CS207: Systems Development for Computational Science

David Sondak

Harvard University
Institute for Applied Computational Science

9/12/2019

https://harvard-iacs.github.io/2019-CS207/lectures/lecture3/

ersion Control

e Minimum guidlines — Actually using version control is the first step

o Ideal usage:
e Put everything under version control

e Consider putting parts of your home directory under version control
e Use a consistent project structure and naming convention

e Commit often and in logical chunks

o Write meaningful commit messages

e Do all file operations in the version control system

e Set up change notifications if working with multiple people

1/12

Source Control and Versioning

e Why bother?
e Codes evolve over time

o Sometimes bugs creep in (by you or others)
e Sometimes the old way was right
e Sometimes it's nice to look back at the evolution

[Version control is a non-negotiable component of any project.]

Why?

code3.cpp code_FINAL_new.cpp code_final_send code_orig.cpp
code_110303.cpp code_USE.cpp code_fix.cpp code_orig_1.cpp

code_FINAL.cpp code_bug_fixes.cpp code_for_john code_running.cpp
code_FINAL_1.cpp code_bugs.cpp code_new.cpp code_send

Reproducibility Maintainability Project longevity

2/12

Examples of Version Control

Mercurial

} Distributed Version Control
Git

Concurrent Versions System (CVS)
} Centralized Version Control

Apache Subversion (SVN)

GoogleDrive
Don’t use these for software

Dropbox

3/12

Centralized Version Control

Central Repository

Working Copy Working Copy Working Copy

4/12

Comments on Centralized Source Control

o A central repository holds the files in both of the following models

e This means a specific computer is required with some disk space

e |t should be backed up!

@® Read-only Local Workspaces
and Locks

e Every developer has a
read-only local copy of the
source files

e Individual files are
checked-out as needed and
locked in the repo in order to
gain write access

e Unlocking the file commits
the changes to the repo and
makes the file read-only again

@® Read / Write Local Workspaces
and Merging

Every developer has a local
copy of the source files
Everybody can read and write
files in their local copy
Conflicts between
simultaneous edits handled
with merging algorithms or
manually when files are
synced against the repo or
committed to it

CVS and Subversion behave

this way
5/12

CVS — Concurrent Versions System

Started with some shell scripts in 1986
Recoded in 1989

Evolving ever since (mostly unchanging now)

Uses read / write local workspaces and merging

Only stores differences between versions

e Saves space
e Basically uses diff (1) and diff3(1)

Works with local repositories or over the network with rsh / ssh

6/12

Subversion

Subversion is a functional superset of CVS (if you learned CVS previously,
you can also function in Subversion)

e Began initial development in 2000 as a replacement for CVS
e Also interacts with local copies

e Includes directory versioning (rename and moves)

e Truly atomic commits

e i.e. interrupted commit operations do not cause repository
inconsistency or corruption

e File meta-data
e True client-server model

e Cross-platform, open-source

7/12

Distributed Version Control

Full Repo

A
Vv

Full Repo

Full Repo

8/ 12

Distributed Version Control

Full Repo

A
Vv

~.,

Full Repo

Central Repository

I

Full Repo

8/ 12

Getting Started with Git

There are many Git tutorials:

e https://stackoverflow.com/questions/315911/
git-for-beginners-the-definitive-practical-guide
https://bitbucket.org/
https://github.com/

Others on the course Resources page

Git was created by Linus Torvalds for work on the Linux kernal ~ 2005

Companies & Projects Using Git

PostgreSQL-

Google Microsoft twitter Linked[f} %
i & m € cnove —Jpo {%L(()(

9/12

https://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide
https://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide
https://bitbucket.org/
https://github.com/
https://iacs-cs-207.github.io/cs207-F18/resources.html

Distributed
e A Distributed Version Control
system or

Everyone has the complete

history
e A Directory Content

Management System or

Everything is done offline

No central authority

* A Tree history storage system e Changes can be shared without
a server

10/ 12

The Bare Essentials of git

Working Staging Local Upstream
Directory Area Repository Repository

11 /12

The Bare Essentials of git

Working Staging Local Upstream
Directory Area Repository Repository

e

11 /12

The Bare Essentials of git

Working Staging Local Upstream
Directory Area Repository Repository

11 /12

The Bare Essentials of git

Working Staging Local Upstream
Directory Area Repository Repository

I

11 /12

The Bare Essentials of git

Working Staging Local Upstream
Directory Area Repository Repository

 commt

11 /12

The Bare Essentials of git

Working Staging Local Upstream
Directory Area Repository Repository

T

11 /12

The Bare Essentials of git

Working Staging Local Upstream
Directory Area Repository Repository

e

11 /12

The Bare Essentials of git

Working Staging Local Upstream
Directory Area Repository Repository

e

11 /12

When to Commit?

¢ Committing too often may leave the repo in a state where the current
version doesn't compile.

o Committing too infrequently means that collaborators are waiting for
your important changes, bug fixes, etc. to show up.

e Makes conflicts much more likely
e Common policies:

o Committed files must compile and link
o Committed files must pass some minimal regression test(s)

o Come to some agreement with your collaborators about the state of
the repo

12 /12

