
Scaling
Machine Learning

Rahul Dave, for cs109b

github

https://github.com/rahuldave/dasktut

https://github.com/rahuldave/dasktut

Running Experiments
How do we ensure

(a) repeatability

(b) performance

(c) descriptiveness

(d) dont lose our head?

What is scaling?

• Running experiments reproducibly, and keeping track

• Running in parallel, for speed and resilience

• Dealing with large data sets

• Grid or other Hyper-parameter optimization

• optimizing Gradient Descent

The multiple libraries problem

Conda

• create a conda environment for each new project

• put an environment.yml in each project folder

• at least have one for each new class, or class of projects

• envoronment for class of projects may grow organically, but
capture its requirements from time-to-time.

see here

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

file name: environment.yml

Give your project an informative name
name: project-name

Specify the conda channels that you wish to grab packages from, in order of priority.
channels:
- defaults
- conda-forge

Specify the packages that you would like to install inside your environment.
#Version numbers are allowed, and conda will automatically use its dependency
#solver to ensure that all packages work with one another.
dependencies:
- python=3.7
- conda
- scipy
- numpy
- pandas
- scikit-learn

There are some packages which are not conda-installable. You can put the pip dependencies here instead.
- pip:
 - tqdm # for example only, tqdm is actually available by conda.

(from http://ericmjl.com/blog/2018/12/25/conda-hacks-for-data-science-efficiency/)

• conda create --name environment-name [python=3.6]

• source[conda] activate environment-name or project-name in
the 1 environment per project paradigm

• conda env create in project folder

• conda install <packagename>

• or add the package to spec file, type conda env update
environment.yml in appropriate folder

• conda env export > environment.yml

Docker
More than python libs

Containers vs Virtual
Machines

• VMs meed an OS level "hypervisor"

• are more general, but more resource
hungry

• containers provide process isolation,
process throttling

• but work at library and kernel level, and
can access hardware more easily

• hardware access important for gpu access

• containers can run on VMS, this is how
docker runs on mac

Docker Architecture

Docker images

• docker is linux only, but other OS's now have support

• allow for environment setting across languages and runtimes

• can be chained together to create outcomes

• base image is a linux (full) image, others are just layers on top

Example: base notebook -> minimal notebook -> scipy notebook -
> tensorflow notebook

https://github.com/jupyter/docker-stacks/blob/master/base-notebook/Dockerfile
https://github.com/jupyter/docker-stacks/blob/master/minimal-notebook/Dockerfile
https://github.com/jupyter/docker-stacks/blob/master/scipy-notebook/Dockerfile
https://github.com/jupyter/docker-stacks/blob/master/tensorflow-notebook/Dockerfile

repo2docker and binder

• building docker images is not dead simple

• the Jupyter folks created repo2docker for this.

• provide a github repo, and repo2docker makes a docker image
and uploads it to the docker image repository for you

• binder builds on this to provide a service where you provide a
github repo, and it gives you a working jupyterhub where you can
"publish" your project/demo/etc

https://repo2docker.readthedocs.io/en/latest/
http://mybinder.org

usage example: AM207 and
thebe-lab

• see https://github.com/am207/
shadowbinder , a repository with an
environment file only

• this repo is used to build a jupyterlab
with some requirements where you can
work.

• see here for example

• uses thebelab

http://am207.info/wiki/doseplacebo.html
https://github.com/minrk/thebelab

<script type="text/x-thebe-config">

 thebeConfig = {

 binderOptions: {

 repo: "AM207/shadowbinder",

 },

 kernelOptions: {

 name: "python3",

 },

 requestKernel: true

 }

 </script>

 <script src="/css/thebe_status_field.js" type="text/javascript"></script>

 <link rel="stylesheet" type="text/css" href="/css/thebe_status_field.css"/>

 <script>

 $(function() {

 var cellSelector = "pre.highlight code";

 if ($(cellSelector).length > 0) {

 $(' |')

 .appendTo('article p:first');

 thebe_place_activate_button();

 }

 });

 </script>

 <script>window.onload = function() { $("div.language-python pre.highlight code").attr("data-executable", "true")};</script>

Dask
Running in parallel

Dask

• library for parallel computing in Python.

