
Unix
https://harvard-iacs.github.io/2019-CS207/lectures/lecture2/

David Sondak

Harvard University
Institute for Applied Computational Science

9/10/2019

https://harvard-iacs.github.io/2019-CS207/lectures/lecture2/

Last Time

• Unix and Linux

• Text editors

1 / 29

Today

• Shell Customization

• Job control

• Unix scripting

Again, some content adapted from Dr. Chris Simmons.

2 / 29

Text Editors and Shell
Customization

Text Editors

• For programming and changing of various text files, we need to make
use of available Unix text editors

• The two most popular and available editors are vi and emacs

• You should familiarize yourself with at least one of the two

• Editor Wars

• We will have very short introductions to each

4 / 29

https://en.wikipedia.org/wiki/Vi
https://en.wikipedia.org/wiki/Emacs
https://en.wikipedia.org/wiki/Editor_war

A Brief Text Editor History

• ed : line mode editor

• ex : extended version of ed

• vi : full screen version of ex

• vim : Vi IMproved

• emacs : another popular editor

• ed/ex/vi share lots of syntax, which also comes

back in sed/awk: useful to know.

5 / 29

vi Overview

• The big thing to remember about vi is that it has two different
modes of operation:

• Insert Mode

• Command mode

• The insert mode puts anything typed on the keyboard into the
current file

• The command mode allows the entry of commands to manipulate text

• Note that vi starts out in the command mode by default

6 / 29

vim Quick Start Commands

• vim <filename>

• Press i to enable insert mode

• Type text (use arrow keys to move around)

• Press Esc to enable command mode

• Press :w (followed by return) to save the file

• Press :q (followed by return) to exit vim

7 / 29

Useful vim Commands

• :q! - exit without saving the document. Very handy for beginners

• :wq - save and exit

• / <string> - search within the document for text. n goes to next
result

• dd - delete the current line

• yy - copy the current line

• p - paste the last cut/deleted line

• :1 - goto first line in the file

• :$ - goto last line in the file

• $ - end of current line

• ∧ - beginning of line

• % - show matching brace, bracket, parentheses

Here are some vim resources: https://vim.rtorr.com/,
https://devhints.io/vim, https://vim-adventures.com/,
vimtutor.

8 / 29

https://vim.rtorr.com/
https://devhints.io/vim
https://vim-adventures.com/

Shell Customization

• Each shell supports some customization.
• user prompt settings
• environment variable settings
• aliases

• The customization takes place in startup files which are read by the
shell when it starts up

• Global files are read first - these are provided by the system
administrators (e.g. /etc/profile)

• Local files are then read in the user’s HOME directory to allow for
additional customization

9 / 29

Shell Startup Files

Useful information can be found at the bash man page:
https://linux.die.net/man/1/bash

• ∼/.bash profile

• Conventionally executed at login shells

• Conventially only run once: at login

• MacOS executes it for every new window

• ∼/.bashrc
• Conventionally executed for each new window

• Can contain similar information as the .bash profile

Decent reference on the difference between .bash profile and .bashrc:
Apple Stack Exchange, Scripting OS X

10 / 29

https://linux.die.net/man/1/bash
https://apple.stackexchange.com/questions/51036/what-is-the-difference-between-bash-profile-and-bashrci
https://scriptingosx.com/2017/04/about-bash_profile-and-bashrc-on-macos/

Lecture Exercise

Update your .bash profile

Exercise goals:

• Familiarize with a text editor (like vim)

• Create an alias for ls (e.g. ll) [see
https://www.tecmint.com/create-alias-in-linux/]

• Change command line prompt format (see https://www.cyberciti.

biz/tips/howto-linux-unix-bash-shell-setup-prompt.html)

Deliverables:

• Push your .bash profile to your lectures/L2 directory.

• The .bash profile should have at least three Unix command line
aliases.

