
CS109B Advanced Section : Information Theory,
Variational Inference for Variational AutoEncoders and

Bayesian Neural Networks

Professor : Pavlos Protopapas, TF : Srivatsan Srinivasan

21 December 2018

Abstract
In this tutorial, we discuss a brief introduction to information theory that presents salient

concepts such as entropy, cross entopry and KL divergence. Using these fundamentals, the
tutorial then introduces variational inference formulation along with mean field approxima-
tions. Then, variational autoencoders - both the generative and conditional variants are in-
troduced to demonstrate a salient application of amortized variational inference with a neural
net parametrization. Finally, Bayesian Neural Networks are introduced and the tutorial con-
cludes with a backpropagation friendly variational inference algorithm to perform probabilistic
reasoning on feedforward neural networks.

1 Information Theory
Information theory defines precise limits on how much information can be communicated between
any two components of any system. Information is usually measured in bits, and one bit of infor-
mation allows you to choose between two equally probable alternatives. For simplicity, assume you
have n forks (allows you to go right or left) on the road, leading to m = 2n final destinations. To
reach any destination, you need n bits of information in order to choose one out of the m equally
probable alternatives. It is key to contrast bit from a binary digit - A binary digit is the value of a
binary variable, whereas a bit is an amount of information.

Consider a coin that lands heads 90%(P (xh) = 0.9) of the times. If we are to predict, we expect it
to land heads up and are surprised if the coin lands tail. This surprise of outcome is quantified by
Shannon Information

Shannon Information(xh) = − log p(xh)1 (1)

1.1 Entropy
- Entropy of p(X) - H(X) is defined as the expected surprise over the entire set of possible values
for the random variable.

H(X) = −EX log p(x) = −
∑
x

p(x) log p(x) or −
∫
x

p(x) log p(x)dx (2)

1In this section, all log are taken to the base 2 since it operates on bits.

1

If the entropy of a random variable X is represented by entropy H(X), it means that X could
be used to represent 2H(X) equi-probable values. For instance, a fair coin’s entropy is 1 and X
could represent two equi-probable values - heads and tails. Translating entropy into an equivalent
number of equi-probable values serves as a key to understand the amount of uncertain information
represented by a random variable. Similarly, roll of a dice has an entropy of ∼ 2.58 which means
this random variable could effectively represent 6 equi-probable values.

1.2 Entropy Measures of 2 Random Variables
1. Joint Entropy , H(X,Y) is the entropy of the random variable pair X and Y

H(X,Y) = −EX,Y log p(X,Y) = −
∑
x,y

p(x, y) log p(x, y) or−
∫
x,y

p(x, y) log p(x, y)dxdy

(3)

2. Conditional Entropy of X over Y is defined as the expected(over Y) entropy of the condi-
tional distribution p(X|Y). Intuitively, it quantifies how much uncertainty one has over the
joint distribution on X,Y provided Y is observed.

H(X|Y) = −EY H(X|Y) = −
∑
y

p(y)
∑
x

p(x|y) log p(x|y)

= −
∑
x,y

p(x, y) log p(x|y) or −
∫
x,y

p(x, y) log p(x, y)dxdy

H(X|Y) = H(X,Y)−H(Y)

(4)

3. Mutual Information is the amount of information that can be obtained about one random
variable by observing another - useful when we approximate any distribution with another
known distribution.

I(X;Y) = Ex,y log
p(x, y)

p(x)p(y)

I(X;Y) = I(Y ;X) (symmetric)
= H(X)−H(X|Y) = H(Y)−H(Y |X) = H(X) +H(Y)−H(X,Y)

(5)

Knowing Y, we can save an average of I(X; Y) bits in encoding X compared to not know-
ing Y. Distributions that characterize similar random variables tend to have a high mutual
information.

1.3 KL Divergence
Kullback-Leibler (KL) Divergence is a measure of difference between two probability distributions
which is defined as follows.

DKL(p(X)||q(X)) = −EP log
q(X)

p(X)
= −

∑
x

p(x) log
q(x)

p(x)
or −

∫
x

p(x) log
q(x)

p(x)
dx (6)

Throughout the tutorial, we use KL,DKL inter-changably to denote KL-divergence. Note that
KL divergence is not symmetric and does not satisfy triangle inequality and hence it is not true

2

distance metric, but rather a quasi distance measure. We can also prove that DKL(p||q) ≥ 0. Two
identical distributions will have KL-divergence of 0 and very different distributions have higher
values. KL-divergence can be intuitively thought of us as additional surprise that one incurs when
one thinks that a random variable follows a distribution q when the true underlying distribution of
the random variable is p.

