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Information Theory

How much information can be communicated between any two
components of any system ?

QUESTION : Assume you have N forks (left or right) on road. An
oracle tells you which paths you take to reach a final destination. How
many prompts do you need ?

SHANNON INFORMATION (SI) : Consider a coin which lands
heads 90% times. What is the surprise when you see its outcome?

SI Quantifies surprise of information - SI = − log2 p(xh)
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Entropy

Assume I transmit 1000 bits (0s and 1s) of information from A to B.
What is the quantum of information that has been transmitted ?

When all the bits are known ? (0 shannons)

When each bit is i.i.d. and equally distributed (P(0) = P(1) =0.5)
i.e. all messages are equi-probable? (1000 shannons)

Entropy defines a general uncertainty measure over this
information. When is it maximized ?

H(X) = −EX log p(x) = −
∑
x

p(x) log p(x) or −
∫
x
p(x) log p(x)dx

(1)
EXERCISE : Calculate entropy of a dice roll.

REMEMBER THIS ? −p(x) log p(x)− (1− p(x)) log p(x)
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Joint and Conditional Entropy

Joint Entropy - Entropy of joint distribution

Hjoint(X,Y ) = −EX,Y log p(X,Y ) = −
∑
x,y

p(x, y) log p(x, y) (2)

Conditional Entropy - Conditional Uncertainty of X given Y

H(X|Y ) = −EY H(X|Y = y)

= −
∑
y

p(y)
∑
x

p(x|y) log p(x|y)

= −
∑
x,y

p(x, y) log p(x|y)

H(X|Y ) = H(X,Y )−H(Y )

(3)
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Mutual Information

Pointwise Mutual Information - Between two events, the discrepancy
between joint likelihood and independent joint likelihood

pmi(x, y) = log
p(x, y)

p(x)p(y)
(4)

Mutual Information - Expected amount of information that can be
obtained about one random variable by observing another.

I(X;Y ) = Ex,y pmi(x, y) = Ex,y log
p(x, y)

p(x)p(y)

I(X;Y ) = I(Y ;X) (symmetric)

= H(X)−H(X|Y ) = H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y )

(5)

Professor : Pavlos Protopapas, TF : Srivatsan Srinivasan (CS109B, IACS)A tour of Variational Inference April 10, 2019 6 / 42



Cross Entropy

Average number of bits needed to identify an event drawn from p when
a coding scheme used is for optimizing a different distribution q.

H(p, q) = Ep − log(q) =
∑
x

−p(x) log q(x) (6)

Example : Take any code over which you communicate a equiprobable
number between 1 and 8 (true). But your receiver uses a different code
scheme and hence needs a longer message length to get the message.

REMEMBER ? y log ŷ + (1− y) log(1− ŷ)
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Understanding cross entropy

Game 1 : 4 coins of different color each(blue, yellow, red, green) -
probability each 0.25. Ask me yes/no questions to figure out the
answer.

Q1 : Is it green or blue ?
Q2 : Yes : Is it green? No : Is it red ?
Expected number of questions 2 H(P)

Game 2 : 4 coins of different color each - probability each [0.5
-blue, 0.125-red, 0.125-green, 0.25-yellow]. Ask me yes/no
questions to figure out the answer.

Q1 : Is it blue ?
Q2 : Yes : over, No : Is it red ?
Q3 : Yes : over, No : Is it yellow ?
Expected number of questions 1.75. H(Q)

Game 3 : Use strategy used in game 1 on game 2 and the expected
number of questions is 2 > 1.75. H(Q,P)
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KL Divergence

Measure of Discrepancy between two probability distributions.

DKL(p(X)||q(X)) = −EP log
q(X)

p(X)

= −
∑
x

p(x) log
q(x)

p(x)
or −

∫
x
p(x) log

q(x)

p(x)
dx

(7)

DKL(P ||Q) = H(P,Q)−H(P ) ≥ 0 (8)

Remember entropy of P quantifies the least possible message length for
encoding information from P.

KL - Extra message-length per datum that must be communicated if a
code that is optimal for a given (wrong) distribution Q is used,
compared to using a code based on the true distribution P.
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Variational Inference
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Latent Variable Inference

Latent Variables - Random variables which are not observed.

Example - Data of Children’s score on an exam - Latent Variable :
Intelligence of a child

Example

Figure 1: Mixture of cluster centers

Break down :
p(x, z) = p(z)︸︷︷︸

latent

p(x|z) = p(z|x)p(x); p(x) =
∫
z p(x, z)dz
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Latent Variable Inference

Assuming a prior on z since it is under our control.

