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What is Reinforcement Learning ?

Lapan, Maxim. Deep Reinforcement Learning Hands-On

Chapter 1: What is Reinforcement Learning? 

 

 

Describe this:

• Mouse

• A maze with walls, food and 
electricity

• Mouse can move left, right, up and 
down

• Mouse wants the cheese but not 
electric shocks

• Mouse can observe the environment
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What is Reinforcement Learning ?

Lapan, Maxim. Deep Reinforcement Learning Hands-On

Chapter 1: What is Reinforcement Learning? 

 

 

Describe this:

• Mouse => Agent 

• A maze with walls, food and 
electricity => Environment 

• Mouse can move left, right, up and 
down => Actions

• Mouse wants the cheese but not 
electric shocks => Rewards

• Mouse can observe the environment 
=> Observations
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What is Reinforcement Learning ?

Learning to make sequential decisions in an environment so as 
to maximize some notion of overall rewards acquired along the 
way.

Chapter 1: What is Reinforcement Learning? 

 

 

In simple terms: 
The mouse is trying to find as much food as 
possible, while avoiding an electric shock 
whenever possible. 

The mouse could be brave and get an 
electric shock to get to the place with plenty 
of food—this is  better result than just 
standing still and gaining nothing. 
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What is Reinforcement Learning ?

• Learning to make sequential decisions in an environment 
so as to maximize some notion of overall rewards acquired 
along the way.

• Simple Machine Learning problems have a hidden time 
dimension, which is often overlooked, but it is important 
become in a production system. 

• Reinforcement Learning incorporates time (or an extra 
dimension) into learning, which puts it much close to the 
human perception of artificial intelligence. 
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What we don’t want the mouse to do? 

• We do not want to have best actions to take in every specific 
situation. Too much and not flexible. 

• Find some magic set of methods that will allow our mouse to learn 
on its own how to avoid electricity and gather as much food as 
possible.

Reinforcement Learning is exactly this magic toolbox 
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Challenges of RL

A. Observations depends on agent’s actions. If agent decides to 
do stupid things, then the observations will tell nothing 
about how to improve the outcome (only negative feedback).

B. Agents need to not only exploit the policy they have learned, 
but to actively explore the environment. In other words 
maybe by doing things differently we can significantly 
improve the outcome. �This exploration/exploitation 
dilemma is one of the open fundamental questions in RL 
(and in my life).

C. Reward can be delayed from actions. Ex: In cases of chess, it 
can be one single strong move in the middle of the game 
that has shifted the balance. 
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�RL formalisms and relations 

• Agent 

• Environment 

Communication channels: 

• Actions, 

• Reward, and 

• Observations:

Chapter 1: What is Reinforcement Learning? 

 

 

Lapan, Maxim. Deep Reinforcement Learning Hands-On
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Reward
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Reward

• A scalar value obtained from the environment

• It can be positive or negative, large or small

• The purpose of reward is to tell our agent how well they have 
behaved. 

�reinforcement = reward or reinforced the behavior

Examples: 
– Cheese or electric shock

– Grades: Grades are a reward system to give you feedback about 
you are paying attention to me. 
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Reward (cont)

All goals can be described by the maximization of some expected 
cumulative reward
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The agent



CS109B, PROTOPAPAS, GLICKMAN

The agent

An agent is somebody or something who/which interacts with the 
environment by executing certain actions, taking observations, and 
receiving eventual rewards for this.

In most practical RL scenarios, it's our piece of software that is 
supposed to solve some problem in a more-or-less efficient way.

Example: 
You 
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The environment 

Everything outside of an agent.

The universe! 

The environment is external to an agent, and 
communications to and from the agent are limited to 
rewards, observations and actions.

Chapter 1: What is Reinforcement Learning? 
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Actions

Things an agent can do in the environment. 

Can be:
• moves allowed by the rules of play (if it's some game), 

• or it can be doing homework (in the case of school). 

They can be simple such as move pawn one space forward, 
or complicated such as fill the tax form in for tomorrow 
morning. 

Could be discrete or continuous
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Observations

Second information channel for an agent, with the first being 
a reward. 

Why?

Convenience 
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RL within the ML Spectrum

What makes RL different from other 
ML paradigms ?