2 Variational Inference

2.1 Definition
Variational Inference(VI) is a technique widely used to approximate hard-to-infer posterior prob-
ability estimates. Consider a general problem where we have a joint density of latent variables
z = z1:m and observations x = x1:n. The inference problem is to compute the conditional density
of the latent variables given the observations p(z|x). This conditional can be used to produce point
or interval estimates of the latent variables, form predictive densities of new data, and more.

p(z,x) = p(x|z)p(z)

p(z|x) =
p(z,x)

p(x)
(7)

In many practical Bayesian inference problems, the denominator in Equation 7 is hard to compute
(since we do not have a closed form for the evidence p(x) =

∫
p(z,x)dz)2. We have to often resort

to sampling based inference methods such as MCMC procedures (covered extensively in AM207) or
approximating the distributions via another distribution which lays the foundation for variational
inference.

Variational inference transforms this problem as an optimization problem. First we posit a family
of approximate densities Q. We then approximate the final posterior using the optimized member
of the variational family - q∗(.)

q∗(z) = arg min
q∼Q

KL(q(z)||p(z|x)) (8)

Key trick in VI is to choose a family Q expressive enough to approximate many complicated
posteriors yet simple enough to allow for efficient optimization.

2.2 Evidence Lower Bound (ELBO)
Let us decompose the KL-divergence term to find a lower bound (ELBO) for our optimization
objective in Equation 8

KL(q(z)||p(z|x)) = Ez∼q log q(z)− Ez∼q log p(z|x)

= Ez∼q log q(z)− Ez∼q log p(z,x)︸ ︷︷ ︸
(a) — -1*ELBO

+ log p(x)︸ ︷︷ ︸
(b)

= −ELBO(q) + log p(x)

(9)

2[1] has examples of some common hard to estimate evidence distribution examples

3

Observe in Equation 9 that (b) does not depend on the variational family over which we optimize
and hence maximizing the ELBO term amounts to minimizing our overall optimization objective
i.e. KL term. The reason the term is called the ELBO is because it lower bounds the evidence i.e.
p(x) ≥ ELBO(q) since KL(q(z)||p(z|x)) ≥ 0.

We further re-write ELBO as follows3.

ELBO(q) = E log p(z,x)− E log q(z)

= E log p(z) + E log p(x|z)− E log q(z)

= E log p(x|z)−KL(q(z)||p(z))

(10)

Note that the first term in Equation 10 encourages placing mass over latent variable configura-
tions(drawn from our variational approximations) that best explain evidence and the second term
forces us to choose a member of the variational family that is close to the true prior and this tradeoff
is handled by the optimization objective.

2.3 Mean Field Variational Family and Optimization with CAVI
A mean field variational family is characterized by the assumption that the latent variables are
mutually independent and each one is governed by a distinct factor in the variational density.

q(z) =

m∏
i=1

qi(zi) (11)

Each of the variational factor qi(zi) can take any parametric form appropriate to the corresponding
variable. Typically, this approximation does not contain the true posterior because the latent
variables in its true structure could be dependent. Observe in the defintion of KL term in Equation
6 that the divergence measure penalizes a lot more when q places higher probability mass in regions
where p has a lower probability mass but penalty is much lesser when it does otherwise. Hence,
a good mean field approximation will ensure that the former case of mismatch does not occur
drastically while keeping the variational approximation factors independent.

Coordinate ascent is a common optimization algorithm for convex objectives. Coordinate Ascent
Variational Inference (CAVI) iteratively optimizes each factor of the mean-field variational density
while holding the others fixed, effectively climbing the ELBO uphill to a local maximum. The
proof and the exact coordinate ascent algorithm is described in detail in [1]. Finally, we also would
like to note that there are a general form for models in which the coordinate updates in mean
field variational inference are easy to compute and lead to closed-form updates - exponential family
conditionals which has the following functional form

p(zj |z−j ,x) = h(zj) exp{η(z−j ,x)T t(zj)− a(η(z−j ,x)} (12)

where z−j indicates keeping all the other elements of z except zj fixed and η, h, a, t are functions that
parametrize several powerful exponential family distributions such as Normal, Gamma, Exponential,
Bernouilli, Dirichlet, Categorical, Beta, Poisson, Geometric, etc. If we choose our local variational
approximation q(zj) to be the same as the conditional distribution (i.e. in an exponential family),
then we will see that the CAVI update step yields an optimal q(zj) in the same family.

