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Running Experiments
How do we ensure 

(a) repeatability 

(b) performance 

(c) descriptiveness

(d) dont lose our head?



What is scaling?

• Running experiments reproducibly, and keeping track

• Running in parallel, for speed and resilience

• Dealing with large data sets

• Grid or other Hyper-parameter optimization

• optimizing Gradient Descent



The multiple libraries problem



Conda

• create a conda environment for each new project

• put an environment.yml in each project folder

• at least have one for each new class, or class of projects

• envoronment for class of projects may grow organically, but 
capture its requirements from time-to-time.

see here

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html


# file name: environment.yml

# Give your project an informative name
name: project-name

# Specify the conda channels that you wish to grab packages from, in order of priority.
channels:
- defaults
- conda-forge

# Specify the packages that you would like to install inside your environment. 
#Version numbers are allowed, and conda will automatically use its dependency 
#solver to ensure that all packages work with one another.
dependencies:
- python=3.7
- conda
- scipy
- numpy
- pandas
- scikit-learn

# There are some packages which are not conda-installable. You can put the pip dependencies here instead.
- pip:
    - tqdm  # for example only, tqdm is actually available by conda.

( from http://ericmjl.com/blog/2018/12/25/conda-hacks-for-data-science-efficiency/)



• conda create --name environment-name [python=3.6]

• source[conda] activate environment-name or project-name in 
the 1 environment per project paradigm

• conda env create in project folder

• conda install <packagename>

• or add the package to spec file, type conda env update 
environment.yml in appropriate folder

• conda env export > environment.yml



Docker
More than python libs



Containers vs Virtual 
Machines

• VMs meed an OS level "hypervisor"

• are more general, but more resource 
hungry

• containers provide process isolation, 
process throttling

• but work at library and kernel level, and 
can access hardware more easily

• hardware access important for gpu access

• containers can run on VMS, this is how 
docker runs on mac



Docker Architecture



Docker images

• docker is linux only, but other OS's now have support

• allow for environment setting across languages and runtimes

• can be chained together to create outcomes

• base image is a linux (full) image, others are just layers on top

Example: base notebook -> minimal notebook -> scipy notebook -
> tensorflow notebook

https://github.com/jupyter/docker-stacks/blob/master/base-notebook/Dockerfile
https://github.com/jupyter/docker-stacks/blob/master/minimal-notebook/Dockerfile
https://github.com/jupyter/docker-stacks/blob/master/scipy-notebook/Dockerfile
https://github.com/jupyter/docker-stacks/blob/master/tensorflow-notebook/Dockerfile






repo2docker and binder

• building docker images is not dead simple

• the Jupyter folks created repo2docker for this.

• provide a github repo, and repo2docker makes a docker image 
and uploads it to the docker image repository for you

• binder builds on this to provide a service where you provide a 
github repo, and it gives you a working jupyterhub where you can 
"publish" your project/demo/etc

https://repo2docker.readthedocs.io/en/latest/
http://mybinder.org


usage example: AM207 and 
thebe-lab

• see https://github.com/am207/
shadowbinder , a repository with an 
environment file only

• this repo is used to build a jupyterlab 
with some requirements where you can 
work. 

• see here for example

• uses thebelab

http://am207.info/wiki/doseplacebo.html
https://github.com/minrk/thebelab


<script type="text/x-thebe-config">

      thebeConfig = {

        binderOptions: {

          repo: "AM207/shadowbinder",

        },

        kernelOptions: {

          name: "python3",

        },

        requestKernel: true

      }

    </script>

    <script src="/css/thebe_status_field.js" type="text/javascript"></script>

    <link rel="stylesheet" type="text/css" href="/css/thebe_status_field.css"/>

    <script>

      $(function() {

          var cellSelector = "pre.highlight code";

          if ($(cellSelector).length > 0) {

             $(' <span>|</span><span class="thebe_status_field"></span>')

                .appendTo('article p:first');

             thebe_place_activate_button();

          }

      });

    </script>

    <script>window.onload = function() { $("div.language-python pre.highlight code").attr("data-executable", "true")};</script>



Dask
Running in parallel



Dask

• library for parallel computing in Python.

• 2 parts. Dynamic task scheduling 
optimized for computation like Airflow. 
“Big Data” collections like parallel 
(numpy) arrays, (pandas) dataframes, 
and lists

• scales up (1000 core cluster) and doqn 
(laptop)

• designed with interactive computing in 
mind, with web based diagnostics



(from https://github.com/TomAugspurger/dask-tutorial-pycon-2018)



Parallel
Hyperparameter
Optimization



Why is this bad?

from sklearn.model_selection import GridSearchCV

vectorizer = TfidfVectorizer()
vectorizer.fit(text_train)

X_train = vectorizer.transform(text_train)
X_test = vectorizer.transform(text_test)

clf = LogisticRegression()
grid = GridSearchCV(clf, param_grid={'C': [.1, 1, 10, 100]}, cv=5)
grid.fit(X_train, y_train)



