
CS109B Data Science 2
Pavlos Protopapas and Mark Glickman

Lecture 14: Introduction to Reinforcement Learning

CS109B, PROTOPAPAS, GLICKMAN

Outline

• What is Reinforcement Learning

• RL Formalism
1. Reward

2. The agent

3. The environment

4. Actions

5. Observations

• Markov Decision Process
1. Markov Process

2. Markov reward process

3. Markov Decision process

• Learning Optimal Policies

CS109B, PROTOPAPAS, GLICKMAN

What is Reinforcement Learning ?

Lapan, Maxim. Deep Reinforcement Learning Hands-On

Chapter 1: What is Reinforcement Learning?

Describe this:

• Mouse

• A maze with walls, food and
electricity

• Mouse can move left, right, up and
down

• Mouse wants the cheese but not
electric shocks

• Mouse can observe the environment

CS109B, PROTOPAPAS, GLICKMAN

What is Reinforcement Learning ?

Lapan, Maxim. Deep Reinforcement Learning Hands-On

Chapter 1: What is Reinforcement Learning?

Describe this:

• Mouse => Agent

• A maze with walls, food and
electricity => Environment

• Mouse can move left, right, up and
down => Actions

• Mouse wants the cheese but not
electric shocks => Rewards

• Mouse can observe the environment
=> Observations

CS109B, PROTOPAPAS, GLICKMAN

What is Reinforcement Learning ?

Learning to make sequential decisions in an environment so as
to maximize some notion of overall rewards acquired along the
way.

Chapter 1: What is Reinforcement Learning?

In simple terms:
The mouse is trying to find as much food as
possible, while avoiding an electric shock
whenever possible.

The mouse could be brave and get an
electric shock to get to the place with plenty
of food—this is better result than just
standing still and gaining nothing.

CS109B, PROTOPAPAS, GLICKMAN

What is Reinforcement Learning ?

• Learning to make sequential decisions in an environment
so as to maximize some notion of overall rewards acquired
along the way.

• Simple Machine Learning problems have a hidden time
dimension, which is often overlooked, but it is important
become in a production system.

• Reinforcement Learning incorporates time (or an extra
dimension) into learning, which puts it much close to the
human perception of artificial intelligence.

CS109B, PROTOPAPAS, GLICKMAN

What we don’t want the mouse to do?

• We do not want to have best actions to take in every specific
situation. Too much and not flexible.

• Find some magic set of methods that will allow our mouse to learn
on its own how to avoid electricity and gather as much food as
possible.

Reinforcement Learning is exactly this magic toolbox

CS109B, PROTOPAPAS, GLICKMAN

Challenges of RL

A. Observations depends on agent’s actions. If agent decides to
do stupid things, then the observations will tell nothing
about how to improve the outcome (only negative feedback).

B. Agents need to not only exploit the policy they have learned,
but to actively explore the environment. In other words
maybe by doing things differently we can significantly
improve the outcome. �This exploration/exploitation
dilemma is one of the open fundamental questions in RL
(and in my life).

C. Reward can be delayed from actions. Ex: In cases of chess, it
can be one single strong move in the middle of the game
that has shifted the balance.

CS109B, PROTOPAPAS, GLICKMAN

�RL formalisms and relations

• Agent

• Environment

Communication channels:

• Actions,

• Reward, and

• Observations:

Chapter 1: What is Reinforcement Learning?

Lapan, Maxim. Deep Reinforcement Learning Hands-On

CS109B, PROTOPAPAS, GLICKMAN

Reward

CS109B, PROTOPAPAS, GLICKMAN

Reward

• A scalar value obtained from the environment

• It can be positive or negative, large or small

• The purpose of reward is to tell our agent how well they have
behaved.

�reinforcement = reward or reinforced the behavior

Examples:
– Cheese or electric shock

– Grades: Grades are a reward system to give you feedback about
you are paying attention to me.

CS109B, PROTOPAPAS, GLICKMAN

Reward (cont)

All goals can be described by the maximization of some expected
cumulative reward

CS109B, PROTOPAPAS, GLICKMAN

The agent

CS109B, PROTOPAPAS, GLICKMAN

The agent

An agent is somebody or something who/which interacts with the
environment by executing certain actions, taking observations, and
receiving eventual rewards for this.

