
Unix
https://harvard-iacs.github.io/2019-CS207/lectures/lecture1/

David Sondak

Harvard University
Institute for Applied Computational Science

9/5/2019

https://harvard-iacs.github.io/2019-CS207/lectures/lecture1/

Last Time

• Course introduction

• Unix and Linux

1 / 42

Today

• More on Unix / Linux

• Practice time

Again, some content adapted from Dr. Chris Simmons.

2 / 42

Unix Commands

Basic Commands

http://cheatsheetworld.com/programming/unix-linux-cheat-sheet/

4 / 42

http://cheatsheetworld.com/programming/unix-linux-cheat-sheet/

Absolutely Essential Commands

These commands should be at your fingertips at all times:

5 / 42

The ls command

• The ls command displays the names of files

• Giving it the name of a directory will list all files in that directory

• ls commands:

• ls — list files in current directory

• ls / — list files in the root directory

• ls . — list files in the current directory

• ls .. — list files in the parent directory

• ls /usr — list files in the /usr directory

6 / 42

Command Line Options

• Modify output format of ls with command line options

• There are many options for the ls command, e.g.

• -l — long format

• -a — all ; shows hidden files as well as regular files

• -F — include special character to indicate file types

Note: Hidden files have names that start with .

7 / 42

ls Command Line Options

• How to use the command line options:

• ls -a, ls -l, . . .

• Two or more options can be used at the same time!

• ls -ltra

8 / 42

General ls Command Line

• The general form is

• ls [options] [names]

• Note: Options must come first

• You can mix any options with any names

• Example:
ls -al /usr/bin

• The brackets around options and names means that something is
optional

• You will see this kind of description often in the Unix commands
documentation

• Some commands have required parameters

• You can also use variable argument lists

• ls /usr /etc
• ls -l /usr/bin /tmp /etc
• This will display many files or directory names

9 / 42

man and More Information

• man pages (manual pages) provide extensive documentation

• The Unix command to display a manual page is man

• Man pages are split into 8 numbered sections

1 General commands

2 System calls

3 C library functions

4 Special files (usually devices found in /dev

5 File formats and convections

6 Games

7 Miscellaneous

8 Sys admin commands and daemons

• You can request pages from specific sections, e.g.

man 3 printf (shows manpage for C library function)

10 / 42

Interacting with the Shell

Running a Unix Program

• Type in the name of a program and some command line options

• The shell reads this line, finds the program, and runs it feeding it the
options you specified

• The shell establishes 3 I/O streams:

1 Standard input

2 Standard output

3 Standard error

• File descriptors associated with each stream:

• 0 = STDIN

• 1 = STDOUT

• 2 = STDERR

12 / 42

Unix Pipes

• A pipe is a holder for a stream of data

• A Unix pipeline is a set of processes chained by their standard
streams

• The output of each process (stdout) feeds directly as input (stdin)
to the next one

• Very useful for using multiple Unix commands together to perform a
task

program1 program2

STDOUT STDIN

13 / 42

Building Commands

• More complicated commands can be built up by using one or more
pipes

• The | character is used to pipe two commands together

• The shell does the rest for you!

• Note: wc prints the number of newlines, words, and bytes in a file.

14 / 42

More Unix Commands: find

• find searches the filesystem for files whose name matches a specific
pattern

• It can do much more than this and is one of the most useful
commands in Unix

• e.g. it can find files and then perform operations on them

• Example:

15 / 42

find

• find can also scan for certain file types:

• Find directories with find . -type d -print

• Find files with find . -type f -print

• The exec option can be used to make very powerful commands on
files

• find . -type f -exec wc -l {} \;

• What does this command do?

16 / 42

The Famous grep

• grep extracts lines from a file that match a given string or pattern

• grep can also use a regular expression for the pattern search

17 / 42

Regular Expressions

• grep isn’t the only Unix command that supports regular expressions

• sed

• awk

• perl

• General search pattern characters

• Any character

• “.” matches any character except a newline

• “*” matches zero or more occurrences of the single preceeding
character

• “+” matches one or more of the proceeding character

• “?” matches zero or one of the proceeding character

• More special characters

• “()” are used to quantify a sequence of characters

• “|” functions as an OR operator

• “{}” are used to indicate ranges in the number of occurrences
18 / 42

More on Regular Expressions

• To match a special character, you should use the backslash “\”
• e.g. to match a period do “\.”