3All expectations are over q

4

Figure 1: Given a random variable Z with one distribution (on the left - standard bivariate Gaus-
sian), we can always create another random variable X = g(Z) with an entirely different distribution
through appropriate functional transformation(on the right. g(z)→ z/10 + z/||z||. In VAE, we are
looking to learn such transformations that allow us to generate arbitrary generative distributions
sampling from simple standard MVN distribution.

X

z ∼ N (0, I)

θ

N

Figure 2: Graphical Model of VAE

3 Variational Autoencoders

3.1 Introduction and Loss Function
Generative models can be roughly defined as models that attempt to learn the joint distribution that
generated the evidence data we have at our disposal. In many generative models, latent variables
are used to model unobserved characteristics of our data. For instance, in a generative model that
produces handwritten digits between 0 and 9, the latent variables need to implicitly learn the digit’s
class, the slope of the letter, curvature etc. Since it is hard to explicitly define these characteristics,
we would want the model to automatically learn latent configurations that maximizes its generative
performance. Let us define a function family f(z; θ) parametrized by a vector θ from its parameter
space Θ such that f : Z × Θ → X . In other words, for a given θ, f(z; θ) is a random variable
in the space X . Then, we define a normal distribution for our conditional generation model as
p(x|z; θ) ∼ N (f(z; θ), σ2 ∗ I). To make a rigorous problem statement, we are aiming to maximize

5

the probability of the training set under the entire generative process as follows

x =

∫
p(x|z; θ)p(z)dz (13)

We need to define p(z) which effectively encodes all unobserved latent information. VAE tackles this
problem by assuming an extremely simple p(z) - standard MVNs i.e. p(z) = N (0, I). We can see
from a dummy example in Figure 1 that we can transform simple MVNs to any arbitrary distribu-
tions via appropriate functional transformations. VAEs then rely on transformation function f(z; θ)
to produce distributions close to our evidence distribution p(x). VAE parametrizes this function
with neural networks which are known to be universal function approximators, parametrized by θ.

Performing inference in a VAE i.e. p(z|x) again is computationally intractable since equation 13
requires exponential time to compute a closed form solution since we have to integrate over all
possible latent configurations (Same reasoning we had when we introduced variational inference).
So we introduce variational distribution from the Gaussian Family q(z|X;λ) parametrized by λ and
transform our problem into an ELBO optimization problem whose loss function is as follows.

L(x; θ, λ) = DKL(q(z|x;λ)||p(z)− Ez∼q log p(x|z; θ) (14)

Even though we have not explicitly introduced any code space, encoding or decoding into our
formulation, this form of variational loss has another natural interpretation, thus giving VAE the
name of variational autoencoder. q serves the purpose of being an encoder network (λ) and p ends
up being the decoder network (θ) that aims to reconstruct x based on the encoding z.

3.2 Inference via Optimization - Sampling and Reparametrization
In standard VAE, we are going to use a Gaussian Variational Family since it is easy to calculate
KL divergence of two Gaussians. Let us define q(z|x) = N (z|µ(x;λµ),Σ(x;λΣ)). The first term of
Equation 14 can be written as

DKL((N (µ(X),Σ(X)|| N (0, I)) =
1

2

(
Tr(Σ(X)) + (µ(X))T (µ(X))− k − log det(Σ(X))

)
(15)

The second term of Equation 14 is a bit more tricky to compute since we need to compute ex-
pectations via taking multiple samples. A trick to make it computationally easy is grounded in
empirical evidence - We take one sample of z and treat p(x|z) as an approximation for the ex-
pectation term. Thus, once we sample a z our loss function essentially becomes Lstochastic =
DKL(q(z|x;λ)||p(z)− log p(x|z; θ). Now we are set to take the gradient with respect to our param-
eters we intend to learn λµ, λΣ.

