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Training an RNN

The training is extremely difficult due to the recurrent connections
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Training an RNN

The first update of the gradients will be fine. But, as we are going further back in 
time the signals (gradients) might become too strong or too weak



The vanishing/exploding gradient
● RNN formulation

● Total Loss is the sum of each loss in time

For the loss function wrt to the entire sequence in the interval t = [1,T] we need to 
sum up the loss function in all the time steps



Loss minimization
● Minimize the total loss wrt the recurrent weights

● Let explore with chain rule just a single time step
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Chain rule for a single time step

Even computing the gradient in one time step, it requires a huge chain rule 
application because it demands all the previous times steps



Chain rule for a single time step

Let’s explore deeper ...



The bad term: 
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The bad term: 
● Chain rule again

Jacobian matrix of the state to state transition.
The gradients is a product of Jacobian matrices (huge product)



The bad term: 
● Chain rule again

Explore further each the Jacobian matrix (almost done)



Explore the Jacobian matrices

● Remind: 

● Hence: 

● The Norm: 
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Explore the Jacobian matrices

● Remind: 

● Hence: 

● The Norm: 

Where βs are the values of the norms (numbers)



The vanishing/exploding gradient

> 1:  Exploding  gradients

< 1:  Vanishing  vanishing

It happens very fast as the time increases 



● Vanishing gradient:
Make it difficult to know in which direction to move for improving the 
loss function

What happens?

● Exploding gradient:
The learning becomes unstable



● Clipping gradients method

● Special RNN with leaky units such as
 Long-Short-Term-Memory (LSTM) and Gated Recurrent Units (GRU)

● Echo states RNNs

Solutions



Outline

● Exploding and Vanishing Gradients

● Reservoir Computing RNN



Reservoir Computing

● The recurrent weights from hidden to hidden state
and the input weights mapping to hidden
are extremely difficult to be trained

● An approach to avoid this difficulty is to fix the recurrent and input 
weights and learn only the output weights: Echo State Network (ESN)

● The hidden units form a Reservoir of temporal features that capture 
different aspects from of the history inputs
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Insight description of RC

● Takes an arbitrary length sequence input vector 
● Mapping it into a high-dimensional feature space (recurrent state     )
● A linear predictor (lin. regression) is applied to find 



Speed up the training

● We essentially train only the output weights:
○ Drastically speeds up the training
○ Great advantage of RC

● Set and fix the input and recurrent weights to represent a rich history:
○ Recurrent states as dynamical systems near to the stability
○ Stability means Jacobians close to one
○ Leaky hidden units that partially remember the previous state

✓ Avoid exploding/vanishing gradients
✓ No need of training



RC formulation

● M given inputs: 

● P desired outputs:

● In the training period T with training set: 

● Suppose a reservoir with N hidden recurrent states

● Looking for a functional relationship: 



Weights and connections

● Reservoir nodes with recurrent connections: 

● The inputs are connected to reservoir nodes through a linear layer:

● The reservoir nodes are connected with output with a linear layer:
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● Reservoir nodes with recurrent connections: 

● The inputs are connected to reservoir nodes through a linear layer:

● The reservoir nodes are connected with output with a linear layer:



Heuristic choice of weights

The input and recurrent weights are initialized randomly and then are fixed

So, we are not training them… boosting the training

How should we fix them to optimize the prediction? Later… 



Dynamics of hidden states

The hidden states evolve dynamically in time as:

●          the leakage rate, controls the speed of evolution (leaky unit)

●           the activation function (usually tanh() and sigmoid)
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Since we have the evolution of the state, a linear layers gives the output

Training

Determine the weights and bias by minimizing the MSE loss

● Linear Regression (simple!)

●     is a ridge regression parameter (the last is a regularization term)



No free lunch...
The training is very easy and fast but there are hyper-parameters

● Optimize for 

● Hyper-parameters that govern the random generation of the weights
○ The degree of a reservoir nodes D:

➢         is sparse with D/N non-zero elements

○ The spectral radius ρ:
➢ The largest eigenvalue of           is ρ

○       : initialized by a uniform distribution in the [-σ,σ]

● No systematic method to optimize the hyper-parameters
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Recap

● The network nodes each have distinct dynamical behavior

● Time delays of signal may occur along the network links

● The network hidden part has recurrent connections

● The input and internal weights are fixed and randomly chosen

● Only the output weight are adjusted during the training.



Example: Chaotic time series prediction
Data

RC implementation



Example: Chaotic time series prediction



Reservoir Computing

● Forecasting the weather
● Controlling complex dynamical systems
● Predicting and analyzing time series
● Pattern recognition

○ more...