Grid search on pipelines

from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_20newsgroups

categories = [
    'alt.atheism',
    'talk.religion.misc',
]
data = fetch_20newsgroups(subset='train', categories=categories)
pipeline = Pipeline([('vect', CountVectorizer()),
                     ('tfidf', TfidfTransformer()),
                     ('clf', SGDClassifier())])
grid = {'vect__ngram_range': [(1, 1)],
        'tfidf__norm': ['l1', 'l2'],
        'clf__alpha': [1e-3, 1e-4, 1e-5]}

if __name__=='__main__':
    grid_search = GridSearchCV(pipeline, grid, cv=5, n_jobs=-1)
    grid_search.fit(data.data, data.target)
    print("Best score: %0.3f" % grid_search.best_score_)
    print("Best parameters set:", grid_search.best_estimator_.get_params())



From sklearn.pipeline.Pipeline.html :

Sequentially apply a list of transforms and a final estimator. 
Intermediate steps of the pipeline must be ‘transforms’, that is, they 
must implement fit and transform methods. The final estimator 
only needs to implement fit. The transformers in the pipeline can 
be cached using memory argument.

The purpose of the pipeline is to assemble several steps that can 
be cross-validated together while setting different parameters.

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
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Choose Best Parameters

sklearn pipelines: the bad

scores = []
for ngram_range in parameters['vect__ngram_range']:
        for norm in parameters['tfidf__norm']:
                for alpha in parameters['clf__alpha']:
                        vect = CountVectorizer(ngram_range=ngram_range)
                        X2 = vect.fit_transform(X, y)
                        tfidf = TfidfTransformer(norm=norm)
                        X3 = tfidf.fit_transform(X2, y)
                        clf = SGDClassifier(alpha=alpha)
                        clf.fit(X3, y)
                        scores.append(clf.score(X3, y))
best = choose_best_parameters(scores, parameters)
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Choose Best Parameters

dask pipelines: the good

scores = []
for ngram_range in parameters['vect__ngram_range']:
        vect = CountVectorizer(ngram_range=ngram_range)
        X2 = vect.fit_transform(X, y)
        for norm in parameters['tfidf__norm']:
                tfidf = TfidfTransformer(norm=norm)
                X3 = tfidf.fit_transform(X2, y)
                for alpha in parameters['clf__alpha']:
                        clf = SGDClassifier(alpha=alpha)
                        clf.fit(X3, y)
                        scores.append(clf.score(X3, y))
best = choose_best_parameters(scores, parameters)



Now, lets parallelize

• for data that fits into memory, we simply copy the memory to 
each node and run the algorithm there

• if you have created a re-sizable cluster of parallel machines, 
dask can even dynamically send parameter combinations to 
more and more machines

• see PANGEO and Grisel for this 

https://pangeo.io/index.html
https://www.youtube.com/watch?v=ccfsbuqsjgI


Hyperopt

from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from dask_ml.model_selection import GridSearchCV
from dask.distributed import Client
from sklearn.externals import joblib

def simple_nn(hidden_neurons):
  model = Sequential()
  model.add(Dense(hidden_neurons, activation='relu', input_dim=30))
  model.add(Dense(1, activation='sigmoid'))
  model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
  return model

param_grid = {'hidden_neurons': [100, 200, 300]}
if __name__=='__main__':
    client = Client()
    cv = GridSearchCV(KerasClassifier(build_fn=simple_nn, epochs=30), param_grid)
    X, y = load_breast_cancer(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    with joblib.parallel_backend("dask", scatter=[X_train, y_train]):
        cv.fit(X_train, y_train)
    print(f'Best Accuracy for {cv.best_score_:.4} using {cv.best_params_}')



Large
Data Sets



• important for pre-processing, 

• also important for prediction on large data (test) sets

• dask provides scalable algoritms which can be run over clusters 
and are drop-in replacements for the sklearn equivalents

• Dask separates computation description (task graphs) from 
execution (schedulers). 

• Write code once, and run it locally or scale it out across a 
cluster.



# Setup a local cluster.
import dask.array as da
import dask.delayed
from sklearn.datasets import make_blobs
import numpy as np
from dask_ml.cluster import KMeans

n_centers = 12
n_features = 20
X_small, y_small = make_blobs(n_samples=1000, centers=n_centers, n_features=n_features, random_state=0)
centers = np.zeros((n_centers, n_features))
for i in range(n_centers):
    centers[i] = X_small[y_small == i].mean(0)
print(centers)

n_samples_per_block = 20000 # 0
n_blocks = 500
delayeds = [dask.delayed(make_blobs)(n_samples=n_samples_per_block,
                                     centers=centers,
                                     n_features=n_features,
                                     random_state=i)[0] for i in range(n_blocks)]
arrays = [da.from_delayed(obj, shape=(n_samples_per_block, n_features), dtype=X_small.dtype) for obj in delayeds]
X = da.concatenate(arrays)
print(X.nbytes / 1e9)
X = X.persist() #actually run the stuff

clf = KMeans(init_max_iter=3, oversampling_factor=10)
clf.fit(X)
print(clf.labels_[:10].compute()) #actually run the stuff