3.2.1 Reparametrization Trick

Yet, we have another roadblock before we can finally pass our gradients through the computational
graph. Figure 3 on the left, shows why backpropagation will not be possible in the current setting
where we are required to back-propagate through a layer that samples z from q(z|x) and sampling
operation is a non-continuous operation and hence breaks the gradient computational graph. We
use the "reparametrization" trick which is to move the sampling to an input layer as seen in the

6

Figure 3: A training-time variational autoencoder implemented as a feedforward neural network,
where p(X|z) is Gaussian. Left is without the “reparameterization trick”, and right is with it. Red
shows sampling operations that are non-differentiable. Blue shows loss layers. The feedforward be-
havior of these networks is identical, but backpropagation can be applied only to the right network.
Image Credits : [2]

right of Figure 3. Given µ(X) and Σ(X)—the mean and covariance of Q(Z|X)—we can sample
from N (µ(X),Σ(X)) by first sampling εN (0, I), then computing z = µ(X) + Σ

1
2 (X)ε. Thus, the

equation we actually take the gradient of is given by

L(X) =
1

2

(
Tr(Σ(X)) + (µ(X))T (µ(X))− k − log det(Σ(X))

)
−

Eε∼N (0,I) log p
(
X|µ(X) + Σ

1
2 (X) ∗ ε

) (16)

Note that VAE performs "amortized" variational inference i.e. the variational parameters are
shared across datapoints. Mean field that we saw earlier is strictly more expressive since it has a
set variational parameter for each datapoint and does not share any parameters. For computational
gains and reduced overfitting of our model, we are limiting the capacity or representational power
of our variational family by tying parameters across datapoints (e.g. with a neural network that
shares weights and biases across data).

3.2.2 REINFORCE procedure

While "reparametrization" trick is heavily used in standard VAE, there is an essential requirement
that we need an entirely differentiable, continuous distributions (like exponential families) which
could be reparametrized as we saw earlier. On the other hand REINFORCE procedure works on any
arbitrary distribution, discrete or continuous and is a more general approach. "Reparametrization"
on the other hand is computationally fast since it is uses backpropagation and produces low variance
gradient estimates whereas "REINFORCE" still produces high variance gradient estimates.

7

Let us define a problem setting mirroring what we had in "reparametrization".

∇θ Ex∼pθ(x)[f(x)]

It mainly uses the concept of "score function" estimator(Remember policy gradient approaches
from Deep RL section) which implicitly uses a simple differentiation identity

∇θpθ(x) = pθ(x)∇ log pθ(x) (17)

The term ∇ log pθ(x) is called the score and regularly comes up in maximum likelihood estimation.
It also has many properties like having zero expected value (which proves useful when using it for
variational inference among other things). Continuing our derivation, we get

∇θ Ex∼pθ(x) f(x) = ∇θ
∫
f(x)pθ(x)dx

=

∫
f(x)∇θpθ(x)dx (Leibniz Rule)

=

∫
f(x)pθ(x)∇ log pθ(x)dx (Equation 17)

= Ex∼pθ(x)[f(x)∇ log pθ(x)]

≈ 1

N

N∑
i=1

f(xi)∇ log pθ(xi) (Monte-Carlo Estimates)

(18)

Now we have transformed our derivative operation into something tractable using the score func-
tion.Note that the above is an unbiased estimator of the gradients. The score function estimator
assumes it is possible to cheaply sample from the distribution pθ(x). It is key to note that RE-
INFORCE places no restriction on the nature of the function and it doesn’t even need to be
differentiable for us to estimate the gradients of its expected value. The unbiased estimates also
mean that the variance for these gradients are very high. To counter this, advanced approaches
use techniques such as control variates, importance sampling etc. (beyond the scope of our section.
For these variation reduction techniques, please refer this link)

3.3 Conditional VAE(CVAE)
Conditional VAEs are useful in settings where the model is not purely generative from a latent
space, but rather takes in an input and enriches it with a latent code to produce an output. A
standard application might be image completion for instance, where one is given an incomplete
image and the output is expected to be the completed image. The space of plausible outputs in
this case is multi-modal - there are many possibilities for the next digit or the extrapolated pixels.
The math of CVAE is largely similar to VAE except that we condition the entire generative process
on the input in addition. Here we use X for input and Y for output. The loss function in case of
CVAE will look as follows

L(X,Y;λ, θ) = DKL(q(z|Y,X;λ)||p(z|X)− Ez∼q(.|X,Y) log p(Y|z,X; θ) (19)

Figure 4 shows how inference is performed in the network (slightly) differently during train and test
time. Finally, we see results from VAE and CVAE on MNIST data in Figures 7 and 6 in Appendix.

@PAVLOS: There is a proof that if given arbitrarily powerful learners, VAEs should
have near 0 approximation errors - Slightly deep probability math. Is it necessary ?