Note to Windows users: Modify Bash Profile in Windows

Note: The Dracula Theme is pretty fun.
11 / 29

https://www.tecmint.com/create-alias-in-linux/
https://www.cyberciti.biz/tips/howto-linux-unix-bash-shell-setup-prompt.html
https://www.cyberciti.biz/tips/howto-linux-unix-bash-shell-setup-prompt.html
https://superuser.com/questions/602872/how-do-i-modify-my-git-bash-profile-in-windows
https://draculatheme.com/

I/O

ProgramStandard Input
(STDIN)

Standard Output
(STDOUT)

Standard Error
(STDERR)

• File descripters are associated with each stream,
• 0=STDIN, 1=STDOUT, 2=STDERR

• When a shell runs a program for you,
• Standard input is the keyboard

• Standard output is your screen

• Standard error is your screen

• To end the input, press Ctrl-D on a line; this ends the input stream

12 / 29

Shell Stream Redirection

• The shell can attach things other than the keyboard to standard input
or output

• e.g. a file or a pipe

• To tell the shell to store the output of your program in a file, use >,

• ls > ls out

• To tell the shell to get standard input from a file, use <,

• sort < nums

• You can combine both forms together,

• sort < nums > sortednums

13 / 29

Modes of Output Redirection

• There are two modes of output redirection,

• > — create mode

• >> — append mode

• ls > foo creates a new file foo, possibly deleting any existing file
named foo while ls >> foo appends the output to foo

• > only applies to stdout (not stderr)

• To redirect stderr to a file, you must specify the request directly

• 2> redirects stderr (e.g. ls foo 2> err)

• &> redirects stdout and stderr (e.g. ls foo &> /dev/null)

• ls foo > out 2> err redirects stdout to out and stderr to err

14 / 29

Wildcards

• The shell treats some characters as special

• These special characters make it easy to specify filenames

• * matches anything

• Giving the shell * by itself removes * and replaces it with all the
filenames in the current directory

• echo prints out whatever you give it (e.g. echo hi prints out hi)

• echo * prints out the entire working directory!

• ls *.txt lists all files that end with .txt

15 / 29

Job Control

• The shell allows you to manage jobs:
• Place jobs in the background

• Move a job to the foreground

• Suspend a job

• Kill a job

• Putting a & after a command on the command line will run the job in
the background

• Why do this?
• You don’t want to wait for the job to complete

• You can type in a new command right away

• You can have a bunch of jobs running at once

• e.g. ./program > output &

• If the job will run longer than your session use nohup
• nohup ./program &> output &

• Terminal multiplexers (e.g. tmux or screen) are great for this

16 / 29

https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Terminal_multiplexer

Job Control

• The shell allows you to manage jobs:
• Place jobs in the background

• Move a job to the foreground

• Suspend a job

• Kill a job

• Putting a & after a command on the command line will run the job in
the background

• Why do this?
• You don’t want to wait for the job to complete

• You can type in a new command right away

• You can have a bunch of jobs running at once

• e.g. ./program > output &

• If the job will run longer than your session use nohup
• nohup ./program &> output &

• Terminal multiplexers (e.g. tmux or screen) are great for this

16 / 29

https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Terminal_multiplexer

Job Control

• The shell allows you to manage jobs:
• Place jobs in the background

• Move a job to the foreground

• Suspend a job

• Kill a job

• Putting a & after a command on the command line will run the job in
the background

• Why do this?
• You don’t want to wait for the job to complete

• You can type in a new command right away

• You can have a bunch of jobs running at once

• e.g. ./program > output &

• If the job will run longer than your session use nohup
• nohup ./program &> output &

• Terminal multiplexers (e.g. tmux or screen) are great for this

16 / 29

https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Terminal_multiplexer

Job Control

• The shell allows you to manage jobs:
• Place jobs in the background

• Move a job to the foreground

• Suspend a job

• Kill a job

• Putting a & after a command on the command line will run the job in
the background

• Why do this?
• You don’t want to wait for the job to complete

• You can type in a new command right away

• You can have a bunch of jobs running at once

• e.g. ./program > output &

• If the job will run longer than your session use nohup
• nohup ./program &> output &

