
Deep Reinforcement Learning

Srivatsan Srinivasan

IACS

March 27, 2019

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 1 / 31

Outline

1 Q-Learning

2 Value based Deep RL

3 Policy based Deep RL

4 Lessons

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 2 / 31

Q-Learning

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 3 / 31

Q-Learning in a nutshell

Initialize
Q-table

Choose
an action

Measure
rewards and
transition

Restart
Episode

Update
Q table

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 4 / 31

Q-Learning

Q(s, a) = Q(s, a) + α

TD Update︷ ︸︸ ︷
(R(s, a) + γmax

a′
Q(s′, a′)︸ ︷︷ ︸

approximates opt. policy directly

−Q(s, a))

Off-policy, Model-Free

Tabular Q-Learning not scalable. EXAMPLES ?

Approximate Q-function

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 5 / 31

Parametric Q-Learning

Use a function approximator to estimate the action-value function

Q∗(s, a) ≈ Q(s, a; θ)

θ - parameters of any function approximator

GOAL : Want to find a function approximation for Q satisfying
Bellman Equation

Q∗(s, a) = Es′∼S|(s,a)[R(s, a) + γmax
a′

Q∗(s′, a′)]

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 6 / 31

Parametric Q Learning with Gradient Descent

Training continues as we keep acquiring data.

Define a target Q+(s, a; θ|(s, a, s′)) ≈ R(s, a) + γmaxa′ Q(s′, a′; θ)

FORWARD PASS

L(θ(i)) =
1

2

∑
j

[
Q+
θ (sj , aj , s

′
j)−Qθ(sj , aj)

]2
BACKPROPAGATION

∇θL(θ(i)) =
∑
j

[
Q+
θ(i)

(sj , aj , s
′
j)−Qθ(i)(sj , aj)

]
· ∇θQθ(i)(sj , aj)

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 7 / 31

Value based Deep RL

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 8 / 31

Deep Q Networks

θ parameters of a deep network.

Figure 1: An Example DQN for Atari Games

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 9 / 31

Potential Issues with simple DQN

Learning from batches of consecutive samples is problematic:

1 Samples are correlated =⇒ inefficient learning

2 Current Q-network parameters determines next training samples
(e.g. if maximizing action is to move left, training samples will be
dominated by samples from left-hand size) =⇒ can lead to bad
feedback loops.

3 Non-stationarity of targets. Remember targets are treated as
pseudo ”ground truths”.

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 10 / 31

HACK 1 - Experience Replay Buffer

Continually update a replay memory table of transitions
(st, at, rt, st+1) as game (experience) episodes are played

Train Q-network on random minibatches of transitions from the
replay memory, instead of consecutive samples.

Reduces correlations between samples as we don’t sample just
from a recent current episode batch of transitions alone.

Reuse allows more efficient use of previous experience as
Q-Learning is incremental.

Solves problems 1 and 2.

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 11 / 31

HACK 2 - Target Network

Target network - Another neural network (θ−) that is more
stationary than the current Q-Network(θ) .

Use θ− as a lagged version of θ which is updated periodically after
specified number of iterations τ (remains constant meanwhile)

Q+(si, ai, s
′
i) = R(si, ai) + γ ∗max

a′
Q(s′i, a

′; θ−)

Solves problem 3

VISIT PSEUDO-CODE FROM NOTES

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 12 / 31

Over-Optimism in DQN

Remember TD-Update for Q-Learning Remember how we calculate the
TD-target

Q+(s, a; θ)︸ ︷︷ ︸
target

= R(s, a)︸ ︷︷ ︸
Reward

+ γmax
a′

Q(s′, a′; θ or θ−)︸ ︷︷ ︸
Discounted max possible Q-value from s’

ISSUE : Over-estimation of Q-values because of combined action
selection and evaluation by the same network and propagates to other
states too.

→ This over-estimation/self-serving bias slows down network training.

