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Original LeCun cake analogy slide presented at NIPS 2016, the highlighted area has now been updated.
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LeCun updated	his	cake	recipe	last	week	at	the	2019	International	Solid-State	Circuits	Conference	(ISSCC)	in	
San	Francisco,	replacing	“unsupervised	learning”	with	“self-supervised	learning,” a	variant	of	unsupervised	
learning	where	the	data	provides	the	supervision.
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Outline

• Quick review of representation learning

• Brief history of encoding/decoding

• Autoencoder Variations:

o Convolutional Autoencoders

o Denoising Autoencoders

o Sparse Autoencoders
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Quick Review. Neural Networks as function approximation.

Given an input x and an output y	 there exists a mapping from input 
space to output space as follows:

			𝑥 → 𝑦
𝑦 = 𝑓 𝑥 + 𝜖

Our goal is to find  an estimate of f(x)	which we will call 𝑓.(𝑥).

Statistical learning or modeling is the process of finding 𝑓.(𝑥).

Neural networks are one of many possible methods we can use to obtain 
the estimate 𝑓.(𝑥).
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Representational Learning

Representation Matters
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Representational Learning

Representation Matters
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Representational Learning

Representation Matters
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Representational Learning

Representation Matters
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Representational Learning

Representation Matters

Representation𝑥 Task 𝑦0
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Representational Learning (cont)
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Representational Learning (cont)
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Representational Learning: Supervised Learning
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{Cat,Dog,…}

We train the two networks by minimizing the loss function (cross entropy loss)

{	Features	}

Feature Discovery Network Classification Network

x
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Representational Learning: Self-supervised Learning

14

We train the two networks by minimizing the reconstruction loss function: ℒ = ∑ 𝑥A − 𝑥0A /

{	Features	}

Feature Discovery Network Second Network

x 𝑥0
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Representational Learning: Self-supervised Learning
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Z

ENCODER DECODER

AUTOENCODER

This is an autoencoder. It gets that name because it automatically finds the best way to encode the 
input so that the decoded version is as close as possible to the input.

Latent Space

x 𝑥0
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Brief history of encoding/decoding

MP3 can compress music files by a factor of 10 enabling digital storage 
and transmission large volumes of audio. 

JPG compresses images by a factor of 10-20 and enables storage and 
transmission of image data

These technologies led the way to the image-rich web and abundance of 
music that we enjoy today.
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Brief history of encoding/decoding (cont)

We say that both MP3 and JPG take an input (a music or 
image file), and encode it into a compressed form.

Then we decode or decompress the intermediate version to 
some lower quality original version. 
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What are autoencoders?

• A particular kind of learning architecture 

• A mechanism of compressing inputs into a form that can 
later be decompressed

• Similar to the way MP3 compresses audio and JPG 
compresses images

• Autoencoders are more general than either MP3 or JPG

• They are usually used to …
• reduce data dimensionality or find a better suited representation for another 

task

• blend inputs from one input to another.

• denoise, infill, etc. 

18
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Lossless and Lossy Encoding

The greater the difference between the original version and the version post-
decompression the greater the loss.

For example imagine you are in Boston and you want to write a birthday text 
to a special friend.

HANNAH HAPPY BIRTHDAY I LOVE YOU DAN

In the freezing (-20C) Boston winter you do not want to have your hands out 
in the open, so you shorten the message as much as possible using text-
speak: 

H HBD ILY D

Your 36 characters message is compressed to 11 characters

19
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Lossless and Lossy Encoding (cont)

HPD is unambiguous given that it is her birthday today, but D 
could mean Dan or David or Donny ... You can imagine the 
potential drama.  (Is this an example lossy or lossless 
compression?)

A way to test if a transformation is lossy or lossless is to consider 
if it can be inverted, or run backwards, to provide us with the 
original data.
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Autoencoder

21

Z

ENCODER DECODER

This is an autoencoder. It gets that name because it automatically finds the best way to encode the 
input so that the decoded version is as close as possible to the input.

Latent Space

We train the two networks by minimizing the reconstruction loss function: ℒ = ∑ 𝑥A − 𝑥0A /

x 𝑥0
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MP3 and JPG Image Compression

Original image 256x256=262,000, MP3=37,000, and JPG=26,000

22

original MP3 JPG

Image	taken	from	A.	Glassner,	Deep	Learning,	Vol.	2:	From	Basics	to	Practice
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MP3 and JPG Image Compression(cont)
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original MP3 JPG

Image	taken	from	A.	Glassner,	Deep	Learning,	Vol.	2:	From	Basics	to	Practice
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The simplest autoencoder

Encode with a simple fully connected network (FCN)
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FCN with 20 neurons

20 numbers

Image 100x100

20 neurons
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The simplest autoencoder

Encode and decode 

25

FCN: 20 neurons FCN:10000 neurons

10000 numbers

Image 100x100

20 neurons 10K neurons
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Autoencoders in action

Comparing the input and output pixel by pixel. 
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Bottleneck

27

• We start with  10,000 elements 
• We have 20 in the middle 
• And 10,000 elements again at the end 
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Latent variables and latent layer

We say that an autoencoder is an example of semi-supervised or 
self-supervised learning. 

