
CS109B Data Science 2
Vincent Casser Pavlos Protopapas

Advanced Section #8:
Generative Adversarial Networks (GANs)

CS109B, PROTOPAPAS, GLICKMAN

Outline

● Concept and Math

● Applications

● Common Problems

● Wasserstein GANs, Conditional GANs and CycleGANs

● Troubleshooting GANs

● Hands-on: Building an Image GAN in Keras

● Influential Papers and References

CS109B, PROTOPAPAS, GLICKMAN

Generator

Job: Fool discriminator

Concept

Discriminator

Job: Catch lies of the generator

“Both are pandas!” “Nope”

Confidence: 0.9997 Confidence: 0.1617Real Generated

CS109B, PROTOPAPAS, GLICKMAN

Generator

Job: Fool discriminator

Concept

Discriminator

Job: Catch lies of the generator

“Both are pandas!” “Good try...”

Confidence: 0.3759 Confidence: 1.0Generated Real

CS109B, PROTOPAPAS, GLICKMAN

GAN Structure

Generator

Job: Fool discriminator

Discriminator

Job: Catch lies of the generator

G D
Sample G(z)Noise z Score

D(x) -> 1
D(G(z)) -> 0

Sample

x (real)
G(z) (fake)

CS109B, PROTOPAPAS, GLICKMAN

Math in a nutshell

Generator Discriminator

How realistic are the
generated samples?

G wants to maximize this.

Make sure real samples
are classified as being
real.

D wants to maximize this.

Make sure generated
samples are classified as
unreal.

D wants to minimize this.

m: Number of
samples
z: Random noise
samples
x: Real samples

CS109B, PROTOPAPAS, GLICKMAN

Math in a nutshell

Generator

Discriminator

m: Number of samples
z: Random noise samples
x: Real samples

D(x) = 0.9997 D(G(z)) = 0.1617

x G(z)

Generator - 1.0

Discriminator 1.0 0.0

Targets

Applications

● (Conditional) synthesis
○ Font generation
○ Text2Image
○ 3D Object generation

● Data augmentation
○ Aiming to reduce need for labeled data
○ GAN is only used as a tool enhancing the training process of another model

● Style transfer and manipulation
○ Face Aging
○ Painting
○ Pose estimation and manipulation
○ Inpainting
○ Blending

● Signal super resolution

Applications: Style Transfer and Manipulation

Applications: Style Transfer and Manipulation

Applications: Style Transfer and Manipulation

Applications: Style Transfer and Manipulation

Applications: Style Transfer and Manipulation

Applications: Style Transfer and Manipulation

Applications: Style Transfer and Manipulation

Applications: Style Transfer and Manipulation

Applications: Style Transfer and Manipulation

http://www.youtube.com/watch?v=lCR9sT9mbis

Applications: Style Transfer and Manipulation

http://www.youtube.com/watch?v=N7KbfWodXJE

Applications: Signal Super Resolution

Applications: Signal Super Resolution

Common Problems: Oscillation

● Both generator and discriminator jointly searching for equilibrium, but model updates
are independent.

● No theoretical convergence guarantees.
● Solution: Extensive hyperparameter-search, sometimes manual intervention.

● Discriminator can become too strong to provide signal for the generator.

● Generator can learn to fool the discriminator consistently.

● Solution: Do (not) pretrain discriminator, or lower its learning rate relatively to the

generator. Change the number of updates for generator/discriminator per iteration.

Common Problems: Vanishing gradient

GANs and Game Theory

● Original GAN formulation based on zero-sum non-cooperative game.
● If one wins, the other one loses (minimax).
● GANs converge when G and D reach a Nash equilibrium: the optimal

point of

Common Problems: Mode collapse

● Generator can collapse so that it always produces the same samples.

● Generator restrained to small subspace generating samples of low diversity.

● Solution: Encourage diversity through minibatch discrimination (presenting the whole

batch to the discriminator for review) or feature matching (add generator penalty for
low diversity), or use multiple GANs

Common Problems: Evaluation metrics

● GANs are still evaluated on a very qualitative basis.
● Defining proper metrics is challenging. How does a “good” generator look like?
● Solution: Active research field and domain specific. Strong classification models are

commonly used to judge the quality of generated samples

Inception score

TSTR score

Wasserstein GAN

● Using the standard GAN formulation, training is extremely unstable.
● Discriminator often improves too quickly for the generator to catch up.
● Careful balancing is needed.
● Mode collapse is frequent.

WGAN (Wasserstein GAN):
Arjovsky, M., Chintala, S. and Bottou, L., 2017. Wasserstein GAN.

arXiv preprint arXiv:1701.07875.