In most practical RL scenarios, it's our piece of software that is
supposed to solve some problem in a more-or-less efficient way.

Example:
You

CS109B, PROTOPAPAS, GLICKMAN

The environment

Everything outside of an agent.

The universe!

The environment is external to an agent, and
communications to and from the agent are limited to
rewards, observations and actions.

Chapter 1: What is Reinforcement Learning?

CS109B, PROTOPAPAS, GLICKMAN

Actions

Things an agent can do in the environment.

Can be:
• moves allowed by the rules of play (if it's some game),

• or it can be doing homework (in the case of school).

They can be simple such as move pawn one space forward,
or complicated such as fill the tax form in for tomorrow
morning.

Could be discrete or continuous

CS109B, PROTOPAPAS, GLICKMAN

Observations

Second information channel for an agent, with the first being
a reward.

Why?

Convenience

CS109B, PROTOPAPAS, GLICKMAN

RL within the ML Spectrum

What makes RL different from other
ML paradigms ?

● No supervision, just a reward
signal from the environment

● Feedback is sometimes delayed
(Example: Time taken for drugs
to take effect)

● Time matters - sequential data
● Feedback - Agent’s action

affects the subsequent data it
receives (not i.i.d.)

CS109B, PROTOPAPAS, GLICKMAN

Many Faces of Reinforcement Learning

● Defeat a World Champion in

Chess, Go, BackGammon

● Manage an investment portfolio

● Control a power station

● Control the dynamics of a

humanoid robot locomotion

● Treat patients in the ICU

● Automatic fly stunt manoeuvres

in helicopters

CS109B, PROTOPAPAS, GLICKMAN

Outline

What is Reinforcement Learning

RL Formalism
1. Reward

2. The agent

3. The environment

4. Actions

5. Observations

Markov Decision Process
1. Markov Process

2. Markov reward process

3. Markov Decision process

Learning Optimal Policies

MDP + Formal Definitions

CS109B, PROTOPAPAS, GLICKMAN

Markov Decision Process

More terminology we need to learn

• state

• episode

• history

• value

• policy

CS109B, PROTOPAPAS, GLICKMAN

Markov Process

Example:

System: Weather in Boston.

States: We can observe the current day as sunny or rainy

History: . A sequence of observations over time forms a chain of
states, such as

[sunny, sunny, rainy, sunny, …],

CS109B, PROTOPAPAS, GLICKMAN

Markov Process

• For a given system we observe states

• The system changes between states according to some dynamics.

• We do not influence the system just observe

• There are only finite number of states (could be very large)

• Observe a sequence of states or a chain => Markov chain

CS109B, PROTOPAPAS, GLICKMAN

Markov Process (cont)

A system is a Markov Process, if it fulfils the Markov property.

The future system dynamics from any state have to depend on this
state only.

• Every observable state is self-contained to describe the future
of the system.

• Only one state is required to model the future dynamics of the
system, not the whole history or, say, the last N states.

CS109B, PROTOPAPAS, GLICKMAN

Markov Process (cont)

Weather example:

The probability of sunny day followed by rainy day is
independent of the amount of sunny days we've seen in the past.

Notes:

This example is really naïve, but it's important to understand the
limitations.

We can for example extend the state space to include other factors.

CS109B, PROTOPAPAS, GLICKMAN

Markov Process (cont)

Transition probabilities is expressed as a transition matrix, which is a
square matrix of the size N×N, where N is the number of states in our
model.

sunny rainy	

sunny 0.8 0.2

rainy 0.1 0.9

CS109B, PROTOPAPAS, GLICKMAN

Markov Reward Process

Extend Markov process to include rewards.

Add another square matrix which tells us the reward going
from state i to state j.	

Often	(but	not	always	the	case)	the	reward	only	depends	on	the	
landing	state		so	we	only	need	a	number:

𝑅=

Note:	Reward	is	just	a	number,	positive,	negative,	small,	large

CS109B, PROTOPAPAS, GLICKMAN

Markov Reward Process (cont)

For every time point, we define return as a sum of
subsequent rewards

𝐺= = 𝑅=DE + 𝑅=DG +	…

But more distant rewards should not count as much so we
multiply by the discount factor raised to the power of the
number of steps we are away from the starting point at time t.