• 2 parts. Dynamic task scheduling
optimized for computation like Airflow.
“Big Data” collections like parallel
(numpy) arrays, (pandas) dataframes,
and lists

• scales up (1000 core cluster) and doqn
(laptop)

• designed with interactive computing in
mind, with web based diagnostics

(from https://github.com/TomAugspurger/dask-tutorial-pycon-2018)

Parallel
Hyperparameter
Optimization

Why is this bad?

from sklearn.model_selection import GridSearchCV

vectorizer = TfidfVectorizer()
vectorizer.fit(text_train)

X_train = vectorizer.transform(text_train)
X_test = vectorizer.transform(text_test)

clf = LogisticRegression()
grid = GridSearchCV(clf, param_grid={'C': [.1, 1, 10, 100]}, cv=5)
grid.fit(X_train, y_train)

Grid search on pipelines

from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_20newsgroups

categories = [
 'alt.atheism',
 'talk.religion.misc',
]
data = fetch_20newsgroups(subset='train', categories=categories)
pipeline = Pipeline([('vect', CountVectorizer()),
 ('tfidf', TfidfTransformer()),
 ('clf', SGDClassifier())])
grid = {'vect__ngram_range': [(1, 1)],
 'tfidf__norm': ['l1', 'l2'],
 'clf__alpha': [1e-3, 1e-4, 1e-5]}

if __name__=='__main__':
 grid_search = GridSearchCV(pipeline, grid, cv=5, n_jobs=-1)
 grid_search.fit(data.data, data.target)
 print("Best score: %0.3f" % grid_search.best_score_)
 print("Best parameters set:", grid_search.best_estimator_.get_params())

From sklearn.pipeline.Pipeline.html :

Sequentially apply a list of transforms and a final estimator.
Intermediate steps of the pipeline must be ‘transforms’, that is, they
must implement fit and transform methods. The final estimator
only needs to implement fit. The transformers in the pipeline can
be cached using memory argument.

The purpose of the pipeline is to assemble several steps that can
be cross-validated together while setting different parameters.

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

Training Data

CountVectorizer
- ngram_range=(1, 1)

CountVectorizer
- ngram_range=(1, 1)

CountVectorizer
- ngram_range=(1, 1)

CountVectorizer
- ngram_range=(1, 1)

CountVectorizer
- ngram_range=(1, 1)

CountVectorizer
- ngram_range=(1, 1)

TfidfTransformer
- norm='l1'

TfidfTransformer
- norm='l1'

TfidfTransformer
- norm='l1'

TfidfTransformer
- norm='l2'

TfidfTransformer
- norm='l2'

TfidfTransformer
- norm='l2'

SGDClassifier
- alpha=1e-3

SGDClassifier
- alpha=1e-4

SGDClassifier
- alpha=1e-5

SGDClassifier
- alpha=1e-3

SGDClassifier
- alpha=1e-4

SGDClassifier
- alpha=1e-5

Choose Best Parameters

sklearn pipelines: the bad

scores = []
for ngram_range in parameters['vect__ngram_range']:
 for norm in parameters['tfidf__norm']:
 for alpha in parameters['clf__alpha']:
 vect = CountVectorizer(ngram_range=ngram_range)
 X2 = vect.fit_transform(X, y)
 tfidf = TfidfTransformer(norm=norm)
 X3 = tfidf.fit_transform(X2, y)
 clf = SGDClassifier(alpha=alpha)
 clf.fit(X3, y)
 scores.append(clf.score(X3, y))
best = choose_best_parameters(scores, parameters)

Training Data

CountVectorizer
- ngram_range=(1, 1)

TfidfTransformer
- norm='l1'

TfidfTransformer
- norm='l2'