8

https://statweb.stanford.edu/~owen/mc/

Figure 4: Left: a training-time CVAE implemented as a feedforward neural network. Right: the
same model at test time, when we want to sample from P(Y|X). Credits : [2]

4 Bayesian Neural Networks
Remember L2 regularization or ridge regression from CS109a. These regularized models can also
be viewed from a Bayesian perspective where we assume a prior over our weights and on observing
the data, we perform posterior updates over the parameters. For instance, in L2 regularization, we
assume a prior of p(w) = N (0, σ ∗ I) and with L as our likelihood function, our Bayesian posterior
update and the MAP w∗would be

p(w|x,y) ∝ L
(
y1:n|x1:n, ; w

)
∗ p(w)

w∗ = arg max
w

p(w|x,y)
(20)

Plain feedforward neural networks are prone to overfitting. When applied to supervised or re-
inforcement learning problems these networks are also often incapable of correctly assessing the
uncertainty in the training data and so make overly confident decisions about the correct class,
prediction or action. In Bayesian Neural Nets (BNN), we introduce a prior over every weight of
the neural network, effectively learning a posterior over the weights via inference. Three major
advantages of this approach is - richer representations and predictions from cheap model averaging,
regularization via a compression cost on the weights and learning confidence of predictions.

4.1 Problem Setup and Bayes by Backpropagation(BBB)
Throughout our BNNs, we are going to function in a discriminative setting away from the generative
setting we witnessed with VAEs. Let us define our training data as D → (x1:n,y1:n).We view a

9

neural network as a probabilistic model p(y|x,w) - given an input x ∈p,a BNN assigns a probability
to each possible output yY, using the set of parameters or weights. Transformation of inputs onto
the output space Y is achieved by feedforward nets - a combination of linear layers with non-linear
activations.

Bayesian inference for neural networks calculates the posterior distribution of the weights given the
training data,P (w|D). The predictive distribution of an unknown label ŷ of a test data item x̂, is
given by P (ŷ|x̂) = Ep(w|D) P (ŷ|x̂,w). Every possible configuration of weights gives us an estimate
of the output and weighing them in expectation with respect to the posterior is equivalent to using
an ensemble of an infinite number of neural networks. To get over this computational intractability
of inference, we once again resort to variational inference.Variational learning finds the parameters
θ of a distribution on the weights q(w|) that minimizes the Kullback-Leibler (KL)divergence with
the true Bayesian posterior on the weights.

θ∗ = arg min
θ
DKL(q(w|θ)||p(w|D)

= arg min
θ
DKL

[
q(w|θ)||p(w)

]
− Eq(w|θ) log p(D|w)︸ ︷︷ ︸

L(D,θ)

(derived similar to VI) (21)

Since we usually operate with Gaussian variational family and Gaussian prior on weights p(w) =
N (0, σ ∗ I), we usually have a closed form expression for our KL-divergence. The second term on
the other hand requires reparametrization and Monte-Carlo Sampling as we saw in VAEs in order
to make the entire procedure backpropagation-friendly, thus giving the procedure the name Bayes-
by-Backpropagation. Thus, the overall training procedure could be summarized in the following
steps. Remember w = µ+ log(1 + exp(ρ)) ∗ ε

1. Sample ε ∼ N (0, I)

2. Let w = µ+ log(1 + exp(ρ)) ∗ ε. Here we use the "softplus" trick i.e. σ = log(1 + exp(ρ)) in
order to have a smooth transformation over the entire space.

3. Let θ = (µ, ρ) and f(w, θ) = log q(w|θ)− log p(w)p(D|w)

4. Calculate gradients

∇fµ =
∂f

∂w
+
∂f

∂µ

∇fρ =
∂f

∂w
ε

log(1 + exp(−ρ))
+
∂f

∂ρ

(22)

5. Update variational parameters via a gradient step using any optimizer.

Figure 5 shows how performing inference with a Bayesian Neural Network differs fro performing
inference with a standard neural net. We see that the BBB network learns confidence intervals
that are intuitive - narrow near evidence and wide out of distribution whereas the standard neural
network is overconfident, particularly away from evidence points. Since Bayes by Backprop simply
uses gradient updates, it is very parallelization friendly and can readily be scaled using multi-
machine optimization schemes such as asynchronous SGD.