Wasserstein GAN

Distance is everything:

In general, generative models seek to minimize the distance between
real and learned distribution.

Wasserstein (also EM, Earth-Mover) distance:

“Informally, if the distributions are interpreted as two different ways
of piling up a certain amount of dirt over the region D, the
Wasserstein distance is the minimum cost of turning one pile into
the other; where the cost is assumed to be amount of dirt moved
times the distance by which it is moved.”

Wasserstein GAN

● Exact computation is intractable.
● Idea: Use a CNN to approximate Wasserstein distance.
● Here, we re-use the discriminator, whose outputs are now unbounded
● We define a custom loss function, in Keras:

y_true here is chosen from {-1, 1} according to real/fake

Idea: make predictions for one type as large as possible, for others as
small as possible

K.mean(y_true * y_pred)

Wasserstein GAN

The authors claim:

● Higher stability during training, less need for carefully balancing
generator and discriminator.

● Meaningful loss metric, correlating well with sample quality.
● Mode collapse is rare.

Wasserstein GAN

Tips for implementing Wasserstein GAN in Keras.

● Leave the discriminator output unbounded, i.e. apply linear activation.
● Initialize with small weights to not run into clipping issues from the start.
● Remember to run sufficient discriminator updates. This is crucial in the

WGAN setup.
● You can use the wasserstein surrogate loss implementation below.
● Clip discriminator weights by implementing your own keras constraint.

class WeightClip(keras.constraints.Constraint):
 def __init__(self, c):
 self.c = c

 def __call__(self, p):
 return K.clip(p, -self.c, self.c)

 def get_config(self):
 return {'name': self.__class__.__name__, 'c': self.c}

def wasserstein_loss(y_true, y_pred):
 return K.mean(y_true * y_pred)

CycleGAN

CycleGAN

G GAB BA

Cycle Consistency
Generator GAB learns to sneak in

information for G BA

Conditional GAN

● As in VAEs, GANs can simply be conditioned to generate a certain
mode of data.

G
Sample G(z | c)Noise z

Conditional c

D
Score

D(x | c) -> 1
D(G(z | c) | c) -> 0

Sample

x (real)
G(z) (fake)

Conditional c

Troubleshooting GANs

GANs can be frustrating to work with. Here are some tips for your reference:

● Models. Make sure models are correctly defined. You can debug the discriminator
alone by training on a vanilla image-classification task.

● Data. Normalize inputs properly to [-1, 1]. Make sure to use tanh as final activation
for the generator in this case.

● Noise. Try sampling the noise vector from a normal distribution (not uniform).
● Normalization. Apply BatchNorm when possible, and send the real and fake

samples in separate mini-batches.
● Activations. Use LeakyRelu instead of Relu.
● Smoothing. Apply label smoothing to avoid overconfidence when updating the

discriminator, i.e. set targets for real images to less than 1.
● Diagnostics. Monitor the magnitude of gradients constantly.
● Vanishing gradients. If the discriminator becomes too strong (discriminator loss

= 0), try decreasing its learning rate or update the generator more often.

Building an Image GAN

● Training a GAN can be frustrating and time-intensive.
● We will walk through a clean minimal example in Keras.
● Results are only on proof-of-concept level to enhance

understanding. For state-of-the-art GANs, see references.

In the code example, if you don’t tune parameters carefully, you won’t
surpass this level by much:

Building an Image GAN: Discriminator

Takes an image [H, W, C] and outputs a vector of [M], either class
scores (classification) or single score quantifying photorealism.

Can be any image classification network, e.g. ResNet or DenseNet.

We use a minimalistic custom architecture.

Target
Fake: 0
Real: 1

Building an Image GAN: Generator

Takes a vector of noise [N] and outputs an image of [H, W, C].

Network has to perform synthesis. Again, we use a very minimalistic
custom architecture.

Source
Noise vector

In practice, the projection is usually done using a
dense of H x W x C units, followed by a reshape
operation. You might want to regularize this part well.

Building an Image GAN: Full Setup

It is important to define the models properly in Keras, so that the
weights of the respective models are fixed at the right time.

1. Define the discriminator model, and compile it.
2. Define the generator model, no need to compile.
3. Define an overall model comprised of these two, setting the

discriminator to not trainable before the compilation:

model = keras.Sequential()

model.add(generator)

model.add(discriminator)

discriminator.trainable = False

model.compile(...)

Building an Image GAN: Training Loop

The training loop has to be executed manually:

1. Select R real images from the training set.
2. Generate F fake images by sampling random vectors of size N, and

predicting images from them using the generator.
3. Train the discriminator using train_on_batch: call it separately for

the batch of R real images and F fake images, with the groundtruth
being 1 and 0, respectively.