# run using local distributed scheduler
import dask.array as da
import dask.delayed
from sklearn.datasets import make_blobs
import numpy as np
from dask_ml.cluster import KMeans

n_centers = 12
n_features = 20
X_small, y_small = make_blobs(n_samples=1000, centers=n_centers, n_features=n_features, random_state=0)
centers = np.zeros((n_centers, n_features))
for i in range(n_centers):
    centers[i] = X_small[y_small == i].mean(0)
print(centers)

from dask.distributed import Client

# Setup a local cluster.
# By default this sets up 1 worker per core
if __name__=='__main__':
    client = Client()
    print(client.cluster)
    n_samples_per_block = 20000 # 0
    n_blocks = 500
    delayeds = [dask.delayed(make_blobs)(n_samples=n_samples_per_block,
                                        centers=centers,
                                        n_features=n_features,
                                        random_state=i)[0] for i in range(n_blocks)]
    arrays = [da.from_delayed(obj, shape=(n_samples_per_block, n_features), dtype=X_small.dtype) for obj in delayeds]
    X = da.concatenate(arrays)
    print(X.nbytes / 1e9)
    X = X.persist() #actually run the stuff

    clf = KMeans(init_max_iter=3, oversampling_factor=10)
    clf.fit(X)
    print(clf.labels_[:10].compute()) #actually run the stuff



• we've seen the use of dask.distributed

• but we have run it locally. ideally we want to run on a cloud-
provisioned cluster

• and we'd like this cluster to be self-repairing

• and then we'd like our code to respond to failures.

• and expand onto more machines if we need them

We need a cluster manager.



Enter Kubernetes

• OS for the cluster

• provides service discovery, scaling, 
load-balancing, self-healing, leader 
election

• think of applications as stateless, and 
movable from one machine to another 
to enable better resource utilization

• thus does not cover mutable databases 
which must remain outside the cluster

• there is a controlling master node, and 
worker nodes



master node:

• API server, communicated with my 
control-plane components and you 
(using kubectl)

• Scheduler, assigns a worker node to 
each application

• Controller Manager, performs cluster-
level functions, such as replicating 
components, keeping track of worker 
nodes, handling node failures

• etcd, a reliable distributed data store 
that persistently stores the cluster 
configuration.



worker node:

• Docker, to run your containers

• you package your apps components 
into 1 or more docker images, and push 
them to a registry

• Kubelet, which talks to the API server 
and manages containers on its node

• kube-proxy, which load-balances 
network traffic between application 
components



• To run an application in Kubernetes, you post a description of your app to 
the Kubernetes API server.

• people have created canned "descriptions" for multi-component software, 
which you can reuse. These use a "package manager" called helm, and its 
what is used to install dask and jupyterhub on a cluster

• description includes info on component images, their relationship, which 
ones need co-location, and how many replicas

• internal or external network services are also described. A lookup service is 
provided, and a given service is exposed at a particular ip address. kube-
proxy makes sure connec- tions to the service are load balanced 

• master continuously makes sure that the deployed state of the application 
matches description





Example: website with 3 
replicas

Image: 

FROM nginx:stable-alpine

COPY  site/ /usr/share/nginx/html/

EXPOSE 80

Namespace:

apiVersion: v1
kind: Namespace
metadata:
  name: website

deployment.yaml ->



Networking

right: internal networking

below: external ingress



Dask cloud deployment

Kubernetes is recommended

This can be done on your local machine using Minikube or on any of the 3 major cloud 
prociders, Azure, GCP, or AWS.

1. set up a Kubernetes cluster

2. Next you will set up Helm, which is a package maner for Kubernetes which works simply 
by filling templated yaml files with variables also stored in another yaml file 
values.yaml.

3. Finally you will install dask. First helm repo update and then helm install stable/dask. 

See https://docs.dask.org/en/latest/setup/kubernetes-helm.html for all the details.

https://docs.dask.org/en/latest/setup/cloud.html
https://kubernetes.io/docs/getting-started-guides/minikube/
https://zero-to-jupyterhub.readthedocs.io/en/v0.4-doc/create-k8s-cluster.html
https://zero-to-jupyterhub.readthedocs.io/en/v0.4-doc/setup-helm.html


Deep Learning on the cloud

• tensorflow can be put on the cloud using tf.distributed of kubeflow

• parallelism can be trivially used at prediction time--you just need to 
distribute your weights

• as in our keras example you might have grid optimization

• but it would seem SGD is sequential

• can train it asynchronously using parameter servers. use 
tf.distributed.

• for training as well as serving