INFERENCE : Learn posterior of the latent distribution -
p(z|x). How does our belief about the latent variable change after
observing data ?

p(z|x) =
p(x|z)p(z)
p(x)

=
p(x|z)p(z)∑
z

p(x|z)p(z)︸ ︷︷ ︸
Could be intractable

(9)
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Variational Inference - Central Idea

Minimize KL(q(z)||p(z|x))

q∗(z) = arg min
q∼Q

KL(q(z)||p(z|x)) (10)

KL(q(z)||p(z|x)) = Ez∼q log q(z)− Ez∼q log p(z|x)

= Ez∼q log q(z)− Ez∼q log p(z,x)︸ ︷︷ ︸
(a) — -1*ELBO

+ log p(x)︸ ︷︷ ︸
(b)

= −ELBO(q) + log p(x)︸ ︷︷ ︸
Does not depend on z

(11)

Idea

Minimizing KL(q(z)||p(z|x)) = Maximizing ELBO !
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ELBO

ELBO(p, q) = Eq log p(z,x)− Eq log q(z)

= Eq log p(z) + Eq log p(x|z)− Eq log q(z)

= Eq log p(x|z)−KL(q(z)||p(z))

(12)

Idea

Eq log p(z,x)− Eq log q(z)- Energy encourages q to focus probability
mass where the joint mass is, p(x, z). The entropy encourages q to
spread probability mass and avoid concentration to one location.

Idea

ELBO Term Eq log p(x|z)−KL(q(z)||p(z)- Conditional Likelihood
Term and KL Term. Trade-off between maximizing the conditional
likelihood and not deviating from the true latent distribution (prior).
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Variational Parameters

Parametrize q(z) using variational parameters λ - q(z;λ)

Learn variational parameters during training (using some gradient
based optimization for example)

Example - q(z;λ = [µ, σ]) ∼ N (µ, σ). Here µ, σ are variational
parameters λ = [µ, σ].

ELBO(λ) = Eq(z;λ) log p(x|z)−KL(q(z;λ)||p(z))

Gradients :
∇λELBO(λ) = ∇λ

[
Eq(z;λ) log p(x|z)−KL(q(z;λ)||p(z))

]
Not directly differentiable via backpropagation : WHY ?
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VI Gradients and Reparametrization

Figure 2: Reparametrization Trick : z = µ+ σ ∗ ε; ε ∼ N (0, 1)

Gradients : ∇λELBO(λ) = Eε
[
∇λ
[
log p(x|z)−KL(q(z;λ)||p(z))

]]
Disadvantage : Not flexible for any black box distribution.
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VI Gradients and Score Function a.k.a REINFORCE

∇λELBO(λ) = ∇λEq(z;λ)
[
− log qλ(z) + log p(z) + log p(x|z)

]
=

∫
z
∇λqλ(z)

[
− log qλ(z) + log p(z) + log p(x|z)

]
dz

Use∇λ(qλ(z)) = qλ(z) log qλ(z)

= Eq(z;λ)
[(
∇λqλ(z)

)
·
(
− log qλ(z) + log p(z) + log p(x|z)

)]
(13)

Only need ability to take derivative of q with respect to λ.

Works for any black box variational family.

Use MC sampling to update parameters in each step and take
empirical mean.

Professor : Pavlos Protopapas, TF : Srivatsan Srinivasan (CS109B, IACS)A tour of Variational Inference April 10, 2019 17 / 42



Mean Field Variational Inference

Mean Field Approximation - A simplifying approximation for the
variational distribution.

Assumes all the variational components are independent of each
other.

Then, mean field assumption assumes

p(z|X) ≈ q(z) =
N∏
i=1

qi(zi) (14)
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Mean Field VI - GMM

Figure 3: 1-D GMM with three cluster centers

Generative Model : For each datapoint x(i) where i = 1,2......N

Sample a cluster assignment i.e. the membership of a given point
to a mixture component c(i) uniformly. c(i) ∼ Uniform(K)

Sample its value from the correpsonding component:
x(i) ∼ N (µc(i) , 1)
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Mean Field VI - GMM

To reiterate, the full parametrization of the model could be written as

µj ∼ N (0, σ2) ∀j = 1, 2....K - totally K (3) cluster centers. Known
variance σ - Not learning them.

ci ∼ U(K) ∀i = 1, 2....N - one cluster assignment for each point.

xi ∼ N (cTi µ, 1)∀i = 1, 2....N - each datapoint comes from a
Gaussian whose mean is a mixture of the cluster centers with a
known variance.

PROBLEM : You are provided X(x1, ...xn). You need to
eventually learn P(X) using latent variables µ, c which you don’t
observe. You don’t know any of the information that you see
above in real life.
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Mean Field Approximations

Mean Field Definition : q(z) =
∏
j qj(zj) .

Latent variables in this case :
q(µ, c) = q(µ;m, s2) =

∏
j q(µj ;mj , s

2
j )×

∏
i q(ci, φi)

µj ;mj , s
2
j ∼ N (mj , s

2
j )

ci;φi ∼MultiNomial(φi)

Thus, φi is a vector of probabilities such that p(ci = j) = φij such
that

∑
j φij = 1. Learns the likelihood of each point belonging to

one cluster center.
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Mean Field VI for GMM - A sketch

Use ELBO(λ) = Eq(z;λ) log p(x, z) +H(q;λ)

Calculate log p(x, c, µ) = log p(µ) log p(c) log p(x|c, µ) based on our
mean field approximations.

Calculate the entropy term.

log q(c, µ) = log q(c)+log q(µ) =
N∑
i=1

log q(ci;φi)+
K∑
j=1

log q(µj ;mj , s
2
j )

.