While BBB is a form of variational inference via reparametrization, there are other forms of inference

10

Figure 5: Left : Fit via BBB. Right:Fit via Neural Nets. Red indicates the median prediction. Blue
boundaries indicate quartile ranges. Look how BBB is less confident in out of distribution regions
and more confident around evidence.Credits :[3]

(not covered in this tutorial) which are common in BNNs such as Black-Box Variational Inference
[4] which uses the "REINFORCE" procedure we learned earlier and other MCMC methods such as
HMC and its stochastic variants. [5, 6] and [7] that relatively weighs these inference procedures.

Acknowledgements
This tutorial has been prepared for CS209b course : Advanced Data Science and is used for purely
instructional purposes only. Much of the material presented in the tutorial has been adapted from a
medley of sources - [2, 8, 9] (Variational Autoencoders), [1, 10] (Variational Inference), [3] (BBB) and
[11, 12] (Information Theory) and we sincerely thank the authors of these papers/tutorials/websites.

11

References
[1] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational Inference: A Review for Statisti-

cians,” arXiv e-prints, p. arXiv:1601.00670, Jan. 2016.

[2] C. Doersch, “Tutorial on Variational Autoencoders,” arXiv e-prints, p. arXiv:1606.05908, June
2016.

[3] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight Uncertainty in Neural
Networks,” arXiv e-prints, p. arXiv:1505.05424, May 2015.

[4] R. Ranganath, S. Gerrish, and D. M. Blei, “Black Box Variational Inference,” arXiv e-prints,
p. arXiv:1401.0118, Dec. 2013.

[5] “Mcmc using hamiltonian dynamics.” https://arxiv.org/pdf/1206.1901.pdf. Accessed:
2018-12-23.

[6] T. Chen, E. B. Fox, and C. Guestrin, “Stochastic Gradient Hamiltonian Monte Carlo,” arXiv
e-prints, p. arXiv:1402.4102, Feb. 2014.

[7] “Posterior distribution analysis for bayesian inference in neural networks.” https:
//pdfs.semanticscholar.org/6197/dbd691037a412b67df688541df7c9ae87c0d.pdf. Ac-
cessed: 2018-12-23.

[8] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” arXiv e-prints,
p. arXiv:1312.6114, Dec. 2013.

[9] “What is a variational autoencoder ?.” https://jaan.io/
what-is-variational-autoencoder-vae-tutorial/. Accessed: 2018-12-23.

[10] “Variational inference: Mean field approximation.” https://www.cs.cmu.edu/~epxing/
Class/10708-17/notes-17/10708-scribe-lecture13.pdf. Accessed: 2018-12-23.

[11] J. V. Stone, “Information Theory: A Tutorial Introduction,” arXiv e-prints,
p. arXiv:1802.05968, Feb. 2018.

[12] “Information theory.” https://en.wikipedia.org/wiki/Information_theory. Accessed:
2018-12-23.

12

https://arxiv.org/pdf/1206.1901.pdf
https://pdfs.semanticscholar.org/6197/dbd691037a412b67df688541df7c9ae87c0d.pdf
https://pdfs.semanticscholar.org/6197/dbd691037a412b67df688541df7c9ae87c0d.pdf
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
https://www.cs.cmu.edu/~epxing/Class/10708-17/notes-17/10708-scribe-lecture13.pdf
https://www.cs.cmu.edu/~epxing/Class/10708-17/notes-17/10708-scribe-lecture13.pdf
https://en.wikipedia.org/wiki/Information_theory

Appendix

A.1. MNIST Results on VAE, CVAE

Figure 6: Left: MNIST generative results from VAE. Right : Latent code interpolation - Results
generated from sampling latent codes and interpolating between those two codes. Credits : [2, 8]

Figure 7: CVAE results comparing CVAE with a simple discriminative regressor with respect to
ground truth labels. Because CVAE is generated via learning a good latent space, it performs better
in image completion. The inputs(incomplete image) to CVAE are the pixels in the middle column
shown in the images in blue. Credits : [2]

13

	Information Theory
	Entropy
	Entropy Measures of 2 Random Variables
	KL Divergence

	Variational Inference
	Definition
	Evidence Lower Bound (ELBO)
	Mean Field Variational Family and Optimization with CAVI

	Variational Autoencoders
	Introduction and Loss Function
	Inference via Optimization - Sampling and Reparametrization
	Reparametrization Trick
	REINFORCE procedure

	Conditional VAE(CVAE)

	Bayesian Neural Networks
	Problem Setup and Bayes by Backpropagation(BBB)

	Acknowledgements
	Appendix
	A.1. MNIST Results on VAE, CVAE