4. Sample new random vectors of size N.
5. Train the full model on the new vectors using train_on_batch with

targets of 1. This will update the generator.

Building an Image GAN: Training Progress

https://docs.google.com/file/d/16sNtEmY_YwAiAMh1Df2O5mc6fp0F9DnG/preview

Influential GAN-Papers (in order)

DCGAN 2015 https://arxiv.org/pdf/1511.06434v2.pdf

Wasserstein GAN (WGAN) 2017 https://arxiv.org/pdf/1701.07875.pdf

Conditional Generative Adversarial Nets (CGAN) 2014 https://arxiv.org/pdf/1411.1784v1.pdf

Deep Generative Image Models using a Laplacian Pyramid of Adversarial
Networks (LAPGAN)

2015 https://arxiv.org/pdf/1506.05751.pdf

Photo-Realistic Single Image Super-Resolution Using a Generative
Adversarial Network (SRGAN)

2016 https://arxiv.org/pdf/1609.04802.pdf

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks (CycleGAN)

2017 https://arxiv.org/pdf/1703.10593.pdf

InfoGAN: Interpretable Representation Learning by Information
Maximizing Generative Adversarial Nets

2016 https://arxiv.org/pdf/1606.03657

https://arxiv.org/pdf/1511.06434v2.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1411.1784v1.pdf
https://arxiv.org/pdf/1506.05751.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1606.03657

Influential GAN-Papers (in order)

DCGAN 2017 https://arxiv.org/pdf/1704.00028.pdf

Improved Training of Wasserstein GANs (WGAN-GP) 2017 https://arxiv.org/pdf/1701.07875.pdf

Energy-based Generative Adversarial Network (EBGAN) 2016 https://arxiv.org/pdf/1609.03126.pdf

Autoencoding beyond pixels using a learned similarity metric (VAE-GAN) 2015 https://arxiv.org/pdf/1512.09300.pdf

Adversarial Feature Learning (BiGAN) 2016 https://arxiv.org/pdf/1605.09782v6.pdf

Stacked Generative Adversarial Networks (SGAN) 2016 https://arxiv.org/pdf/1612.04357.pdf

StackGAN++: Realistic Image Synthesis with Stacked Generative
Adversarial Networks

2016 https://arxiv.org/pdf/1710.10916.pdf

Learning from Simulated and Unsupervised Images through Adversarial
Training (SimGAN)

2016 https://arxiv.org/pdf/1612.07828v1.pdf

https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1609.03126.pdf
https://arxiv.org/pdf/1512.09300.pdf
https://arxiv.org/pdf/1605.09782v6.pdf
https://arxiv.org/pdf/1612.04357.pdf
https://arxiv.org/pdf/1710.10916.pdf
https://arxiv.org/pdf/1612.07828v1.pdf

Some Available GANs...

SGAN
SimGAN
VGAN
iGAN
3D-GAN
CoGAN
CatGAN
MGAN
S^2GAN
LSGAN

AffGAN
TP-GAN
IcGAN
ID-CGAN
AnoGAN
LS-GAN
Triple-GAN
TGAN
BS-GAN
MalGAN

RTT-GAN
GANCS
SSL-GAN
MAD-GAN
PrGAN
AL-CGAN
ORGAN
SD-GAN
MedGAN
SGAN

SL-GAN
Context-RNN-GAN
SketchGAN
GoGAN
RWGAN
MPM-GAN
MV-BiGAN

DCGAN
WGAN
CGAN
LAPGAN
SRGAN
CycleGAN
WGAN-GP
EBGAN
VAE-GAN
BiGAN

Sources and References

Run BigGAN in COLAB:

https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/big
gan_generation_with_tf_hub.ipynb

https://www.jessicayung.com/explaining-tensorflow-code-for-a-convolutional-neural-networ
k/

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

https://github.com/tensorlayer/srgan

https://junyanz.github.io/CycleGAN/

https://affinelayer.com/pixsrv/

https://tcwang0509.github.io/pix2pixHD/

https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/biggan_generation_with_tf_hub.ipynb
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/biggan_generation_with_tf_hub.ipynb
https://www.jessicayung.com/explaining-tensorflow-code-for-a-convolutional-neural-network/
https://www.jessicayung.com/explaining-tensorflow-code-for-a-convolutional-neural-network/
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://github.com/tensorlayer/srgan
https://junyanz.github.io/CycleGAN/
https://affinelayer.com/pixsrv/
https://tcwang0509.github.io/pix2pixHD/