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 13 / 31

Double DQN (DDQN-1)

Decompose the max operation in TD update into action selection and
action evaluation.

Q-Network selects action

Target Network evaluates the value.

Q+(s, a, s′) = R(s, a, s′) + γ Qθ−(s′, arg max
a′

(Qθ(s
′, a′)︸ ︷︷ ︸

selection with Q net

)

︸ ︷︷ ︸
evaluation with target net

Might not always improve performance but definitely helps with
stability.

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 14 / 31

Dueling DQN

Advantage Function A(s, a) = Q(s, a)− V (s) gives a relative measure of
utility of an action a from a state s.

Models state value V(s) better, independent of actions → Learn which
states are valuable and learn well the effect of each action (via
advantage) only in those states.

Training procedure similar to DDQN.

Figure 2: Dueling splits the Q into V and A and then aggregates.

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 15 / 31

End of Deep Value Models

VIDEO OF DEEPMIND ATARI

Figure 3: Any Questions on value deep RL (essential for HW) ?

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 16 / 31

Policy based Deep RL

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 17 / 31

Policy Networks

Ultimate Goal : Find best policy - π∗(a|s)
Directly parametrize policy by a neural network π(a|s) ≈ π(a|s; θ)
Take gradients on some loss function on the policy to learn the
best policy.

WHY ? Specifying values might be more complex, policy might be
easier.

Example : a robot grasping an object has a very high-dimensional
state =⇒ hard to learn exact value of every (state, action) pair.
But the policy can be much simpler: just close your hand.

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 18 / 31

Policy Gradients

Define returns of a policy.

J(θ) =
∑
s∈S

dπ(s)V π(s) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Q(s, a)

where dπ(s) = limt→∞ P (st = s|s0, πθ) is the stationary distribution of
states under our policy π(θ).

Use gradient ascent to maximize J(θ)

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 19 / 31

Policy Gradients, REINFORCE

Theorem (Policy Gradient Theorem)

If we define Eπ = Es∼dπ ,a∼πθ , then we can rewrite the gradient of the
returns under a policy πθ as ∇θJ(θ) = Eπ[Qπ(s, a)∇θ log πθ(a|s)]

PROOF - Switch to Lecture Notes.

Key to understand expectations under a policy : Eπ means the
expectation over joint state action pairs induced by a given policy
- the joint distribution of the stationary state distribution and the
actions under π from those states.

REINFORCE uses Monte-Carlo estimates using episode samples
to calculate the expectation Eπ

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 20 / 31

Actor Critic Methods

Two key components in policy gradients : Q, π

Learn both of them together - leads to reduced variance in PG.

Critic updates value function parameters V(s;w) or Q(s,a;w)

Actor updates the policy parameters θ for πθ(a|s) in the direction
suggested by the critic. PSEUDO-CODE in Notes.

A3C/A2C (distributed) - critics learn value, multiple actors
trained in parallel asynchronously/synchronously.

Figure 4: Actor-Critic Setup

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 21 / 31

Off-Policy Policy Gradients

REINFORCE, A3C - On policy learning

Off policy - better/safer exploration, does not require sequential
trajectories and can use samples from a buffer.

J(θ) =
∑
s∈S

dβ(s)
∑
a∈A

Qπ(s, a)πθ(a|s)

= Es∼dβ
[∑
a∈A

Qπ(s, a)πθ(a|s)
]

∇θJ(θ) ≈ Es∼dβ
[∑
a∈A

Qπ(s, a)∇θπθ(a|s)
]

= Eβ
[

πθ(a|s)
β(a|s)︸ ︷︷ ︸

Importance weight

·Qπ(s, a)∇θ log πθ(a|s)
]

(1)

Simply adjust usual PG training with a weighted sum.