SGDClassifier
- alpha=1e-3

SGDClassifier
- alpha=1e-4

SGDClassifier
- alpha=1e-5

SGDClassifier
- alpha=1e-3

SGDClassifier
- alpha=1e-4

SGDClassifier
- alpha=1e-5

Choose Best Parameters

dask pipelines: the good

scores = []
for ngram_range in parameters['vect__ngram_range']:
 vect = CountVectorizer(ngram_range=ngram_range)
 X2 = vect.fit_transform(X, y)
 for norm in parameters['tfidf__norm']:
 tfidf = TfidfTransformer(norm=norm)
 X3 = tfidf.fit_transform(X2, y)
 for alpha in parameters['clf__alpha']:
 clf = SGDClassifier(alpha=alpha)
 clf.fit(X3, y)
 scores.append(clf.score(X3, y))
best = choose_best_parameters(scores, parameters)

Now, lets parallelize

• for data that fits into memory, we simply copy the memory to
each node and run the algorithm there

• if you have created a re-sizable cluster of parallel machines,
dask can even dynamically send parameter combinations to
more and more machines

• see PANGEO and Grisel for this

https://pangeo.io/index.html
https://www.youtube.com/watch?v=ccfsbuqsjgI

Hyperopt

from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from dask_ml.model_selection import GridSearchCV
from dask.distributed import Client
from sklearn.externals import joblib

def simple_nn(hidden_neurons):
 model = Sequential()
 model.add(Dense(hidden_neurons, activation='relu', input_dim=30))
 model.add(Dense(1, activation='sigmoid'))
 model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
 return model

param_grid = {'hidden_neurons': [100, 200, 300]}
if __name__=='__main__':
 client = Client()
 cv = GridSearchCV(KerasClassifier(build_fn=simple_nn, epochs=30), param_grid)
 X, y = load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = train_test_split(X, y)
 with joblib.parallel_backend("dask", scatter=[X_train, y_train]):
 cv.fit(X_train, y_train)
 print(f'Best Accuracy for {cv.best_score_:.4} using {cv.best_params_}')

Large
Data Sets

• important for pre-processing,

• also important for prediction on large data (test) sets

• dask provides scalable algoritms which can be run over clusters
and are drop-in replacements for the sklearn equivalents

• Dask separates computation description (task graphs) from
execution (schedulers).

• Write code once, and run it locally or scale it out across a
cluster.

Setup a local cluster.
import dask.array as da
import dask.delayed
from sklearn.datasets import make_blobs
import numpy as np
from dask_ml.cluster import KMeans

n_centers = 12
n_features = 20
X_small, y_small = make_blobs(n_samples=1000, centers=n_centers, n_features=n_features, random_state=0)
centers = np.zeros((n_centers, n_features))
for i in range(n_centers):
 centers[i] = X_small[y_small == i].mean(0)
print(centers)

n_samples_per_block = 20000 # 0
n_blocks = 500
delayeds = [dask.delayed(make_blobs)(n_samples=n_samples_per_block,
 centers=centers,
 n_features=n_features,
 random_state=i)[0] for i in range(n_blocks)]
arrays = [da.from_delayed(obj, shape=(n_samples_per_block, n_features), dtype=X_small.dtype) for obj in delayeds]
X = da.concatenate(arrays)
print(X.nbytes / 1e9)
X = X.persist() #actually run the stuff

clf = KMeans(init_max_iter=3, oversampling_factor=10)
clf.fit(X)
print(clf.labels_[:10].compute()) #actually run the stuff

run using local distributed scheduler
import dask.array as da
import dask.delayed
from sklearn.datasets import make_blobs
import numpy as np
from dask_ml.cluster import KMeans

n_centers = 12
n_features = 20
X_small, y_small = make_blobs(n_samples=1000, centers=n_centers, n_features=n_features, random_state=0)
centers = np.zeros((n_centers, n_features))
for i in range(n_centers):
 centers[i] = X_small[y_small == i].mean(0)
print(centers)