• Terminal multiplexers (e.g. tmux or screen) are great for this

16 / 29

https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Terminal_multiplexer

Job Control

• The shell allows you to manage jobs:
• Place jobs in the background

• Move a job to the foreground

• Suspend a job

• Kill a job

• Putting a & after a command on the command line will run the job in
the background

• Why do this?
• You don’t want to wait for the job to complete

• You can type in a new command right away

• You can have a bunch of jobs running at once

• e.g. ./program > output &

• If the job will run longer than your session use nohup
• nohup ./program &> output &

• Terminal multiplexers (e.g. tmux or screen) are great for this
16 / 29

https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Terminal_multiplexer

Listing Jobs

• The jobs command lists all background jobs

• The shell assigns a number to each job

• kill the foreground job using Ctrl-C

• Kill a background job using the kill command

• Try it out:
• Use the sleep command to suspend the terminal session for 60 seconds

• Suspend the job using ∧-Z
• List the jobs, send the job to the background with bg %n, list the jobs

• Use the fg %n to bring the sleep command back to the foreground
17 / 29

Environment Variables

• Unix shells maintain a list of environment variables that have a unique
name and value associated with them

• Some of these parameters determine the behavior of the shell

• They also determine which programs get run when commands are
entered

• Provide information about the execution environment to programs

• We can access these variables

• Set new values to customize the shell

• Find out the value to accomplish a task

• To view environment variables use env

• Use echo to print variables

• echo $PWD

• The $ is needed to access the value of the variable

18 / 29

Environment Variables

• Unix shells maintain a list of environment variables that have a unique
name and value associated with them

• Some of these parameters determine the behavior of the shell

• They also determine which programs get run when commands are
entered

• Provide information about the execution environment to programs

• We can access these variables

• Set new values to customize the shell

• Find out the value to accomplish a task

• To view environment variables use env

• Use echo to print variables

• echo $PWD

• The $ is needed to access the value of the variable

18 / 29

Environment Variables

• Unix shells maintain a list of environment variables that have a unique
name and value associated with them

• Some of these parameters determine the behavior of the shell

• They also determine which programs get run when commands are
entered

• Provide information about the execution environment to programs

• We can access these variables

• Set new values to customize the shell

• Find out the value to accomplish a task

• To view environment variables use env

• Use echo to print variables

• echo $PWD

• The $ is needed to access the value of the variable

18 / 29

Environment Variables

• Unix shells maintain a list of environment variables that have a unique
name and value associated with them

• Some of these parameters determine the behavior of the shell

• They also determine which programs get run when commands are
entered

• Provide information about the execution environment to programs

• We can access these variables

• Set new values to customize the shell

• Find out the value to accomplish a task

• To view environment variables use env

• Use echo to print variables

• echo $PWD

• The $ is needed to access the value of the variable
18 / 29

PATH

• Each time you provide the shell a command to execute, it does the
following:

• Checks to see if the command is a built-in shell command

• If it’s not a built-in command, the shell tries to find a program whose
name matches the desired command

• How does the shell know where to look on the filesystem?

• The PATH variable tells the shell where to search for programs

• The PATH is a list of directories delimited by colons

• It defines a list and search order

• Directories specified earlier in PATH take precedence

• Once the matching command is found, the search terminates

• Add more search directories to your path using export:
export PATH="$PATH:/Users/dsondak"

19 / 29

PATH

• Each time you provide the shell a command to execute, it does the
following:

• Checks to see if the command is a built-in shell command

• If it’s not a built-in command, the shell tries to find a program whose
name matches the desired command

• How does the shell know where to look on the filesystem?

• The PATH variable tells the shell where to search for programs

• The PATH is a list of directories delimited by colons

• It defines a list and search order

• Directories specified earlier in PATH take precedence

• Once the matching command is found, the search terminates

• Add more search directories to your path using export:
export PATH="$PATH:/Users/dsondak"

19 / 29

PATH

• Each time you provide the shell a command to execute, it does the
following:

• Checks to see if the command is a built-in shell command

• If it’s not a built-in command, the shell tries to find a program whose
name matches the desired command

• How does the shell know where to look on the filesystem?

