
CS207: Systems Development for Computational Science
https://harvard-iacs.github.io/2019-CS207/

Instructor: David Sondak
TFs: Lindsey Brown, Feiyu Chen, Aditya Karan, Bhaven Patel

Harvard University
Institute for Applied Computational Science

9/3/2019

https://harvard-iacs.github.io/2019-CS207/

Motivation: Thermal Convection and the Geodynamo

Thermal convection drives most fluid flows in the universe

COLD

HOT

g

Cold fluid falls, hot fluid rises

Plate Tectonics Video

DESY

∂T

∂t
+∇ · (uT) = k∇2T

• Ignoring ∇ · (uT) gives the usual heat conduction equation!

1 / 25

https://www.youtube.com/watch?v=ryrXAGY1dmE
http://www.desy.de/news/news_search/index_eng.html?openDirectAnchor=1047

Motivation: Thermal Convection and the Geodynamo

Thermal convection drives most fluid flows in the universe

COLD

HOT

g

Cold fluid falls, hot fluid rises

Plate Tectonics Video

DESY

∂T

∂t
+∇ · (uT) = k∇2T

• Ignoring ∇ · (uT) gives the usual heat conduction equation!

1 / 25

https://www.youtube.com/watch?v=ryrXAGY1dmE
http://www.desy.de/news/news_search/index_eng.html?openDirectAnchor=1047

Motivation: Thermal Convection and the Geodynamo

Thermal convection drives most fluid flows in the universe

COLD

HOT

g

Cold fluid falls, hot fluid rises

Plate Tectonics Video

DESY

∂T

∂t
+∇ · (uT) = k∇2T

• Ignoring ∇ · (uT) gives the usual heat conduction equation!

1 / 25

https://www.youtube.com/watch?v=ryrXAGY1dmE
http://www.desy.de/news/news_search/index_eng.html?openDirectAnchor=1047

Motivation: Thermal Convection and the Geodynamo

Thermal convection drives most fluid flows in the universe

COLD

HOT

g

Cold fluid falls, hot fluid rises

Plate Tectonics Video

DESY

∂T

∂t
+∇ · (uT) = k∇2T

• Ignoring ∇ · (uT) gives the usual heat conduction equation!
1 / 25

https://www.youtube.com/watch?v=ryrXAGY1dmE
http://www.desy.de/news/news_search/index_eng.html?openDirectAnchor=1047

Motivation: The Pillars of Science

2 / 25

Motivation: The Pillars of Science

2 / 25

Computational Science

Mathematics

Computer
Science

Scientific
Discipline

Computational
Science

3 / 25

Why take this class?

• Scientific software is complex

• Your code needs to be:
• Reuseable
• Portable
• Robust

• Must go beyond “scripting”

CS207 Objectives

To give students who may not have a
traditional computer science background the
knowledge and tools to develop and maintain
effective software for computational science

applications.

4 / 25

Why take this class?

• Scientific software is complex

• Your code needs to be:
• Reuseable
• Portable
• Robust

• Must go beyond “scripting”

CS207 Objectives

To give students who may not have a
traditional computer science background the
knowledge and tools to develop and maintain
effective software for computational science

applications.

4 / 25

Why take this class?

• Scientific software is complex

• Your code needs to be:
• Reuseable
• Portable
• Robust

• Must go beyond “scripting”

CS207 Objectives

To give students who may not have a
traditional computer science background the
knowledge and tools to develop and maintain
effective software for computational science

applications.

4 / 25

Why take this class?

• Scientific software is complex

• Your code needs to be:
• Reuseable
• Portable
• Robust

• Must go beyond “scripting”

CS207 Objectives

To give students who may not have a
traditional computer science background the
knowledge and tools to develop and maintain
effective software for computational science

applications.

4 / 25

Who should take this class?

• Any kind of scientist is welcome to take this class!

• This course is computer science for people who aren’t computer
scientists:

• Data scientists
• Biologists
• Chemists
• Engineers
• Physicists
• Mathematicians
• Economists

•
...

• It is also for computer scientists who want to develop scientific
software

• CS207 is for students who need to know effective and modern
software practices for their career

5 / 25

Sample Topics

A few selected topics to be covered:

• Unix and Linux

• Version control

• Python

• Software documentation

• Software testing

• Object-oriented programming

• Data structures

• Databases

Other potential topics
(not guaranteed):

• Debuggers and debugging

• Build systems (Makefiles,
autotools, ...)

• Compiled languages

6 / 25

https://en.wikipedia.org/wiki/Software_bug

Sample Topics

A few selected topics to be covered:

• Unix and Linux

• Version control

• Python

• Software documentation

• Software testing

• Object-oriented programming

• Data structures

• Databases

Other potential topics
(not guaranteed):

• Debuggers and debugging

• Build systems (Makefiles,
autotools, ...)