from dask.distributed import Client

Setup a local cluster.
By default this sets up 1 worker per core
if __name__=='__main__':
 client = Client()
 print(client.cluster)
 n_samples_per_block = 20000 # 0
 n_blocks = 500
 delayeds = [dask.delayed(make_blobs)(n_samples=n_samples_per_block,
 centers=centers,
 n_features=n_features,
 random_state=i)[0] for i in range(n_blocks)]
 arrays = [da.from_delayed(obj, shape=(n_samples_per_block, n_features), dtype=X_small.dtype) for obj in delayeds]
 X = da.concatenate(arrays)
 print(X.nbytes / 1e9)
 X = X.persist() #actually run the stuff

 clf = KMeans(init_max_iter=3, oversampling_factor=10)
 clf.fit(X)
 print(clf.labels_[:10].compute()) #actually run the stuff

• we've seen the use of dask.distributed

• but we have run it locally. ideally we want to run on a cloud-
provisioned cluster

• and we'd like this cluster to be self-repairing

• and then we'd like our code to respond to failures.

• and expand onto more machines if we need them

We need a cluster manager.

Enter Kubernetes

• OS for the cluster

• provides service discovery, scaling,
load-balancing, self-healing, leader
election

• think of applications as stateless, and
movable from one machine to another
to enable better resource utilization

• thus does not cover mutable databases
which must remain outside the cluster

• there is a controlling master node, and
worker nodes

master node:

• API server, communicated with my
control-plane components and you
(using kubectl)

• Scheduler, assigns a worker node to
each application

• Controller Manager, performs cluster-
level functions, such as replicating
components, keeping track of worker
nodes, handling node failures

• etcd, a reliable distributed data store
that persistently stores the cluster
configuration.

worker node:

• Docker, to run your containers

• you package your apps components
into 1 or more docker images, and push
them to a registry

• Kubelet, which talks to the API server
and manages containers on its node

• kube-proxy, which load-balances
network traffic between application
components

• To run an application in Kubernetes, you post a description of your app to
the Kubernetes API server.

• people have created canned "descriptions" for multi-component software,
which you can reuse. These use a "package manager" called helm, and its
what is used to install dask and jupyterhub on a cluster

• description includes info on component images, their relationship, which
ones need co-location, and how many replicas

• internal or external network services are also described. A lookup service is
provided, and a given service is exposed at a particular ip address. kube-
proxy makes sure connec- tions to the service are load balanced

• master continuously makes sure that the deployed state of the application
matches description

Example: website with 3
replicas

Image:

FROM nginx:stable-alpine

COPY site/ /usr/share/nginx/html/

EXPOSE 80

Namespace:

apiVersion: v1
kind: Namespace
metadata:
 name: website

deployment.yaml ->

Networking

right: internal networking

below: external ingress

Dask cloud deployment

Kubernetes is recommended

This can be done on your local machine using Minikube or on any of the 3 major cloud
prociders, Azure, GCP, or AWS.

1. set up a Kubernetes cluster

2. Next you will set up Helm, which is a package maner for Kubernetes which works simply
by filling templated yaml files with variables also stored in another yaml file
values.yaml.

3. Finally you will install dask. First helm repo update and then helm install stable/dask.

See https://docs.dask.org/en/latest/setup/kubernetes-helm.html for all the details.

https://docs.dask.org/en/latest/setup/cloud.html
https://kubernetes.io/docs/getting-started-guides/minikube/
https://zero-to-jupyterhub.readthedocs.io/en/v0.4-doc/create-k8s-cluster.html
https://zero-to-jupyterhub.readthedocs.io/en/v0.4-doc/setup-helm.html

Deep Learning on the cloud

• tensorflow can be put on the cloud using tf.distributed of kubeflow

• parallelism can be trivially used at prediction time--you just need to
distribute your weights

• as in our keras example you might have grid optimization

• but it would seem SGD is sequential

• can train it asynchronously using parameter servers. use
tf.distributed.

• for training as well as serving