It sort-of is supervised learning because we give the system 
explicit goal data (the output should be the same as the input), 
and it sort-of isn’t supervised learning because we don’t have any 
manually determined labels or targets on the inputs.
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Autoencoders in action (cont)

29

20 neurons 10K neurons
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Autoencoders in action (cont)

30

20 neurons 10K neurons
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Autoencoders in action (cont)
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We must train with a variety of images.
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Autoencoders in action (cont)

Testing it again

32

20 neurons 10K neurons
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A Better autoencoder

33

20 neurons 784 neurons
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20 latent variables

10 latent variables

2  latent variables

Image	taken	from	A.	Glassner,	Deep	Learning,	Vol.	2:	From	Basics	to	Practice

original

reconstructed

original

reconstructed

original

reconstructed
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Deeper

35

512	neurons 512neurons256	neurons 20	neurons 256	neurons 784	neurons

Shallow	20	latent	variables
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Exploring autoencoders

36
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Exploring autoencoders (cont)
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Change	+/- 1	the	latent	variables
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Exploring autoencoders (cont)
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Change	+/- 10	the	latent	variables
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Exploring autoencoders (cont)
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Change	+/- 100	the	first	latent	variables
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Exploring autoencoders (cont)
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Just	noise
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Parameter space of autoencoder

41
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Blending

We blend inputs to create new data that is similar to the input 
data, but not exactly the same. 

One example of blending is content blending where the 
content of two pieces of data is directly blended. An example 
is if we overlay images of a cow and zebra.

42
Image	taken	from	A.	Glassner,	Deep	Learning,	Vol.	2:	From	Basics	to	Practice
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Blending (cont)

Another type of blending is parametric or representation
blending: 

In this type of blending we take advantage of parameterization to 
describe the objects we’re interested in.  By engaging in blending 
in the parameter space, we can create results that blend the 
inherent qualities of the objects of interest.

43



CS109B, PROTOPAPAS, GLICKMAN

Blending (cont)

44
Image	taken	from	A.	Glassner,	Deep	Learning,	Vol.	2:	From	Basics	to	Practice
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Content blending

45
Image	taken	from	A.	Glassner,	Deep	Learning,	Vol.	2:	From	Basics	to	Practice
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Parametric or representation blending 

46
Image	taken	from	A.	Glassner,	Deep	Learning,	Vol.	2:	From	Basics	to	Practice
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Blending in compressed representation

47

While the blending we’ve described works well for uncompressed objects what happens 
when compression is involved?

The compressed form may not be the best representation with what we would like to blend 
the objects.

For example, let’s take the sounds of the words cherry and orange. 

We can blend these sounds together or we can compress them into written words.

Image	taken	from	A.	Glassner,	Deep	Learning,	Vol.	2:	From	Basics	to	Practice



CS109B, PROTOPAPAS, GLICKMAN 48



CS109B, PROTOPAPAS, GLICKMAN

Blending Latent Variables

49

Back to the example of MNIST
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Blending Latent Variables (cont)

50
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Applying to novel input

51

512	neurons 512neurons256	neurons 20	neurons 256	neurons 784	neurons
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Convolutional Autoencoders

52
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Denoising

A popular use of autoencoders is to remove noise from 
samples. 
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Denoising (cont)

Note that we start with a clean image, add noise and train our 
networks to return a clean decoded image. 
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Sparse Autoencoder

55

• We’ve assumed so far that the size of the bottleneck is smaller than the 
size of the inputs – this is called an undercomplete autoencoder

• The case in which the size of the bottleneck is greater than or equal to 
the number of inputs we call an overcomplete autoencoder
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Sparse Autoencoder (cont)

56

56

20 latent variables

2  latent variables

original

reconstructed

original

reconstructed

The	size	of	the	bottleneck	(i.e.	the	number	of	latent	variables)	makes	a	difference!
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Regularized Autoencoders

• Sparse autoencoders

• Denoising autoencoders

• Autoencoders with dropout on z

• Contractive autoencoders
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Overcomplete Autoencoders

z has greater dimension than x

Autoencoder may simply copy input to 
output without learning anything useful

The ideal autoencoder model balances the 
following:

1. Sensitive to the inputs enough to 
accurately build a reconstruction.

2. Insensitive enough to the inputs that 
the model doesn't simply memorize or 
overfit the training data.

.



CS109B, PROTOPAPAS, GLICKMAN

Regularized Autoencoders (cont)

This trade-off requires the model to maintain only the 
variations in the data required to reconstruct the input without 
holding on to redundancies within the input. 

Question: How to achieve this?

For most cases, this involves constructing a loss function 
where one term encourages our model to be sensitive to the 
inputs (ie. reconstruction loss ℒ 𝑥, 𝑥0 and a second term 
discourages memorization/overfitting (ie. 
an added regularizer).

ℒ 𝑥, 𝑔 𝑓 𝑥 + Ω(𝑧)
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Sparse Autoencoders

We allow our network to sensitize individual hidden layer nodes 
toward specific attributes of the input data. 
A sparse autoencoder is selectively activate regions of the network 
depending on the input data. 
Limiting the network's capacity to memorize the input data without 
limiting the networks capability to extract features from the data. 

ℒ 𝑥, 𝑥0 + 𝜆H|𝑧A|
�

A
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Denoising Autoencoders

Trained with corrupted data points, but to reconstruct original 
data points
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Denoising Autoencoders (cont)

Denoising autoencoders learn a manifold. Vector field learned 
by denoising autoencoder. Each arrow is proportional to g(f(x)) 
– x

62
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Denoising Autoencoders (cont)

Vector field learned by denoising autoencoder. Each arrow is 
proportional to g(f(x)) – x

63
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Contractive Autoencoders

One would expect that for very similar inputs, the learned 
encoding would also be very similar.

We can explicitly train our model in order for this to be the 
case by requiring that the derivative of the hidden layer 
activations are small with respect to the input. 

Question: How do we find how much the encoded space would 
change if the input changes?

Derivatives

L(x,g( f (x))) +  λ ∂f (x)
∂x F

2
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Problems with Autoencoders

• Gaps in the latent space
• Separability in the latent 

space
• Discrete latent space


