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Version Control

• Minimum guidlines — Actually using version control is the first step

• Ideal usage:
• Put everything under version control

• Consider putting parts of your home directory under version control

• Use a consistent project structure and naming convention

• Commit often and in logical chunks

• Write meaningful commit messages

• Do all file operations in the version control system

• Set up change notifications if working with multiple people
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Source Control and Versioning

• Why bother?

• Codes evolve over time

• Sometimes bugs creep in (by you or others)

• Sometimes the old way was right

• Sometimes it’s nice to look back at the evolution

Version control is a non-negotiable component of any project.

Why?

Reproducibility Maintainability Project longevity
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Examples of Version Control

• Mercurial

• Git

• Concurrent Versions System (CVS)

• Apache Subversion (SVN)

• GoogleDrive

• Dropbox

Distributed Version Control

Centralized Version Control

Don’t use these for software
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Centralized Version Control

Central Repository

Working Copy Working Copy Working Copy
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Comments on Centralized Source Control

• A central repository holds the files in both of the following models
• This means a specific computer is required with some disk space
• It should be backed up!

1 Read-only Local Workspaces
and Locks

• Every developer has a
read-only local copy of the
source files

• Individual files are
checked-out as needed and
locked in the repo in order to
gain write access

• Unlocking the file commits
the changes to the repo and
makes the file read-only again

2 Read / Write Local Workspaces
and Merging

• Every developer has a local
copy of the source files

• Everybody can read and write
files in their local copy

• Conflicts between
simultaneous edits handled
with merging algorithms or
manually when files are
synced against the repo or
committed to it

• CVS and Subversion behave
this way
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CVS — Concurrent Versions System

• Started with some shell scripts in 1986

• Recoded in 1989

• Evolving ever since (mostly unchanging now)

• Uses read / write local workspaces and merging

• Only stores differences between versions

• Saves space
• Basically uses diff(1) and diff3(1)

• Works with local repositories or over the network with rsh / ssh
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Subversion

Subversion is a functional superset of CVS (if you learned CVS previously,
you can also function in Subversion)

• Began initial development in 2000 as a replacement for CVS

• Also interacts with local copies

• Includes directory versioning (rename and moves)

• Truly atomic commits

• i.e. interrupted commit operations do not cause repository
inconsistency or corruption

• File meta-data

• True client-server model

• Cross-platform, open-source
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Distributed Version Control

Full Repo Full Repo

Full Repo

Central Repository
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Distributed Version Control

Full Repo Full Repo

Full Repo

Central Repository
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Getting Started with Git

There are many Git tutorials:

• https://stackoverflow.com/questions/315911/

git-for-beginners-the-definitive-practical-guide

• https://bitbucket.org/

• https://github.com/

•
...

• Others on the course Resources page

Git was created by Linus Torvalds for work on the Linux kernal ∼ 2005
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Git is . . .

• A Distributed Version Control
system or

• A Directory Content
Management System or

• A Tree history storage system

Distributed

• Everyone has the complete
history

• Everything is done offline

• No central authority

• Changes can be shared without
a server
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The Bare Essentials of git
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When to Commit?

• Committing too often may leave the repo in a state where the current
version doesn’t compile.

• Committing too infrequently means that collaborators are waiting for
your important changes, bug fixes, etc. to show up.

• Makes conflicts much more likely

• Common policies:

• Committed files must compile and link

• Committed files must pass some minimal regression test(s)

• Come to some agreement with your collaborators about the state of
the repo
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