• Compiled languages

6 / 25

https://en.wikipedia.org/wiki/Software_bug

Course Structure

• CS207 is an application-driven course

• Two, 75 minute lectures per week

• Lectures centered around group programming exercises

• Programming assignments for homework

• Primary deliverable is a software development project

• All course content hosted on GitHub

Course Website:
https://harvard-iacs.github.io/2019-CS207/

7 / 25

https://harvard-iacs.github.io/2019-CS207/

Course Project: Overview

• You will work in groups of 3 to 4 people (assigned by teaching staff)

• You will add to your library throughout the semester

• The project consists of two milestones

• For the final project, you will add a non-trivial feature to your library

• A portion of your grade will come from peer-assessment

• Exact details on website

8 / 25

Course Project: The Topic

Automatic differentiation

What is Automatic Differentiation?

• A way to evaluate derivatives of functions and computer programs

• Computes derivatives to machine precision!

• Can be very efficient and accurate

• Also known as “algorithmic differentiation”

We will have four lectures on automatic differentiation this semester to
cover the main points.

9 / 25

Course Project: The Topic

Automatic differentiation

What is Automatic Differentiation?

• A way to evaluate derivatives of functions and computer programs

• Computes derivatives to machine precision!

• Can be very efficient and accurate

• Also known as “algorithmic differentiation”

We will have four lectures on automatic differentiation this semester to
cover the main points.

9 / 25

Course Project: The Topic

Automatic differentiation

What is Automatic Differentiation?

• A way to evaluate derivatives of functions and computer programs

• Computes derivatives to machine precision!

• Can be very efficient and accurate

• Also known as “algorithmic differentiation”

We will have four lectures on automatic differentiation this semester to
cover the main points.

9 / 25

Course Project: The Topic

Automatic differentiation

What is Automatic Differentiation?

• A way to evaluate derivatives of functions and computer programs

• Computes derivatives to machine precision!

• Can be very efficient and accurate

• Also known as “algorithmic differentiation”

We will have four lectures on automatic differentiation this semester to
cover the main points.

9 / 25

Course Project: The Topic

Automatic differentiation

What is Automatic Differentiation?

• A way to evaluate derivatives of functions and computer programs

• Computes derivatives to machine precision!

• Can be very efficient and accurate

• Also known as “algorithmic differentiation”

We will have four lectures on automatic differentiation this semester to
cover the main points.

9 / 25

Course Project: The Topic

Automatic differentiation

What is Automatic Differentiation?

• A way to evaluate derivatives of functions and computer programs

• Computes derivatives to machine precision!

• Can be very efficient and accurate

• Also known as “algorithmic differentiation”

We will have four lectures on automatic differentiation this semester to
cover the main points.

9 / 25

Course Project: The Topic

Automatic differentiation

What is Automatic Differentiation?

• A way to evaluate derivatives of functions and computer programs

• Computes derivatives to machine precision!

• Can be very efficient and accurate

• Also known as “algorithmic differentiation”

We will have four lectures on automatic differentiation this semester to
cover the main points.

9 / 25

Why Automatic Differentiation?

• Encapsulates many ideas in software design
• Object-oriented programming

• Operator overloading

• Datastructures

• Pervasive throughout science and gaining steam
• Neural networks and backpropagation

• Hamiltonian Monte Carlo methods

• Full Jacobian calculations

• Jacobian-free calculations

10 / 25

Why Automatic Differentiation?

• Encapsulates many ideas in software design
• Object-oriented programming

• Operator overloading

• Datastructures

• Pervasive throughout science and gaining steam
• Neural networks and backpropagation

• Hamiltonian Monte Carlo methods

• Full Jacobian calculations

• Jacobian-free calculations

10 / 25

AD Teaser

Suppose we have a function like

y = exp

(
−
√

x + cos2 (x)

)
sin
(
x ln

(
1 + x2

))
.

The symbolic derivative is

y ′ = exp

(
−
√
x + cos2 (x)

)
cos
(
x ln

(
1 + x2

))(2x2

1 + x2
+ ln

(
1 + x2

))
− exp

(
−
√
x + cos2 (x)

)
1− 2 cos (x) sin (x)

2
√

x + cos2 (x)
sin
(
x ln

(
1 + x2

))
And that’s only the first derivative!

Demo

11 / 25

AD Teaser

Suppose we have a function like

y = exp

(
−
√

x + cos2 (x)

)
sin
(
x ln

(
1 + x2

))
.

