
CS207: Systems Development for Computational Science
https://harvard-iacs.github.io/2019-CS207/lectures/lecture3/

David Sondak

Harvard University
Institute for Applied Computational Science

9/12/2019

https://harvard-iacs.github.io/2019-CS207/lectures/lecture3/


Version Control

• Minimum guidlines — Actually using version control is the first step

• Ideal usage:
• Put everything under version control

• Consider putting parts of your home directory under version control

• Use a consistent project structure and naming convention

• Commit often and in logical chunks

• Write meaningful commit messages

• Do all file operations in the version control system

• Set up change notifications if working with multiple people

1 / 12



Source Control and Versioning

• Why bother?

• Codes evolve over time

• Sometimes bugs creep in (by you or others)

• Sometimes the old way was right

• Sometimes it’s nice to look back at the evolution

Version control is a non-negotiable component of any project.

Why?

Reproducibility Maintainability Project longevity

2 / 12



Examples of Version Control

• Mercurial

• Git

• Concurrent Versions System (CVS)

• Apache Subversion (SVN)

• GoogleDrive

• Dropbox

Distributed Version Control

Centralized Version Control

Don’t use these for software

3 / 12



Centralized Version Control

Central Repository

Working Copy Working Copy Working Copy

co
m

m
it

ch
ec

k
ou

t

com
m

it check
out

4 / 12



Comments on Centralized Source Control

• A central repository holds the files in both of the following models
• This means a specific computer is required with some disk space
• It should be backed up!

1 Read-only Local Workspaces
and Locks

• Every developer has a
read-only local copy of the
source files

• Individual files are
checked-out as needed and
locked in the repo in order to
gain write access

• Unlocking the file commits
the changes to the repo and
makes the file read-only again

2 Read / Write Local Workspaces
and Merging

• Every developer has a local
copy of the source files

• Everybody can read and write
files in their local copy

• Conflicts between
simultaneous edits handled
with merging algorithms or
manually when files are
synced against the repo or
committed to it

• CVS and Subversion behave
this way

5 / 12



CVS — Concurrent Versions System

• Started with some shell scripts in 1986

• Recoded in 1989

• Evolving ever since (mostly unchanging now)

• Uses read / write local workspaces and merging

• Only stores differences between versions

• Saves space
• Basically uses diff(1) and diff3(1)

• Works with local repositories or over the network with rsh / ssh

6 / 12



Subversion

Subversion is a functional superset of CVS (if you learned CVS previously,
you can also function in Subversion)

• Began initial development in 2000 as a replacement for CVS

• Also interacts with local copies

• Includes directory versioning (rename and moves)

• Truly atomic commits

• i.e. interrupted commit operations do not cause repository
inconsistency or corruption

• File meta-data

• True client-server model

• Cross-platform, open-source

7 / 12



Distributed Version Control

Full Repo Full Repo

Full Repo

Central Repository

8 / 12



Distributed Version Control

Full Repo Full Repo

Full Repo

Central Repository

8 / 12



Getting Started with Git

There are many Git tutorials:

• https://stackoverflow.com/questions/315911/

git-for-beginners-the-definitive-practical-guide

• https://bitbucket.org/

• https://github.com/

•
...

• Others on the course Resources page

Git was created by Linus Torvalds for work on the Linux kernal ∼ 2005

9 / 12

https://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide
https://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide
https://bitbucket.org/
https://github.com/
https://iacs-cs-207.github.io/cs207-F18/resources.html


Git is . . .

• A Distributed Version Control
system or

• A Directory Content
Management System or

• A Tree history storage system

Distributed

• Everyone has the complete
history

• Everything is done offline

• No central authority

• Changes can be shared without
a server

10 / 12



The Bare Essentials of git

11 / 12



The Bare Essentials of git

11 / 12



The Bare Essentials of git

11 / 12



The Bare Essentials of git

11 / 12



The Bare Essentials of git

11 / 12



The Bare Essentials of git

11 / 12



The Bare Essentials of git

11 / 12



The Bare Essentials of git

11 / 12



When to Commit?

• Committing too often may leave the repo in a state where the current
version doesn’t compile.

• Committing too infrequently means that collaborators are waiting for
your important changes, bug fixes, etc. to show up.

• Makes conflicts much more likely

• Common policies:

• Committed files must compile and link

• Committed files must pass some minimal regression test(s)

• Come to some agreement with your collaborators about the state of
the repo

12 / 12