𝐺= = 𝑅=DE + 𝛾𝑅=DG + 𝛾G𝑅=DJ + ⋯ = L𝛾M𝑅=DMDE

�

MOP

CS109B, PROTOPAPAS, GLICKMAN

Markov Reward Process (cont)

The return quantity is not very useful in practice, as it was
defined for every specific chain. But since there are probabilities
to reach other states this can vary a lot depending which path
we take.

Take the expectation of return for any state we get the quantity
called a value of state:

𝑽 𝒔 = 𝔼[𝑮|𝑺𝒕 = 𝒔]

CS109B, PROTOPAPAS, GLICKMAN

Markov Decision Process

How to extend our Markov Return Process to include actions?

We must add a set of actions (A), which has to be finite. This
is our agent's action space.

Condition our transition matrix with action, which means the
transition matrix needs an extra action dimension => turns it
into a cube.

CS109B, PROTOPAPAS, GLICKMAN

Markov Decision Process (cont)

Lapan, Maxim. Deep Reinforcement Learning Hands-On

CS109B, PROTOPAPAS, GLICKMAN

Markov Decision Process (cont)

By choosing an action, the agent can affect the probabilities of target
states, which is GREAT to have.

Finally, to turn our MRP into an MDP, we need to add actions to our
reward matrix in the same way we did with the transition matrix: our
reward matrix will depend not only on state but also on action.

In other words, it means that the reward the agent obtains now depends
not only on the state it ends up in but also on the action that leads to
this state. It's similar as when putting effort into something, you're
usually gaining skills and knowledge, even if the result of your efforts
wasn't too successful.

CS109B, PROTOPAPAS, GLICKMAN

Markov Decision Process

More terminology we need to learn

• state ✓

• episode ✓

• history ✓

• value ✓

• policy

CS109B, PROTOPAPAS, GLICKMAN

Policy

We are finally ready to introduce the most important central
thing for MDPs and Reinforcement Learning:

policy

The intuitive definition of policy is that it is some set of rules
that controls the agent's behavior.

�

CS109B, PROTOPAPAS, GLICKMAN

Policy (cont)

Even for fairly simple environments, we can have a variety of
policies.

• Always move forward

• Try to go around obstacles by checking whether that
previous forward action failed

• Funnily spin around to entertain

• Choose an action randomly

CS109B, PROTOPAPAS, GLICKMAN

Policy (cont)

Remember: The main objective of the agent in RL is to gather as
much return (which was defined as discounted cumulative
reward) as possible.

Different policies can give us different return, which makes it
important to find a good policy. This is why the notion of policy is
important, and it's the central thing we're looking for.

CS109B, PROTOPAPAS, GLICKMAN

Policy (cont)

Formally, policy is defined as the probability distribution over actions for
every possible state:

𝜋 𝑎 𝑠 = 𝑃(𝐴= = 𝑎|𝑆= = 𝑠)

An optimal policy 𝛑* is one that maximizes the expected value function :

𝛑* = argmax𝛑 V𝛑(s)

CS109B, PROTOPAPAS, GLICKMAN

Markov Decision Process

More terminology we need to learn

• state ✓

• episode ✓

• history ✓

• value ✓

• policy ✓

CS109B, PROTOPAPAS, GLICKMAN

🙌

Learning Optimal Policies

Dynamic Programming Methods (Value and Policy
Iteration)

CS109B, PROTOPAPAS, GLICKMAN

�Bellman equation (deterministic)

Lets start with state S0, and take
the action ai, then the value will be

𝑉P 𝑎 = 𝑎d = 𝑅d + 𝛾𝑉d

So, to choose the best possible
action, the agent needs to calculate
the the resulting values for every
action and choose the maximum
possible outcome. (not totally
greedy)

𝑉P = max
f∈E…h

(𝑅f + 𝛾𝑉f)

CS109B, PROTOPAPAS, GLICKMAN

�Bellman equation (stochastic)

Bellman optimality equation for the
general case:

𝑉P = max
f∈i

L𝑝f,P→l(𝑅l,f + 𝛾𝑉l)
�

l∈m	

CS109B, PROTOPAPAS, GLICKMAN

Value of Action Q(s,a)

● The total reward of the one-step rewards for taking action a in state

s and can be defined via V 𝑠 .