Final ELBO is an expectation over sum of both these terms i.e.

ELBO ∝
∑
j

−Eq
µj
2σ2

+
∑
i

∑
j

Eq
[
Cij
]
Eq
[

(xi − µj)2

2

]
−

∑
i

∑
j

Eq[log φij ] +
∑
j

1

2
log(s2j )

(15)
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Parameter Updates and CAVI

Gradient Update φij using ∂ELBO
∂φij

Gradient update mj using ∂ELBO
∂mj

Gradient Update s2j using ∂ELBO
∂s2j

Remember we are doing Coordinate Ascent here (Maximization
Problem).
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Coordinate Ascent

1 Choose initial parameter vector x. Repeat steps 2 to 4.
2 Choose an index i from 1 to n.
3 Choose a step size α.
4 Update xi to xi + α∂F (x)

∂xi

Figure 4: Coordinate Descent
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Variational Autoencoders
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Generative Models

Learns the generative form of the data distribution - P(X)

Remember AutoEncoders learned in class.

Why latent variable models are needed ?

What are the latent variables expected to learn ? Eg: MNIST

Remember p(x) =
∫
z p(x, z; θ)p(z; θ)dz. θ can be any parametric

form - could be a neural network.
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VAEs

Define p(z) = N (0, I)

Transform a simple p(z) into a complicated p(x)

Figure 5: Given a random variable Z with one distribution (on the left -
standard bivariate Gaussian), we can always create another random
variable X = g(Z) with an entirely different distribution through
appropriate functional transformation(on the right.
g(z)→ z/10 + z/||z||.
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VAEs

Where is the Autoencoder?

X

z ∼ (0, I)

θ

N

Figure 6: Graphical Model of VAE

Need to infer the posterior after observing data.

p(z|x) =
p(x|z)p(z)∫

z
p(x|z; θ)p(z)dz︸ ︷︷ ︸
Intractable

(16)
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VAEs

Assume variational approximation for p(z—x). We have got our
encoder decoder setup back. q is the encoder and p is the decoder.

L(x; θ, λ) = DKL

(
q(z|x;λ)︸ ︷︷ ︸
decoder

||p(z)
)
− Ez∼q log p(x|z; θ)︸ ︷︷ ︸

encoder

(17)

Figure 7: VAE in a nutshell
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VAEs

L(x; θ, λ) = DKL

(
q(z|x;λ)︸ ︷︷ ︸
decoder

||p(z)
)
− Ez∼q log p(x|z; θ)︸ ︷︷ ︸

encoder

DKL((N (µ(X),Σ(X))||N (0, I)) =
1

2

(
Tr(Σ(X)) + (µ(X))T (µ(X))− k

− log det(Σ(X))
)

(18)

What about the reconstruction term ?
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VAE Reconstruction - Training

Figure 8: Training of VAE with Gaussian Variational Family
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Reparametrization

Figure 9: Reparametrization(Right)
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VAE - Visualization

Figure 10: Contributions of reconstruction and KL
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VAE - Visualization

Figure 11: Contributions of reconstruction and KL
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VAE-Results

Figure 12: Left: MNIST generative results from VAE. Right : Latent code
interpolation - Results generated from sampling latent codes and
interpolating between those two codes.
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Music-VAE (Google, 2018)

https://youtu.be/G5JT16flZwM

Professor : Pavlos Protopapas, TF : Srivatsan Srinivasan (CS109B, IACS)A tour of Variational Inference April 10, 2019 36 / 42



Conditional VAE
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Conditional VAE

Figure 14: A Conditional VAE. Image Completion - The inputs(incomplete
image) to CVAE are the pixels in the middle column shown in the images in
blue.
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Bayesian Neural Networks

QUESTION : How do you learn uncertainty of what your deep
network learns ?

IDEA : Have a prior over weights and do MAP inference.

Confidence of your predictions.

Richer and regularized representation of weights since you control
the prior

Model Averaging (since the lilely prediction of y is the expected
value of distribution over functions)
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How does it look like ?

Figure 15: Left : Fit via BBB. Right:Fit via Neural Nets. Red indicates the
median prediction. Blue boundaries indicate quartile ranges. Look how BBB
is less confident in out of distribution regions and more confident around
evidence.Credits
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How do you do it ?

p(w|x,y) ∝ P
(
y1:n|x1:n, ;w

)
∗ p(w)

w∗ = arg max
w

P (w|x,y)︸ ︷︷ ︸
As usual, intractable

(19)

θ∗ = arg min
θ
DKL

(
q(w; θ)||p(w|D)

)
= arg min

θ
DKL

[
q(w; θ)||p(w)

]
− Eq(w;θ) log p(D|w)︸ ︷︷ ︸

L(D,θ)

(derived similar to VI)

(20)

Perform SGD via re-parametrization to train the network. Bayes by
backpropagation -
https : //arxiv.org/pdf/1505.05424.pdf .(pseudo-code)
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Credits

1 https://www.jeremyjordan.me/variational-autoencoders/ (Images
and Text)

2 https://arxiv.org/abs/1606.05908 (Images and Text)

3 Other references in the notes (Largely text)
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