The symbolic derivative is

y ′ = exp

(
−
√

x + cos2 (x)

)
cos
(
x ln

(
1 + x2

))(2x2

1 + x2
+ ln

(
1 + x2

))
− exp

(
−
√

x + cos2 (x)

)
1− 2 cos (x) sin (x)

2
√

x + cos2 (x)
sin
(
x ln

(
1 + x2

))

And that’s only the first derivative!

Demo

11 / 25

AD Teaser

Suppose we have a function like

y = exp

(
−
√

x + cos2 (x)

)
sin
(
x ln

(
1 + x2

))
.

The symbolic derivative is

y ′ = exp

(
−
√

x + cos2 (x)

)
cos
(
x ln

(
1 + x2

))(2x2

1 + x2
+ ln

(
1 + x2

))
− exp

(
−
√

x + cos2 (x)

)
1− 2 cos (x) sin (x)

2
√

x + cos2 (x)
sin
(
x ln

(
1 + x2

))
And that’s only the first derivative!

Demo

11 / 25

Next Steps

Go to

https:

//harvard-iacs.github.io/2019-CS207/lectures/lecture0/.

12 / 25

https://harvard-iacs.github.io/2019-CS207/lectures/lecture0/
https://harvard-iacs.github.io/2019-CS207/lectures/lecture0/

Unix and Linux

Portions of this lecture taken from the lecture notes of Dr. Chris Simmons.

Why Unix / Linux?

https://www.top500.org/lists/2019/06/

https://www.top500.org/statistics/list/ 14 / 25

https://www.top500.org/lists/2019/06/
https://www.top500.org/statistics/list/

What is Unix?

• Unix is a multi-user, preemtive, multitasking, operating system

• It provides several facilities:
• Management of hardward resources

• Directories and file systems

• Loading, execution, and suspension of programs

• There are many versions of Unix:
• Solaris

• AIX

• BSD

• Linux (not unix, but pretty close)

•
...

15 / 25

What is Linux?

• Linux is a clone of Unix

• Written by Linus Torvalds

• First version dates to September 1991

• Linux has been further developed by people around the world

• Developed under the GNU General Public License

• Source code for Linux is freely available

16 / 25

https://www.gnu.org/licenses/gpl-3.0.en.html

How Does Unix Work?

• Unix has a kernel and one or
more shells

• The kernel is the core of the OS

• It receives tasks from the shell
and executes them

• Users interact with the shell!

Kernel

Shell

17 / 25

How Does Unix Work?

• Everything in Unix is a process
or a file

• A process
• Is an executing program (has

a unique PID)
• May be short or run

indefinitely

• A file
• Is a collection of data
• Created by users

• The Unix kernel is reponsible for
organizing processes and
interacting with files

Kernel

Shell

18 / 25

The Shell

• The Unix interface is called the shell

• The shell basically does four things repeatedly:

• Display prompt
• Read command
• Process command
• Execute command

19 / 25

How to Interact with Unix

• The user interacts with Unix via a shell

• Different kinds of shells

• Graphical, e.g. X-Windows
• Text-based (command-line), e.g. bash and tcsh

• To remotely access a shell session, use ssh (secure shell)

20 / 25

Some Common Unix Terminology

• Unix has the notion of accounts, which include:

• a username/password

• userid/groupid

• home directory

• a shell preference

• userids are called UIDs

• Unix has the notion of groups:

• A Unix group can share files and active processes

• Each account is assigned a primary group

• The groupid corresponds to this primary group

• groupids are called GIDs

21 / 25

Unix Files and Directories

• A file is a basic unit of storage

• Every file must have a name

• Unix is case-sensitive

• A directory is a special kind of file

• Directories hold information about other files

• We often think of a directory as a container that holds other files

• e.g. folders for Mac or Windows users

22 / 25

Comments on the Unix Filesystem

• The filesystem is a hierarchical system of files and directories

• The top level in the heirarchy is called the root

• The full pathname of a file includes the filename and all directories up
to the root

• e.g. /Users/dsondak/Teaching/Harvard/CS207/2019-CS207/

• Absolute and relative pathnames:

• Absolute pathnames start at the root

• Relative pathnames are specified in relation to the current working
directory

• e.g. Harvard/CS207/2019-CS207/

23 / 25

Special Directory Names

• There is a special relative pathname for the current working directory

• .
• Just a dot

• There is a special relative pathname for the parent directory

• ..
• Pronounced dot-dot

• There is a special symbol for the home directory

• ∼
• Just a tilde

These commands will become second nature to you.

24 / 25

Next Steps

Go to

https:

//harvard-iacs.github.io/2019-CS207/lectures/lecture0/.

25 / 25

https://harvard-iacs.github.io/2019-CS207/lectures/lecture0/
https://harvard-iacs.github.io/2019-CS207/lectures/lecture0/