• a\.b matches a.b

• A character class (a.k.a. character set) can be used to match only
one out of several characters

• Place the characters you want to match between square brackets, []

• A hyphen can be used to specify a range of characters

• A caret, ∧, after the opening square bracket will negate the class

• The result is that the character class will match any character that is
not in the character class

• Examples:
• [abc] matches a single a, b, or c

• [0-9] matches a single digit between 0 and 9

• [∧A-Za-z] matches a single character as long as it’s not a letter

19 / 42

Regular Expressions Continued

• Some shorthand character classes are available for convenience,

• \d a digit, e.g. [0-9]

• \D a non-digit, e.g. [∧0-9]
• \w a word character, matches letters and digits

• \W a non-word character

• \s a whitespace character

• \S a non-whitespace character

• Some shorthand classes are available for matching boundaries,

• ∧ the beginning of a line

• $ the end of a line

• \b a word boundary

• \B a non-word boundary

• Some references:
• RegexOne

• Mastering Regular Expressions
20 / 42

https://regexone.com/
http://shop.oreilly.com/product/9780596528126.do

Regular Expression Examples and Practice

You are given a text file called dogs.txt that contains names, ages, and
breeds of dogs. Use grep and regular expressions to accomplish the
following:

1 Find all dogs named either Sally or Joey.

• Hint: In addition to a regular expression, you may also find the -E

option for grep useful

2 Find all dogs named Joey.

• Note: There are two dogs named Joey, but one of them has been
entered in all lowercase!

• Note: The extended regex grep option (-E) is not needed here

3 Find all dogs that are 6 months old.

• Hint: You may assume that dogs that are 6 months old have been
entered as 0.5.

21 / 42

File Attributes

Every file has a specific list of attributes:

• Access times
• when the file was created
• when the file was last changed
• when the file was last read

• Size

• Owners
• user (remember UID)
• group (remember GID)

• Permissions

For example, time attributes access with ls,

• ls -l shows when the file was last changed

• ls -lc shows when the file was created

• ls -lu shows when the file was last accessed

22 / 42

File Permissions

• Each file has a set of permissions that control who can access the file

• There are three different types of permissions:
• read, abbreviated r
• write, abbreviated w
• execute, abbreviated x

• In Unix, there are permission levels associated with three types of
people that might access a file:

• owner (you)
• group (a group of other users that you set up)
• world (anyone else browsing around on the file system)

23 / 42

File Permissions Display Format

 - rwx rwx rwx
Owner Group Others

• The first entry specifies the type of file:
• “-” is a plain file
• “d” is a directory
• “c” is a character device
• “b” is a block device
• “l” is a symbolic link

• Meaning for Files:
• r - allowed to read
• w - allowed to write
• x - allowed to execute

• Meaning for Directories:
• r - allowed to see the names of files
• w - allowed to add and remove files
• x - allowed to enter the directory

24 / 42

Changing File Permissions

• The chmod command changes the permissions associated with a file
or directory

• Basic syntax: chmod <mode> <file>

• The <mode> can be specified in two ways

• Symbolic representation

• Octal number

• It’s up to you which method you use

• Multiple symbolic operations can be given, separated by commas

25 / 42

Symbolic Representation

• Symbolic representation has the following form,

• [ugoa] [+-=] [rwxX]

• u=user, g=group, o=other, a=all

• + — add permission, - — remove permission, = — set permission

• r=read, w=write, x=execute

• X — Sets to execute only if the file is a directory or already has
execute permission

• Very useful when using recursively

26 / 42

Symbolic Representation Examples

27 / 42

Octal Representation

• Octal mode uses a single-argument string which describes the
permissions for a file (3 digits)

• Each digit is a code for each of the three permission levels

• Permissions are set according to the following numbers:

• read=4, write=2, execute=1

• Sum the individual permissions to get the desired combination

• 0 = no permission at all

• 1 = execute only

• 2 = write only

• 3 = write and execute (1+2)

• 4 = read only

• 5 = read and execute (4+1)

• 6 = read and write (4+2)

• 7 = read, write, and execute
(4+2+1)

28 / 42

Octal Representation Examples

29 / 42

Text Editors and Shell
Customization

Text Editors

• For programming and changing of various text files, we need to make
use of available Unix text editors

• The two most popular and available editors are vi and emacs

• You should familiarize yourself with at least one of the two

• Editor Wars

• We will have very short introductions to each

31 / 42

https://en.wikipedia.org/wiki/Vi
https://en.wikipedia.org/wiki/Emacs
https://en.wikipedia.org/wiki/Editor_war

A Brief Text Editor History

• ed : line mode editor

• ex : extended version of ed

• vi : full screen version of ex

• vim : Vi IMproved

• emacs : another popular editor

• ed/ex/vi share lots of syntax, which also comes

back in sed/awk: useful to know.