● Provides a convenient form for policy-optimization and learning

policies Q-learning.

𝑄 𝑠d, 𝑎d = 𝑅 𝑠d, 𝑎d + 𝛾𝔼p 𝑉q 𝑠dDE

Notes:

A. The first action is taken not from the optimal policy.

B. The expectation 𝔼p is because given action this is stochastic.

CS109B, PROTOPAPAS, GLICKMAN

Dynamic Programming

● Remember that value functions are recursive.

● Dynamic Programming - Breaking down a big problem into smaller sub-
problems and solving the smaller sub-problems, store its values and
backtrack towards bigger problems.

WORKING BACKWARDS :

𝑉 𝑆prE, 𝑎prE = 𝑅 𝑆p, 𝑎p
𝑉 𝑆prG, 𝑎prG = 𝑅 𝑆prE, 𝑎prE + 𝑉 𝑆prE, 𝑎prE

⋮

(T is terminal state)

CS109B, PROTOPAPAS, GLICKMAN

Model Based and Model Free Methods

Model Based:
Knowing the transition matrix.

Model Free:
Not knowing the transition matrix.

Model-Based Methods

Value Iteration, Policy Iteration

Value Iteration

1. Start with some arbitrary value assignments 𝑉(P)(S)

2. Update Policy and repeat until 𝑉(uDE) 𝑠 − 𝑉(u) 𝑠 < 𝜖

𝑄(u) 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝔼p[𝑉 𝑠y]

𝑉(uDE) 𝑠 = maxf𝑄(u)(𝑠, 𝑎)

𝜋(u) 𝑠 = argmaxz𝑄(u)(s, a)

INTUITION : Iteratively improve your value estimates using Q, V relations.

S0 S1 S2

-1

-1

-1

+3

Example:

Actions:					a1:	R	(right)									a2:	L	(left)

Step	0:	V(S0)=V(S1)=V(S2)	=	0	

Step	1:

Q(S0, a1)	=	R(S0, a1)	+V(S1)		=	-1	+	0		=	-1

Q(S0, a2)	=	R(S0, a2)	+V(S0)		=	-1	+	0	=	-1

Q(S1, a1)	=	R(S1, a1)	+V(S2)	=	3	+0	=	3

Q(S1, a2)	=	R(S1, a2)	+V(S0)		=	-1	+	0	=	-1	

S0 S1 S2

-1

-1

-1

+3

Example:

Step2:	

V(S0)	=	max(Q(S0,a))	=	-1

V(S1)	=	max(Q(S1,a))	=	3

p(S0)	=	R

p(S1)	=	R

Policy Iteration

1. Start with some policy 𝜋(P)(𝑆)

2. Compute the value of the states V(s) using current policy. (Policy Evaluation)

3. (Policy Improvement) Update Policy and repeat until 𝜋(MDE) = 𝜋(M)

𝜋E 𝑠d = argmaxf{𝑅 𝑠d, 𝑎d + 𝛾𝔼p 𝑉q � 𝑠� } Transition from si to sj

INTUITION : At each step, you are modifying your policy by picking that action

which gives you the highest Q-value.
-

S0 S1 S2

-1

-1

-1

+3

Example:

Actions:					a1:	R	(right)									a2:	L	(left)

Policy:									p(S0)	=	R													p(S1)	=	L								g=0.5

Step	0:	

V(S0; p) = R(S0, a1)	+	g V(S1)	

V(S1; p) = R(S1, a1)	+	g V(S0)	

V(S0)	=	-6/5

V(S1)	=	-8/5

S0 S1 S2

-1

-1

-1

+3

Example:

Step	1:	

Q(S0; a1) = -1	+	½(-8/5)

Q(S0;	a2) = -1	+	½(-6/5)

Q(S1;	a1) =

Q(S1;	a2) =

Update	Policy:

S0 S1 S2

-1

-1

-1

+3

Example:

Update:	

V(S0)	=	max(Q(S0,a))	=	-1

V(S1)	=	max(Q(S1,a))	=	3

p(S0)	=	R

p(S1)	=	R

Value and Policy Iteration

Demo : https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

● Convergence in value means convergence in policy, vice versa not true. REASON :
Multiple reward/value structures can cause the same policy.

