Lecture 18: Autoencoders
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# "Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar
reward given once in a while.

» A few bits for some samples

# Supervised Learning (icing)
» The machine predicts a category > - 3 £
or a few numbers for each input R

» Predicting human-supplied data

» 10-10,000 bits per sample

» The machine predicts any part of ;
its input for any observed part. = =

» Predicts future frames in videos

» Millions of bits per sample

# Unsupervised/Predictive Learning (cake)

# (Yes, I know, this picture is slightly offensive to RL folks. But I'lLl make it up)

Original LeCun cake analogy slide presented at NIPS 2016, the highlighted area has now been updated.
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Y. LeCun

How Much Information is the Machine Given during Learning?

P> “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

> A few bits for some samples

P> Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

N

P Predicting human-supplied data
» 10—10,000 bits per sample

P> Self-Supervised Learning (cake génoise)

» The machine predicts any part of its input for any
observed part.

P Predicts future frames in videos

» Millions of bits per sample

© 2019 IEEE International Solid-State Circuits Conference 1.1: Deep Learning Hardware: Past, Present, & Future 59
LeCun updated his cake recipe last week at the 2019 International Solid-State Circuits Conference (ISSCC) in
San Francisco, replacing “unsupervised learning” with “self-supervised learning,” a variant of unsupervised
learning where the data provides the supervision.
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Outline

* Quick review of representation learning
» Brief history of encoding/decoding

e Autoencoder Variations:
o Convolutional Autoencoders
o Denoising Autoencoders

o Sparse Autoencoders

CS109B, PrROTOPAPAS, GLICKMAN




Quick Review. Neural Networks as function approximation.

Given an input x and an output y there exists a mapping from input
space to output space as follows:

X =Y
y=f(x)+e

Our goal is to find an estimate of f{x) which we will call f(x).

Statistical learning or modeling is the process of finding f(x).

Neural networks are one of many possible methods we can use to obtain
the estimate f(x).
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Representational Learning

Representation Matters

x—>

Linear
Regression
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Representational Learning

Representation Matters

x x Logistic
ﬁ . ﬁ
1 ) 2 Regression

— Polynomial

X1
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Representational Learning

Representation Matters

X—>

Representation

Task

G |-

\_

Linear
Regression

b (x)= x°

y
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Representational Learning

Representation Matters

Representation Task

( A (- R

Logistic
x ” ¢ (X) —_— Regression
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Representational Learning

Representation Matters
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Representational Learning (cont)

Rule-based
systems

Classic
machine
learning

Representation
learning

IACS
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Representational Learning (cont)

Visible layer 1st hidden layer 2nd hidden layer 3rd hidden layer Output
(input pixels) (edges) (corners and (object parts) (object identity)
contours)
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Representational Learning: Supervised Learning

We train the two networks by minimizing the loss function (cross entropy loss)

|IACS |58 18 0%

\
—

{ Features }

Feature Discovery Network
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Representational Learning: Self-supervised Learning

We train the two networks by minimizing the reconstruction loss function: £ = Y.(x; — £;)*

\ /
{ Features }
/ \

Feature Discovery Network Second Network

v
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Representational Learning: Self-supervised Learning

AUTOENCODER

Latent Space

b I
7
//////////// \\\\\\\\\\\\

ENCODER DECODER

This is an autoencoder. It gets that name because it automatically finds the best way to encode the
Input so that the decoded version is as close as possible to the input.
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Brief history of encoding/decoding

MP3 can compress music files by a factor of 10 enabling digital storage
and transmission large volumes of audio.

JPG compresses images by a factor of 10-20 and enables storage and
transmission of image data

These technologies led the way to the image-rich web and abundance of
music that we enjoy today.
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Brief history of encoding/decoding (cont)

We say that both MP3 and JPG take an input (a music or
image file), and encode it into a compressed form.

Then we decode or decompress the intermediate version to
some lower quality original version.
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What are autoencoders?

* A particular kind of learning architecture

* A mechanism of compressing inputs into a form that can
later be decompressed

* Similar to the way MP3 compresses audio and JPG
compresses images

* Autoencoders are more general than either MP3 or JPG
* They are usually used to ...

 reduce data dimensionality or find a better suited representation for another
task

* blend inputs from one input to another.
* denoise, infill, etc.
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Lossless and Lossy Encoding

The greater the difference between the original version and the version post-
decompression the greater the loss.