● No supervision, just a reward 
signal from the environment

● Feedback is sometimes delayed 
(Example: Time taken for drugs 
to take effect)

● Time matters - sequential data
● Feedback - Agent’s action 

affects the subsequent data it 
receives ( not i.i.d.)
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Many Faces of Reinforcement Learning

● Defeat a World Champion in 

Chess, Go, BackGammon

● Manage an investment portfolio

● Control a power station

● Control the dynamics of a 

humanoid robot locomotion

● Treat patients in the ICU

● Automatic fly stunt manoeuvres

in helicopters
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Outline

What is Reinforcement Learning

RL Formalism 
1. Reward

2. The agent

3. The environment 

4. Actions

5. Observations

Markov Decision Process 
1. Markov Process

2. Markov reward process 

3. Markov Decision process 

Learning Optimal Policies



MDP + Formal Definitions
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Markov Decision Process

More terminology we need to learn

• state  

• episode 

• history 

• value 

• policy 
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Markov Process

Example: 

System: Weather in Boston.  

States: We can observe the current day as sunny or rainy

History: . A sequence of observations over time forms a chain of 
states, such as

[sunny, sunny, rainy, sunny, …], 
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Markov Process

• For a given system we observe states

• The system changes between states according to some dynamics. 

• We do not influence the system just observe

• There are only finite number of states (could be very large)

• Observe a sequence of states or a chain => Markov chain
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Markov Process (cont)

A system is a Markov Process, if it fulfils the Markov property. 

The future system dynamics from any state have to depend on this 
state only. 

• Every observable state is self-contained to describe the future 
of the system. 

• Only one state is required to model the future dynamics of the 
system, not the whole history or, say, the last N states. 
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Markov Process (cont)

Weather example: 

The probability of sunny day followed by rainy day is 
independent of the amount of sunny days we've seen in the past.

Notes: 

This example is really naïve, but it's important to understand the 
limitations. 

We can for example extend the state space to include other factors. 
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Markov Process (cont)

Transition probabilities is expressed as a transition matrix, which is a 
square matrix of the size N×N, where N is the number of states in our 
model. 

sunny rainy	

sunny 0.8 0.2

rainy 0.1 0.9
 

 



CS109B, PROTOPAPAS, GLICKMAN

Markov Reward Process 

Extend Markov process to include rewards. 

Add another square matrix which tells us the reward going 
from state i to state j.	

Often	(but	not	always	the	case)	the	reward	only	depends	on	the	
landing	state		so	we	only	need	a	number:

𝑅=

Note:	Reward	is	just	a	number,	positive,	negative,	small,	large
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Markov Reward Process (cont) 

For every time point, we define return as a sum of 
subsequent rewards

𝐺= = 𝑅=DE + 𝑅=DG +	…

But more distant rewards should not count as much so we 
multiply by the discount factor raised to the power of the 
number of steps we are away from the starting point at time t.

𝐺= = 𝑅=DE + 𝛾𝑅=DG + 𝛾G𝑅=DJ + ⋯ = L𝛾M𝑅=DMDE

�

MOP
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Markov Reward Process (cont) 

The return quantity is not very useful in practice, as it was 
defined for every specific chain. But since there are probabilities 
to reach other states this can vary a lot depending which path 
we take.

Take the expectation of return for any state we get the quantity 
called a value of state: 

𝑽 𝒔 = 𝔼[𝑮|𝑺𝒕 = 𝒔]
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Markov Decision Process

How to extend our Markov Return Process to include actions?

We must add a set of actions (A), which has to be finite. This 
is our agent's action space. 

Condition our transition matrix with action, which means the 
transition matrix needs an extra action dimension => turns it 
into a cube.
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Markov Decision Process (cont)

 

 

Lapan, Maxim. Deep Reinforcement Learning Hands-On
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Markov Decision Process (cont)

By choosing an action, the agent can affect the probabilities of target 
states, which is GREAT to have. 

Finally, to turn our MRP into an MDP, we need to add actions to our 
reward matrix in the same way we did with the transition matrix: our 
reward matrix will depend not only on state but also on action.

In other words, it means that the reward the agent obtains now depends 
not only on the state it ends up in but also on the action that leads to 
this state. It's similar as when putting effort into something, you're 
usually gaining skills and knowledge, even if the result of your efforts 
wasn't too successful.
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Markov Decision Process

More terminology we need to learn

• state  ✓

• episode ✓

• history ✓

• value ✓

• policy 
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Policy

We are finally ready to introduce the most important central 
thing for MDPs and Reinforcement Learning: 

policy

The intuitive definition of policy is that it is some set of rules 
that controls the agent's behavior.  

�
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Policy (cont)

Even for fairly simple environments, we can have a variety of 
policies. 

• Always move forward

• Try to go around obstacles by checking whether that 
previous forward action failed

• Funnily spin around to entertain

• Choose an action randomly
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Policy (cont) 

Remember: The main objective of the agent in RL is to gather as 
much return (which was defined as discounted cumulative 
reward) as possible. 

