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Neural style transfer

I Artistic generation of high perceptual quality images that combines the style or
texture of some input image, and the elements or content from a different one.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A neural algorithm of artistic style,” Aug. 2015.
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Visualizing convolutional networks

4



Motivation for visualization

I With NN we have little insight about learning and internal operations.
I Through visualization we may

1. How input stimuli excite the individual feature maps.
2. Observe the evolution of features.
3. Make more substantiated designs.
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Architecture

I Architecture similar to AlexNet, i.e., [1]
– Trained network on the ImageNet 2012 training database for 1000 classes.
– Input are images of size 256× 256× 3.
– Uses convolutional layers, max-pooling and fully connected layers at the end.
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[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classification with deep convolutional neural
networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[2] Matthew D. Zeiler and Rob Fergus, “Visualizing and understanding convolutional networks,” in Computer Vision.
2014, pp. 818–833, Springer.
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Deconvolutional network

I For visualization, the authors employ a deconvolutional network.
I Objective: to project hidden feature maps into original input space.

– Visualize the activation functions of a specific filter.

I The name “deconvolutional” network may be unfortunate, since the
network does not perform any deconvolutions (next slide).

Matthew D Zeiler, Graham W Taylor, and Rob Fergus, “Adaptive deconvolutional networks for mid and high level
feature learning,” in IEEE International Conference on Computer Vision (ICCV), 2011, pp. 2018–2025
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Devonvolutional network structure
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Devonvolutional network description

I Unpooling:
– The max-pooling operation is non-invertible.
– Switch variables: record the locations of maxima.
– It places the reconstructed features into the recorded locations.
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Devonvolutional network description

I Rectification: signals go through a ReLu operation.
I Filtering:

– Use of transposed convolution.
– Filters are flipped horizontally and vertically

I Transposed convolution projects feature maps back to input space.

I Transposed convolution corresponds to the backpropagation of the
gradient (an analogy from MLPs).
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Feature visualization

1. Evaluate the validation database on the trained network.

2. Record the nine highest activation values of each filter’s output.
3. Project the recorded 9 outputs into input space for every neuron.

– When projecting, all other activation units in the given layer are set to zero.
– This operation ensures we only observe the gradient of a single channel.
– Switch variables are used in the unpooling layers
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First layer of Alexnet
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Second layer of Alexnet
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Fourth layer of Alexnet
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Fifth layer of Alexnet
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Feature evolution during training

I Evolution of features for 1, 2, 5, 10, 20, 30, 40 and 64 epochs.

I Strongest activation response for some random neurons at all 5 layers.

I Low layers converge soon after a few single passes.

I Fifth layer does not converge until a very large number of epochs.

I Lower layers may change their feature correspondence after converge.

16



Architecture comparison

I Check if different architectures respond similarly or more strongly to the same inputs.

I Left picture used filters 7× 7 instead of 11× 11, and reduced the stride from 4 to 2.

I Evidence that there are less dead units on the modified network.

I More defined features, whereas Alexnet has more aliasing effects.
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Image reconstruction
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Image reconstruction

I Reconstruction of an image from latent features.

I Layers in the network retain an accurate photographical representation
about the image, retaining geometric and photometric invariance.

I a[l] corresponds to the latent representation of layer l.

I Solve the optimization problem:

x̂ = arg min
y

J
[l]
C (x,y) + λR(y),

where
J
[l]
C (x,y) =

∥∥a[l](G) − a[l](C)
∥∥2
F .

Aravindh Mahendran and Andrea Vedaldi, “Understanding deep image representations by inverting them,” Nov. 2014
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Regularization and optimization

I Regularization

– α-norm regularizer,
Rα(y) = λα‖y‖αα

– Total variation regularizer:

RVβ(y) = λVβ
∑
i,j,k

((
yi,j+1,k − yi,j,k

)2
+
(
yi+1,j,k − yi,j,k

)2)β/2
.