For example imagine you are in Boston and you want to write a birthday text
to a special friend.

HANNAH HAPPY BIRTHDAY | LOVE YOU DAN

In the freezing (-20C) Boston winter you do not want to have your hands out

In the open, so you shorten the message as much as possible using text-
speak:

H HBD ILY D

Your 36 characters message is compressed to 11 characters
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Lossless and Lossy Encoding (cont)

HPD is unambiguous given that it is her birthday today, but D
could mean Dan or David or Donny ... You can imagine the
potential drama. (Is this an example lossy or lossless
compression?)

A way to test if a transformation is lossy or lossless is to consider
If it can be inverted, or run backwards, to provide us with the

original data.
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Autoencoder

We train the two networks by minimizing the reconstruction loss function: £ = Y!(x; — £;)*

Latent Space

b I
7
//////////// \\\\\\\\\\\\

ENCODER DECODER

This is an autoencoder. It gets that name because it automatically finds the best way to encode the
Input so that the decoded version is as close as possible to the input.
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MP3 and JPG Image Compression

original MP3 JPG

Original image 256x256=262,000, MP3=37,000, and JPG=26,000
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MP3 and JPG Image Compression(cont)

MP3 JPG
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The simplest autoencoder

Encode with a simple fully connected network (FCN)

20 neurons » 20 numbers

Image 100x100 FCN with 20 neurons
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The simplest autoencoder

Encode and decode

20 neurons 10K neurons > 10000 numbers

Image 100x100 FCN: 20 neurons FCN:10000 neurons
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Autoencoders in action

Comparing the input and output pixel by pixel.

CS109B, PROTOPAPAS, GLICKMAN

0.004
0.002
0.000
—0.002
—0.004
—0.006
—0.008
-0.010

26



Bottleneck

 We start with 10,000 elements
* We have 20 in the middle
* And 10,000 elements again at the end

Xi—w Bottleneck Xy
flow of data > X? —Po —= X >
input output X3 —p — X3
20 wide
10,000 wide 10,000 wide X4 ) > X,
Input Hidden Output
Layer Layer Layer
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Latent variables and latent layer

We say that an autoencoder is an example of semi-supervised or
self-supervised learning.

It sort-of is supervised learning because we give the system
explicit goal data (the output should be the same as the input),
and it sort-of isn’t supervised learning because we don’t have any
manually determined labels or targets on the inputs.
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Autoencoders in action (cont)

vy

v

20 neurons 10K neurons
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Autoencoders in action (cont)

v

20 neurons 10K neurons
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Autoencoders in action (cont)

We must train with a variety of images.

IACS
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Autoencoders in action (cont)

Testing it again

20 neurons 10K neurons
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A Better autoencoder
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20 latent variables

N /(2] /[o]d
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10 latent variables

- ARG

2 latent variables

IACS
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reconstructed
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Deeper

.7 — | 512 neurons | | 256 neurons 20 neurons 256 neurons 512neurons 784 neurons
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Exploring autoencoders
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Exploring autoencoders (cont)

Savy
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K
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Exploring autoencoders (cont)
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Exploring autoencoders (cont)
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Exploring autoencoders (cont)
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Parameter space of autoencoder
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Blending

We blend inputs to create new data that is similar to the input
data, but not exactly the same.

One example of blending is content blending where the

content of two pieces of data is directly blended. An example
IS If we overlay images of a cow and zebra.
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Blending (cont)

Another type of blending is parametric or representation
blending:

In this type of blending we take advantage of parameterization to
describe the objects we’re interested in. By engaging in blending
In the parameter space, we can create results that blend the
Inherent qualities of the objects of interest.

CS109B, PROTOPAPAS, GLICKMAN
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Blending (cont)
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Content blending
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Parametric or representation blending
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B

lending in compressed representation

>
0
4

While the blending we’ve described works well for uncompressed objects what happens
when compression is involved?

The compressed form may not be the best representation with what we would like to blend
the objects.

For example, let’s take the sounds of the words cherry and orange.