Different policies can give us different return, which makes it 
important to find a good policy. This is why the notion of policy is 
important, and it's the central thing we're looking for. 
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Policy (cont) 

Formally, policy is defined as the probability distribution over actions for 
every possible state:

𝜋 𝑎 𝑠 = 𝑃(𝐴= = 𝑎|𝑆= = 𝑠)

An optimal policy 𝛑* is one that maximizes the expected value function :

𝛑* = argmax𝛑 V𝛑(s)
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Markov Decision Process

More terminology we need to learn

• state  ✓

• episode ✓

• history ✓

• value ✓

• policy ✓
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🙌



Learning Optimal Policies

Dynamic Programming Methods (Value and Policy 
Iteration)
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�Bellman equation (deterministic)  

 

 

Lets start with state S0, and take 
the action ai, then the value will be 

𝑉P 𝑎 = 𝑎d = 𝑅d + 𝛾𝑉d

So, to choose the best possible 
action, the agent needs to calculate 
the the resulting values for every 
action and choose the maximum 
possible outcome. (not totally 
greedy) 

𝑉P = max
f∈E…h

(𝑅f + 𝛾𝑉f)
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�Bellman equation (stochastic) 
 

 

Bellman optimality equation for the 
general case: 

𝑉P = max
f∈i

L𝑝f,P→l(𝑅l,f + 𝛾𝑉l)
�

l∈m	
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Value of Action Q(s,a)

● The total reward of the one-step rewards for taking action a in state

s and can be defined via V 𝑠 .

● Provides a convenient form for policy-optimization and learning 

policies Q-learning.

𝑄 𝑠d, 𝑎d = 𝑅 𝑠d, 𝑎d + 𝛾𝔼p 𝑉q 𝑠dDE

Notes: 

A. The first action is taken not from the optimal policy. 

B. The expectation 𝔼p is because given action this is stochastic.  
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Dynamic Programming

● Remember that value functions are recursive.

● Dynamic Programming - Breaking down a big problem into smaller sub-
problems and solving the smaller sub-problems, store its values and 
backtrack towards bigger problems.

WORKING BACKWARDS :

𝑉 𝑆prE, 𝑎prE = 𝑅 𝑆p, 𝑎p
𝑉 𝑆prG, 𝑎prG = 𝑅 𝑆prE, 𝑎prE + 𝑉 𝑆prE, 𝑎prE

⋮

(T is terminal state)
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Model Based and Model Free Methods

Model Based: 
Knowing the transition matrix. 

Model Free: 
Not knowing the transition matrix.



Model-Based Methods

Value Iteration, Policy Iteration



Value Iteration

1. Start with some arbitrary value assignments 𝑉(P)(S)

2. Update Policy and repeat until 𝑉(uDE) 𝑠 − 𝑉(u) 𝑠 < 𝜖

𝑄(u) 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝔼p[𝑉 𝑠y ]

𝑉(uDE) 𝑠 = maxf𝑄(u)(𝑠, 𝑎)

𝜋(u) 𝑠 = argmaxz𝑄(u)(s, a)

INTUITION : Iteratively improve your value estimates using Q, V relations.



S0 S1 S2

-1

-1

-1

+3

Example:

Actions:					a1:	R	(right)									a2:	L	(left)

Step	0:	V(S0)=V(S1)=V(S2)	=	0	

Step	1:

Q(S0, a1)	=	R(S0, a1)	+V(S1)		=	-1	+	0		=	-1

Q(S0, a2)	=	R(S0, a2)	+V(S0)		=	-1	+	0	=	-1

Q(S1, a1)	=	R(S1, a1)	+V(S2)	=	3	+0	=	3

Q(S1, a2)	=	R(S1, a2)	+V(S0)		=	-1	+	0	=	-1	



S0 S1 S2

-1

-1

-1

+3

Example:

Step2:	

V(S0)	=	max(Q(S0,a))	=	-1

V(S1)	=	max(Q(S1,a))	=	3

p(S0)	=	R

p(S1)	=	R



Policy Iteration

1. Start with some policy 𝜋(P)(𝑆)

2. Compute the value of the states V(s) using current policy. (Policy Evaluation)

3. (Policy Improvement) Update Policy and repeat until 𝜋(MDE) = 𝜋(M)

𝜋E 𝑠d = argmaxf{𝑅 𝑠d, 𝑎d + 𝛾𝔼p 𝑉q � 𝑠� } Transition from si to sj

INTUITION : At each step, you are modifying your policy by picking that action 

which gives you the highest Q-value.
-



S0 S1 S2

-1

-1

-1

+3

Example:

Actions:					a1:	R	(right)									a2:	L	(left)

Policy:									p(S0)	=	R													p(S1)	=	L								g=0.5

Step	0:	

V(S0; p) = R(S0, a1)	+	g V(S1)	

V(S1; p) = R(S1, a1)	+	g V(S0)	