• The PATH variable tells the shell where to search for programs

• The PATH is a list of directories delimited by colons

• It defines a list and search order

• Directories specified earlier in PATH take precedence

• Once the matching command is found, the search terminates

• Add more search directories to your path using export:
export PATH="$PATH:/Users/dsondak"

19 / 29

PATH

• Each time you provide the shell a command to execute, it does the
following:

• Checks to see if the command is a built-in shell command

• If it’s not a built-in command, the shell tries to find a program whose
name matches the desired command

• How does the shell know where to look on the filesystem?

• The PATH variable tells the shell where to search for programs

• The PATH is a list of directories delimited by colons

• It defines a list and search order

• Directories specified earlier in PATH take precedence

• Once the matching command is found, the search terminates

• Add more search directories to your path using export:
export PATH="$PATH:/Users/dsondak"

19 / 29

PATH

• Each time you provide the shell a command to execute, it does the
following:

• Checks to see if the command is a built-in shell command

• If it’s not a built-in command, the shell tries to find a program whose
name matches the desired command

• How does the shell know where to look on the filesystem?

• The PATH variable tells the shell where to search for programs

• The PATH is a list of directories delimited by colons

• It defines a list and search order

• Directories specified earlier in PATH take precedence

• Once the matching command is found, the search terminates

• Add more search directories to your path using export:
export PATH="$PATH:/Users/dsondak"

19 / 29

Setting Environment Variables

• Setting a Unix environment in bash uses the export command

• export USE CUDA=OFF

• Environment variables that you set interactively are only available in
your current shell

• If you spawn a new shell, these settings will be lost

• To make more lasting changes, alter the login scripts that affect your
particular shell (in bash, this is .bashrc)

• An environment variable can be deleted with the unset command

• unset USE CUDA

20 / 29

Unix Scripting

Unix Scripting

• Place all the Unix commands in a file instead of typing them
interactively

• Useful for automating tasks

• Repetitive operations on files, etc

• Performing small post-processing operations

• Shells provide basic control syntax for looping, if constructs, etc

22 / 29

More on Unix Scripting

• Shell scripts must begin with a specific line to indicate which shell
should be used to execute the remaining commands in the file

• Use #!/bin/bash in BASH

• Comment out lines with #

• To run a shell script, it must have execute permission

23 / 29

Unix Scripting Permissions

24 / 29

Unix Scripting: Conditionals

i f [c o n d i t i o n A] ; then
code to run i f c o nd i t i o n A t r u e

e l i f [c o n d i t i o n B] ; then
code to run i f c o nd i t i o n A f a l s e and
cond i t i o n B t r u e

e l s e
code to run i f both c o n d i t i o n s f a l s e

f i

25 / 29

Unix Scripting: String Comparisons

• string1=string2: Test identity

• string1!=string2: Test inequality

• -n string: The length of string is nonzero

• -z string: The length of string is zero

today=”monday”
i f [” $today ” = ”monday”] ; then

echo ”Today i s Monday ! ”
f i

26 / 29

BASH Integer Comparisons

• int1 -eq int2: Test identity

• int1 -ne int2: Test inequality

• int1 -lt int2: Less than

• int1 -gt int2: Greater than

• int1 -le int2: Less than or equal

• int1 -ge int2: Greater than or equal

x=13
y=25
i f [$x − l t $y] ; then

echo ” $x i s l e s s than $y ”
f i

27 / 29

Unix Scripting: Common File Tests

• -d file: Test if the file is a directory

• -f file: Test if the file is not a directory

• -s file: Test if the file has nonzero length

• -r file: Test if the file is readable

• -w file: Test if the file is writable

• -x file: Test if the file is executable

• -o file: Test if the file is owned by the user

• -e file: Test if the file exists

i f [−f f o o] ; then
echo ” f o o i s a f i l e ”

f i

28 / 29

Lecture Exercises

https://harvard-iacs.github.io/2019-CS207/lectures/lecture2/

29 / 29

https://harvard-iacs.github.io/2019-CS207/lectures/lecture2/