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 22 / 31

Deterministic Policy Gradients - DPG

In all previous algorithms, policy was stochastic π(s) = P (a|s).
Policy as a deterministic decision a = µ(s)

J(θ) =

∫
S
ρµ(s)Q(s, µθ(s))ds

∇θJ(θ) = Es∼ρµ
[
∇aQµ(s, a)∇θµθ(s) |a=µθ(s)

]
≈ 1

N

∑
i

∇aQ(si, a; θ) |a=µθ(si) ∇θµθ(s)

This version of deterministic policy gradient can be plugged into
any algorithm.

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 23 / 31

Deep Deterministic Policy Gradients - DDPG

Extends DQN and its ideas to continuous action space using
policy gradients in an actor-critic framework.

Can work in off-policy settings too like DQN since it uses
Q-Learning TD Update and Importance weights to update the
networks.

Promotes exploration with a noisy deterministic policy
µ′(s) = µ(S) +N .

Actor-Critic Training Framework

Select action from µ′, execute and get transitions into a buffer.
Train the Q-Network with DQN TD Error
Update the policy networks using DPG
Update both the target networks whenever necessary.

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 24 / 31

Trust Region Optimization

Decide step size before deciding direction. Use an easier-to-optimize
approximation to decide the direction to move on.

xnew = arg max
x

m(x) such that ||x|| < δ

Figure 5: Trust Region Optimization

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 25 / 31

Minorize-Maximization Algorithm

Find an approximated lower bound of the original objective as the
surrogate objective
Maximize the surrogate function (easy to optimize) continuously
in each iteration.
Guaranteed to converge to optima for convex functions.

Figure 6: Minorize Maximization Example
Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 26 / 31

Trust Region Policy Optimization - TRPO

Safe-RL : Drastic policy updates undesirable.

Make policy updates in the trust-region only.

J(π̂) = J(π) +
∑
s

ρπ̂(s)
∑
a

π̂(a|s)Aπ(s, a)

L(π̂) = J(π) +
∑
s

ρπ(s)
∑
a

π̂(a|s)Aπ(s, a)

L(πθ) = J(πθold) +
∑
s∈S

ρπold
∑
a∈A

πθ(a|s)Âθold(s, a)

= Eπ
πθ(a|s)
πθold(a|s)

Âθold(s, a)

TRPO objective : maxL(πθ)

such that DKL(πθold(.|s)||πθ(.|s)) < δ

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 27 / 31

Proximal Policy Optimization - PPO

KL divergence is sometimes hard to compute

Proposes a simpler update scheme for the policy.

Usual TRPO loss

JTRPO(θ) = E
[
πθ(a|s)
πθold(a|s)︸ ︷︷ ︸

r(θ)

Âθold(s, a)

]

Proposal to clip the ratio of policies.

JCLIP (θ) = E
[
min

(
r(θ)Âθold(s, a), clip(1−ε, r(θ), 1+ε)Âθold(s, a)

)]
Overall loss

JPPO(θ) = E
[
JCLIP (θπ)−c1

∑
k

(V +(s)− VθV (s))2︸ ︷︷ ︸
usual TD loss

+ c2H(s, πθ(.)︸ ︷︷ ︸
Promotes exploration/diversity

)

]

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 28 / 31

REST....

Due to paucity of time, you can find additional and deeper material on
the ones we talked about and other policy gradient variants in the
references provided in the end of the notes.

Figure 7: Any Questions on policy deep RL

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 29 / 31

Lessons

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 30 / 31

General Lessons

Variance reduction in gradient estimates is important.

Off-policy - exploratory and data efficient.

Target Networks to stabilize decisions of online networks.

Entropy regularization to promote exploration.

Shared parameter networks are useful.

Deterministic policy as a single point approximation of stochastic
policy.

Ideas from convex and approximate convex optimization.

Srivatsan Srinivasan (IACS) Deep RL March 27, 2019 31 / 31

	Q-Learning
	Value based Deep RL
	Policy based Deep RL
	Lessons