V(S0)	=	-6/5

V(S1)	=	-8/5



S0 S1 S2

-1

-1

-1

+3

Example:

Step	1:	

Q(S0; a1) = -1	+	½(-8/5)

Q(S0;	a2) = -1	+	½(-6/5)

Q(S1;	a1) = 

Q(S1;	a2) = 

Update	Policy:



S0 S1 S2

-1

-1

-1

+3

Example:

Update:	

V(S0)	=	max(Q(S0,a))	=	-1

V(S1)	=	max(Q(S1,a))	=	3

p(S0)	=	R

p(S1)	=	R



Value and Policy Iteration

Demo : https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

● Convergence in value means convergence in policy, vice versa not true. REASON : 
Multiple reward/value structures can cause the same policy. 

● Both algorithms have theoretical guarantees of convergence.

● Policy Iteration is expected to be faster.



Model-Free Methods

Q-Learning and SARSA



Why Model-Free Methods ? 

● Learning or providing a transition model can be hard in several scenarios.
○ Autonomous Driving, ICU Treatments, Stock Trading etc.

What do you have then ? 

An ability to obtain a set of simulations/trajectories with each transition in the 
episodes of the form (s,a,r,s’) 

E.g. Using sensors to understand robot’s new position when it does an action, 
Recording new patient vitals when given a drug from a state etc.



On-Policy vs Off-Policy Learning 

● On-Policy Learning 
○ Learn on the job. 
○ Evaluate policy 𝛑 when sampling experiences from 𝛑.

● Off-Policy Learning 
○ Look over someone’s shoulder. 
○ Evaluate policy 𝛑 (target policy) while following  a different policy Ѱ

(behavior policy) in the environment.

Some domains prohibit on-policy learning. For instance, treating a patient in ICUs 
you cannot learn about random actions by testing them out.



Temporal Difference (TD) Learning

Remember : V𝛑(s) = R(s,a ~ 𝛑)+ 𝜸ET[V(s’)]. For any policy, execute and learn V.

Given a transition (s,a,r,s’),  a TD Update adjusts the value function estimate in line 
with Bellman-Equation

𝑉qu�� 𝑠 ← 𝑉q��� 𝑠 + 𝛼[𝑅 𝑠, 𝑎~𝜋 + 𝛾 𝑉q��� 𝑠 − Vold𝛑(s)	]

Perform many such updates over several transitions and we should see convergence. 
When it converges(Vnew=Vold), we expect Bellman Equation to hold.  i.e.

R(s,a ~ 𝛑)+ 𝜸V(s’) - V𝛑(s)  = 0



Q-Learning

● Start with a random Q-table (S x A). For all transitions collected according to any 

behavior policy, perform this TD Update

Q(s,a) ← Q(s,a) + ⍺ [ R(s,a) + 𝜸maxa’Q(s’,a’) - Q(s,a) ]

● OVER-OPTIMISTIC : Assumes the best things would happen from the next state 

onwards - Greedy (Hence the max operation over future Q-values)

● OFF-POLICY : Q directly approximates the optimal action value function 

independently of the policy being followed (max over all actions)



SARSA

● Start with a random Q-table (S X A). For all transitions (collected by 

acting according to 𝛑 that maximizes Q)  perform this TD Update

Q(s,a) ← Q(s,a) + ⍺ [ R(s,a) + 𝜸 Q(s’,a’ ~ 𝛑) - Q(s,a) ]

𝛑 - Data collection policy

● ON-Policy Learning : While learning the optimal policy it uses the 

current estimate of the optimal policy to generate the behaviour



Q-Learning and SARSA Algorithm

1. Start with a random Q-table (S X A). 

2. Choose one among the two actions 

a. (𝜀-greedy) With probability 𝜀, choose a random action (EXPLORATION)

b. With probability 1-𝜀, an action that maximizes Q-value from a 

state.(EXPLOITATION)

3. Perform an action and collect transition (s,a,r,s’)

4. Update Q-table using the corresponding TD updates.

5. Repeat steps 2-5 till convergence of Q-values across all states.



Q-Learning vs SARSA

Demo : https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/

● Q-Learning converges faster since Q values directly try to approximate the optimal value.

● Q-Learning is more risky since it is over-optimistic of what happens in the future. Could be risky 

for real-life tasks such as robot navigation over dangerous terrains.



Parametric Q-Learning

● Often hard to learn Q-values in tabular form. E.g. Huge number of states, Continuous 

state spaces etc.

● Parametrize Q(s,a) using any function approximator f - linear model, neural networks 

etc. and do usual Q-learning.

Q(s,a) = f(s,a;𝜭)         𝜭- model params

Example : Image Frames in a game - Use ConvNets to parametrize Q(s,a)


