pods can group together container images developed by different
teams into a single deployable unit (similar to docker-compose)

• Other services to isolate one microservice from another such (e.g.
load balancing, naming, and discovery)

• Namespaces control the interaction among services
• Ingress combine multiple microservices into a single externalized API

(easy-to-use frontend)

K8s provides full spectrum of solutions between doing it “the hard way” and a fully managed service

AC295 Advanced Practical Data Science
Pavlos Protopapas

Scaling <cont>

AC295 Advanced Practical Data Science
Pavlos Protopapas

Abstracting your infrastructure

Kubernetes allows to build, deploy, and manage your application in a way
that is portable across a wide variety of environments. The move to
application-oriented container APIs like Kubernetes has two concrete
benefits:

• separation: developers from specific machines
• portability: simply a matter of sending the declarative config to a new

cluster

AC295 Advanced Practical Data Science
Pavlos Protopapas

Efficiency

There are concrete economic benefit to the abstraction because tasks
from multiple users can be packed tightly onto fewer machines:

• Consume less energy (ratio of the useful to the total amount)
• Limit costs of running a server (power usage, cooling

requirements, datacenter space, and raw compute power)
• Create quickly a developer’s test environment as a set of

containers
• Reduce cost of development instances in your stack, liberating

resources to develop others that were cost-prohibitive

AC295 Advanced Practical Data Science
Pavlos Protopapas

Outline

1: Communications

2: Recap

3: Introduction to Kubernetes

4: Creating and Running Containers | Review

5: Anatomy of a Kubernetes Cluster

6: Deploying a Kubernetes Cluster

7: Common kubectl Commands

AC295 Advanced Practical Data Science
Pavlos Protopapas

Creating and Running Containers | Review

We have already seen how to package an application using the Docker
image format and how to start an application using the Docker container
runtime:

• We discussed what containers are and what you should use them
• How to build images and update an existing image using Docker

(i.e. Dockerfile)
• How to store images in a remote registry (i.e. tag and push to

DockerHub)
• How to run container with Docker (generally in Kubernetes

containers are launched by a daemon on each node called the
kubelet)

AC295 Advanced Practical Data Science
Pavlos Protopapas

Outline

1: Communications

2: Recap

3: Introduction to Kubernetes

4: Creating and Running Containers | Review

5: Anatomy of a Kubernetes Cluster

6: Deploying a Kubernetes Cluster

7: Common kubectl Commands

AC295 Advanced Practical Data Science
Pavlos Protopapas

Anatomy of Kubernetes Cluster

• K8s works on a cluster of machines/nodes

• This could be VMs on your local machine or a group of machines
through a cloud provider

• The cluster includes one master node and at least one worker node

AC295 Advanced Practical Data Science
Pavlos Protopapas

Anatomy of Kubernetes Cluster <cont>

AC295 Advanced Practical Data Science
Pavlos Protopapas

Anatomy of Kubernetes Cluster | Master Node

> to learn more on etcd <

more%20on%20etcd%20link%20https:/medium.com/better-programming/a-closer-look-at-etcd-the-brain-of-a-kubernetes-cluster-788c8ea759a5

AC295 Advanced Practical Data Science
Pavlos Protopapas

Anatomy of Kubernetes Cluster | Master Node

Master node main task is to manage the worker node(s) to run an application

The master node consists of:
1) API server contains various methods to directly access the Kubernetes
2) Scheduler assigns to each worker node an application
3) Controller manager

3a) Keeps track of worker nodes
3b) Handles node failures and replicates if needed
3c) Provide endpoints to access the application from the outside world

4) Cloud controller communicates with cloud provide regarding resources
such as nodes and IP addresses
5) Etcd works as backend for service discovery that stores the cluster’s state
and its configuration

AC295 Advanced Practical Data Science
Pavlos Protopapas

Anatomy of Kubernetes Cluster | Worker Nodes

AC295 Advanced Practical Data Science
Pavlos Protopapas

Anatomy of Kubernetes Cluster | Worker Nodes

A worker node consists of:

1) Container runtime that pulls a specified Docker image and deploys it on a
worker node

2) Kubelet talks to the API server and manages containers on its node

3) Kube-proxy load-balances network traffic between application components
and the outside world

AC295 Advanced Practical Data Science
Pavlos Protopapas

Outline

1: Communications

2: Recap

3: Introduction to Kubernetes

4: Creating and Running Containers | Review

5: Anatomy of a Kubernetes Cluster

6: Deploying a Kubernetes Cluster

7: Common kubectl Commands

AC295 Advanced Practical Data Science
Pavlos Protopapas

Deploying a Kubernetes Cluster

To deploy your cluster you must install Kubernetes. In the exercise you are
going to use minikube to deploy a cluster in local mode.

• After installing minikube, use start to begin your session creating a
virtual machine, stop to interupt it, and delete to remove the VM. Below
are the commands to execute these tasks:

$ minikube start

$ minikube stop

$ minikube delete

AC295 Advanced Practical Data Science
Pavlos Protopapas

Deploying a Kubernetes Cluster

You can easily access the Kubernetes Client using the following command:

• to check your cluster status use:

$ kubectl get componentstatuses

• and should see output below:

AC295 Advanced Practical Data Science
Pavlos Protopapas

Deploying a Kubernetes Cluster

You can easily access the Kubernetes Client using the following command:

• to list the nodes in your cluster use:

$ kubectl get nodes

• and should see output below:

AC295 Advanced Practical Data Science
Pavlos Protopapas

Outline

1: Communications

2: Recap

3: Introduction to Kubernetes

4: Creating and Running Containers | Review

5: Anatomy of a Kubernetes Cluster

6: Deploying a Kubernetes Cluster

7: Common kubectl Commands

AC295 Advanced Practical Data Science
Pavlos Protopapas

Common kubectl Commands

Let’s practice Kubernetes! Access the exercise using the link below:

> LINK TO EXERCISE <

> LINK TO RESOURCES <

https://harvard-iacs.github.io/2019-CS207/lectures/lecture25_exercise/notebook/
https://harvard-iacs.github.io/2019-CS207/lectures/lecture25_exercise/notebook/
https://harvard-iacs.github.io/2019-CS207/lectures/lecture25/

AC295 Advanced Practical Data Science
Pavlos Protopapas

Common kubectl Commands
• Useful commands to complete the exercise:

$ kubectl create -f app-db-deploymnet.yaml

$ kubectl get deployment

$ kubectl get pods

$ kubectl get pods /

-o=custom-columns=NAME:.metadata.name,IP:.status.podIP

$ kubectl create -f app-server-deploymnet.yaml

$ kubectl expose deployment /

app-deployment --type=LoadBalancer --port=8080

$ kubectl get services

$ kubectl delete service app-deployment

$ kubectl delete deployment app-server-deployment

$ kubectl delete deployment app-db-deployment

AC295 Advanced Practical Data Science
Pavlos Protopapas

THANK YOU