32 / 42

vi Overview

• The big thing to remember about vi is that it has two different
modes of operation:

• Insert Mode

• Command mode

• The insert mode puts anything typed on the keyboard into the
current file

• The command mode allows the entry of commands to manipulate text

• Note that vi starts out in the command mode by default

33 / 42

vim Quick Start Commands

• vim <filename>

• Press i to enable insert mode

• Type text (use arrow keys to move around)

• Press Esc to enable command mode

• Press :w (followed by return) to save the file

• Press :q (followed by return) to exit vim

34 / 42

Useful vim Commands

• :q! - exit without saving the document. Very handy for beginners

• :wq - save and exit

• / <string> - search within the document for text. n goes to next
result

• dd - delete the current line

• yy - copy the current line

• p - paste the last cut/deleted line

• :1 - goto first line in the file

• :$ - goto last line in the file

• $ - end of current line

• ∧ - beginning of line

• % - show matching brace, bracket, parentheses

Here are some vim resources: https://vim.rtorr.com/,
https://devhints.io/vim, https://vim-adventures.com/,
vimtutor.

35 / 42

https://vim.rtorr.com/
https://devhints.io/vim
https://vim-adventures.com/

Shell Customization

• Each shell supports some customization.
• user prompt settings
• environment variable settings
• aliases

• The customization takes place in startup files which are read by the
shell when it starts up

• Global files are read first - these are provided by the system
administrators (e.g. /etc/profile)

• Local files are then read in the user’s HOME directory to allow for
additional customization

36 / 42

Shell Startup Files

Useful information can be found at the bash man page:
https://linux.die.net/man/1/bash
• ∼/.bash profile

• Conventionally executed at login shells

• Conventially only run once: at login

• MacOS executes it for every new window

• ∼/.bashrc
• Conventionally executed for each new window

• Can contain similar information as the .bash profile

• ∼/.bash login
• Relic of a bygone time; rarely (if ever) modify

• ∼/.profile
• Executed after looking for .bash profile and .bashrc; generally

don’t modify
• ∼/.bash logout

• Executed when the shell exits

Decent reference on the difference between .bash profile and .bashrc:
Apple Stack Exchange, Scripting OS X 37 / 42

https://linux.die.net/man/1/bash
https://apple.stackexchange.com/questions/51036/what-is-the-difference-between-bash-profile-and-bashrci
https://scriptingosx.com/2017/04/about-bash_profile-and-bashrc-on-macos/

Lecture Exercise

Update your .bash profile

Exercise goals:

• Familiarize with a text editor (like vim)

• Create an alias for ls (e.g. ll) [see
https://www.tecmint.com/create-alias-in-linux/]

• Change command line prompt format (see https://www.cyberciti.

biz/tips/howto-linux-unix-bash-shell-setup-prompt.html)

Note to Windows users: Modify Bash Profile in Windows

Note: The Dracula Theme is pretty fun.

38 / 42

https://www.tecmint.com/create-alias-in-linux/
https://www.cyberciti.biz/tips/howto-linux-unix-bash-shell-setup-prompt.html
https://www.cyberciti.biz/tips/howto-linux-unix-bash-shell-setup-prompt.html
https://superuser.com/questions/602872/how-do-i-modify-my-git-bash-profile-in-windows
https://draculatheme.com/

I/O

ProgramStandard Input
(STDIN)

Standard Output
(STDOUT)

Standard Error
(STDERR)

• File descripters are associated with each stream,
• 0=STDIN, 1=STDOUT, 2=STDERR

• When a shell runs a program for you,
• Standard input is the keyboard

• Standard output is your screen

• Standard error is your screen

• To end the input, press Ctrl-D on a line; this ends the input stream

39 / 42

Shell Stream Redirection

• The shell can attach things other than the keyboard to standard input
or output

• e.g. a file or a pipe

• To tell the shell to store the output of your program in a file, use >,

• ls > ls out

• To tell the shell to get standard input from a file, use <,

• sort < nums

• You can combine both forms together,

• sort < nums > sortednums

40 / 42

Modes of Output Redirection

• There are two modes of output redirection,

• > — create mode

• >> — append mode

• ls > foo creates a new file foo, possibly deleting any existing file
named foo while ls >> foo appends the output to foo

• > only applies to stdout (not stderr)

• To redirect stderr to a file, you must specify the request directly

• 2> redirects stderr (e.g. ls foo 2> err)

• &> redirects stdout and stderr (e.g. ls foo &> /dev/null)

• ls foo > out 2> err redirects stdout to out and stderr to err

41 / 42

Wildcards

• The shell treats some characters as special

• These special characters make it easy to specify filenames

• * matches anything

• Giving the shell * by itself removes * and replaces it with all the
filenames in the current directory

• echo prints out whatever you give it (e.g. echo hi prints out hi)

• echo * prints out the entire working directory!

• ls *.txt lists all files that end with .txt

42 / 42