I Image reconstruction:

1. Initialize y with random noise.
2. Feedforward pass the image.
3. Compute the loss function.
4. Compute gradients of the cost and backpropagate to input space.
5. Update generated image G with a gradient step.
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Example of image reconstruction
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Example of image reconstruction
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Texture synthesis
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Texture examples

conv1_1pool1pool4 pool3 pool2original
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Texture synthesis using convnets

I Generate high perceptual quality images that imitate a given texture.

I Uses a trained convolutional network for object classification.

I Employs the correlation of features among layers as a generative process.

I Output of a layer:

 

 
  

 

 

⇔

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “Texture synthesis using convolutional neural networks”.
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Cross-correlation of feature maps: Gram matrices

I Denote the output of a given filter k at layer l with a
[l]
ijk.

I The cross-correlation between this output and a different channel k′:

G
[l]
kk′ =

n
[l]
H∑

i=1

n
[l]
W∑

j=1

a
[l]
ijka

[l]
ijk′ .

I The Gram matrix:
G[l] = A[l](A[l])T

where (A[l])T = (a
[l]
::1, . . . , a

[l]

::n
[l]
C

).
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Generating new textures

I To create a new texture, we synthesize an image that has similar
correlation as the one we want to reproduce.

I G[l](S) refers to the Gram matrix of the style image, and G[l](G) to the
newly generated image.

J
[l]
S (G[l](S), G[l](G)) =

1

4(n
[l]
Wn

[l]
H)2

∥∥∥G[l](S) −G[l](G)
∥∥∥2
F
,

where ‖G‖F =
√∑

ij(gij)
2 corresponds to the Frobenius norm.

I We combine all of the layer losses into a global cost function:

JS(x,y) =
L∑
l=0

λlJ
[l]
S (G[l](S), G[l](G)),

for given weights λ1, . . . , λL:
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Process description
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Texture examples

conv1_1pool1pool4 pool3 pool2original
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Neural style transfer
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Neural style transfer

I Artistic generation of high perceptual quality images that combine the
style or texture of an input image, and the elements or content from a
different one.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A neural algorithm of artistic style,” Aug. 2015.
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Other examples
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Methodology
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Objective function

I Neural style transfer combines content and style reconstruction.

Jtotal(x,y) = αJ
[l]
C (x,y) + βJS(x,y)

I Need to choose a layer to represent content.
– middle layers are recommended (not too shallow, not too deep) for best results.

I A set of layers to represent style.

I Total cost is minimized using backpropagation.

I Input y is initialized with random noise.

I Replacing the max-pooling layers with average pooling improves the
gradient flow, and this produces more appealing pictures.

34



DeepDream
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Art from visualization techniques
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Inceptionism: Going Deeper into Neural Networks

I Discriminative trained network for classification.
– First layer maybe looks for edges or corners.
– Intermediate layers interpret the basic features to look for overall shapes or

components, like a door or a leaf.
– Final layers assemble those into complete interpretations: trees, buildings, etc.

I Turn NN upside down: what sort of image would result in Banana.
– need to add texture information (prior).

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html 37



Class generation
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Visualizing mistakes

I Generating dumbbells always pictures them with an arm:

I The network failed to completely distill the essence of a dumbbell.

I Visualization can help us correct these kinds of training mishaps.
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Enhancing feature maps

I Instead of prescribing which feature we want the network to amplify, we
can also let the network make that decision.

– feed the network an image.
– then pick a layer and ask the network to enhance whatever it detected.

I Lower layers tend to produce strokes or simple ornament-like patterns:
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Enhancing feature maps: higher layers

I With higher level layers complex features or even whole objects tend to emerge.

– these identify more sophisticated features in images...

I The process creates a feedback loop: if a cloud looks a little bit like a bird, the
network will make it look more like a bird.

I If we train on pictures of animals:
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Enhancing features: bias

I Results vary quite a bit with the kind of image, because the features that are entered
bias the network towards certain interpretations.
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We must go deeper: Iterations

I Apply the algorithm iteratively on its own outputs and apply some
zooming after each iteration.

I We get an endless stream of new impressions.
I We can even start this process from a random-noise image.
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Thank you!

Questions?
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