We can blend these sounds together or we can compress them into written words.

C —DEFGHIJKLMN ——O
H IJKLMNOPQ —R
E DCB A
R QPO N
R QPONMLKJIH——G

YXWVUTSROQPONMLKJIHGFE
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Blending Latent Variables

Back to the example of MNIST

< mn O O




Blending Latent Variables (cont)
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Applying to novel input

512 neurons | | 256 neurons 20 neurons 256 neurons 512neurons 784 neurons
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Convolutional Autoencoders

28 x 28 x 1 —P [\ [\ /‘ /‘ —» 28 x 28 x 1
- - . N

16 X (3x3) 2x2 8x(3x3) 2x2 3x(3x3) 2x2 16x(3x3) 2x2 1 x (3x3)
RelLU RelLU RelLU RelLU sigmoid

ziz|/1eld
712 /104
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Denoising

A popular use of autoencoders is to remove noise from
samples.

DRy CS109B, PrROTOPAPAS, GLICKMAN
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Denoising (cont)

™\ S
28 x28x1—P /‘ /‘ » 28 x 28 x 1

- - Ny N

32x(3x3) 2x2 32x(3x3) 2x2 32x(3x3) 2x2 32x(3x3) 2x2 1 x(3x3)
RelLU RelLU RelLU RelLU sigmoid

Note that we start with a clean image, add noise and train our
networks to return a clean decoded image.
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Sparse Autoencoder

 We’'ve assumed so far that the size of the bottleneck is smaller than the
size of the inputs - this is called an undercomplete autoencoder

* The case in which the size of the bottleneck is greater than or equal to
the number of inputs we call an overcomplete autoencoder

Input layer Hidden layers Output layer

CS109B, PROTOPAPAS, GLICKMAN
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Sparse Autoencoder (cont)

The size of the bottleneck (i.e. the number of latent variables) makes a difference!

20 latent variables

2] /Tolu
~ ABNBN

2 latent variables
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Regularized Autoencoders

* Sparse autoencoders
* Denoising autoencoders
* Autoencoders with dropout on z

Contractive autoencoders
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Overcomplete Autoencoders

z has greater dimension than x

Input layer

Autoencoder may simply copy input to
output without learning anything useful

The ideal autoencoder model balances the
following:

1. Sensitive to the inputs enough to
accurately build a reconstruction.

2. Insensitive enough to the inputs that
the model doesn't simply memorize or
overfit the training data.

CS109B, PROTOPAPAS, GLICKMAN




Regularized Autoencoders (cont)

This trade-off requires the model to maintain only the
variations in the data required to reconstruct the input without
holding on to redundancies within the input.

Question: How to achieve this?

For most cases, this involves constructing a loss function
where one term encourages our model to be sensitive to the
inputs (ie. reconstruction loss L(x,X) and a second term
discourages memorization/overfitting (ie.

an added regularizer).

£(x9(f(0)) +9)
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Sparse Autoencoders

We allow our network to sensitize individual hidden layer nodes
toward specific attributes of the input data.

A sparse autoencoder is selectively activate regions of the network
depending on the input data.

Limiting the network's capacity to memorize the input data without
limiting the networks capability to extract features from the data.

Input layer

Hidden layers Output layer
f A 7 \ { \ |

B ) +Az 1z
i
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Denoising Autoencoders

Trained with corrupted data points, but to reconstruct original

<
<+

NS q
N Measure
Add noise to the reconstruction
input image loss against

original image

Feed
corrupted
input into

autoencoder
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Denoising Autoencoders (cont)

Denoising autoencoders learn a manifold. Vector field learned
by denoising autoencoder. Each arrow is proportional to g(f(x))
—X
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Denoising Autoencoders (cont)
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Contractive Autoencoders

One would expect that for very similar inputs, the learned
encoding would also be very similar.

We can explicitly train our model in order for this to be the
case by requiring that the derivative of the hidden layer
activations are small with respect to the input.

Question: How do we find how much the encoded space would
change if the input changes?

Derivatives

Lix,g(f(x)) + AL

0x |-
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Problems with Autoencoders

* Gaps in the latent space

* Separability in the latent
space

* Discrete latent space

B
o B

ﬁ_
N>
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