● Both algorithms have theoretical guarantees of convergence.

● Policy Iteration is expected to be faster.

Model-Free Methods

Q-Learning and SARSA

Why Model-Free Methods ?

● Learning or providing a transition model can be hard in several scenarios.
○ Autonomous Driving, ICU Treatments, Stock Trading etc.

What do you have then ?

An ability to obtain a set of simulations/trajectories with each transition in the
episodes of the form (s,a,r,s’)

E.g. Using sensors to understand robot’s new position when it does an action,
Recording new patient vitals when given a drug from a state etc.

On-Policy vs Off-Policy Learning

● On-Policy Learning
○ Learn on the job.
○ Evaluate policy 𝛑 when sampling experiences from 𝛑.

● Off-Policy Learning
○ Look over someone’s shoulder.
○ Evaluate policy 𝛑 (target policy) while following a different policy Ѱ

(behavior policy) in the environment.

Some domains prohibit on-policy learning. For instance, treating a patient in ICUs
you cannot learn about random actions by testing them out.

Temporal Difference (TD) Learning

Remember : V𝛑(s) = R(s,a ~ 𝛑)+ 𝜸ET[V(s’)]. For any policy, execute and learn V.

Given a transition (s,a,r,s’), a TD Update adjusts the value function estimate in line
with Bellman-Equation

𝑉qu�� 𝑠 ← 𝑉q��� 𝑠 + 𝛼[𝑅 𝑠, 𝑎~𝜋 + 𝛾 𝑉q��� 𝑠 − Vold𝛑(s)]

Perform many such updates over several transitions and we should see convergence.
When it converges(Vnew=Vold), we expect Bellman Equation to hold. i.e.

R(s,a ~ 𝛑)+ 𝜸V(s’) - V𝛑(s) = 0

Q-Learning

● Start with a random Q-table (S x A). For all transitions collected according to any

behavior policy, perform this TD Update

Q(s,a) ← Q(s,a) + ⍺ [R(s,a) + 𝜸maxa’Q(s’,a’) - Q(s,a)]

● OVER-OPTIMISTIC : Assumes the best things would happen from the next state

onwards - Greedy (Hence the max operation over future Q-values)

● OFF-POLICY : Q directly approximates the optimal action value function

independently of the policy being followed (max over all actions)

SARSA

● Start with a random Q-table (S X A). For all transitions (collected by

acting according to 𝛑 that maximizes Q) perform this TD Update

Q(s,a) ← Q(s,a) + ⍺ [R(s,a) + 𝜸 Q(s’,a’ ~ 𝛑) - Q(s,a)]

𝛑 - Data collection policy

● ON-Policy Learning : While learning the optimal policy it uses the

current estimate of the optimal policy to generate the behaviour

Q-Learning and SARSA Algorithm

1. Start with a random Q-table (S X A).

2. Choose one among the two actions

a. (𝜀-greedy) With probability 𝜀, choose a random action (EXPLORATION)

b. With probability 1-𝜀, an action that maximizes Q-value from a

state.(EXPLOITATION)

3. Perform an action and collect transition (s,a,r,s’)

4. Update Q-table using the corresponding TD updates.

5. Repeat steps 2-5 till convergence of Q-values across all states.

Q-Learning vs SARSA

Demo : https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/

● Q-Learning converges faster since Q values directly try to approximate the optimal value.

● Q-Learning is more risky since it is over-optimistic of what happens in the future. Could be risky

for real-life tasks such as robot navigation over dangerous terrains.

Parametric Q-Learning

● Often hard to learn Q-values in tabular form. E.g. Huge number of states, Continuous

state spaces etc.

● Parametrize Q(s,a) using any function approximator f - linear model, neural networks

etc. and do usual Q-learning.

Q(s,a) = f(s,a;𝜭) 𝜭- model params

Example : Image Frames in a game - Use ConvNets to parametrize Q(s,a)

