
CS 209B: Advanced Topics in Data Science
Protopapas, Glickman

Recurrent Neural Networks:
Exploding, Vanishing Gradients & Reservoir Computing

Authors: M. Mattheakis, P. Protopapas

1 Exploding and Vanishing Gradient

Training a Recurrent Neural Network (RNN) seems to simple since we have just a set of
weight matrices, however, it is extremely hard due to its recurrent connections. We can
analyze and understand the reason of this hardness by using the tool of back propagation
and chain rule. For instance, as we multiply all the weight matrices in forward propa-
gation we need to do the same in the back propagation. As we go backward, the signal
may become too strong or too weak; this is the gradient exploding or vanishing problem,
respectively. Essentially, as we go further back in time the gradients become stronger or
weaker, hence for few times steps we do not observe the exploding or vanishing problem
but it appears rabidly as the time sequence increase. Vanishing gradients make it difficult
to know which direction the parameters should move to improve the loss functions, while
exploding gradients make the learning unstable. The forward propagation for an input
sequential xt and for an output ŷt of an RNN is graphically demonstrated in Fig. 1 and
written:

ht = gh (V xt + U ht−1 + b′) , (1)
ŷt = gy (W ht + b) (2)

where Eq. (1) is the hidden-to-hidden recurrence with an arbitrary activation function gh

and Eq. (2) accounts to the output layer with activation function gy. The weight matrices
V and W associate, respectively, to the input and output layers while U is the recurrent
weight matrix on which we focus on this notes.

In order to calculate the total loss function L with respect to the entire sequence in the
interval t = (1,T) we essentially have to sum up the loss function in all the time steps,
hence

L =

T∑
t=1

Lt. (3)

If we choose to minimize the loss function with respect to the hidden-to-hidden recurrence
weights U we need to calculate the derivative

dL
dU

=

T∑
t=1

dLt

dU
, (4)

Last Modified: March 6, 2019 1

Figure 1: Recurent Neural Network.

Even computing the derivative for the loss function in a single time step it requires a
very large chain rule application because it essentially demands all the previous time step
calculations. That becomes obvious by using the chain rule

dLt

dU
=
∂Lt

∂ŷt

∂ŷt

∂ht

∂ht

∂U

=

t∑
k=1

∂Lt

∂ŷt

∂ŷt

∂ht

∂ht

∂hk

∂hk

∂U
. (5)

We explore deeper the Eq. (5) by investigating the term ∂ht/∂hk. To compute this term we
have to use again the chain rule as:

∂ht

∂hk
=

∂ht

∂ht−1

∂ht−1

∂ht−2
· · ·

∂hk

∂hk−1

=

t∏
j=k+1

∂h j

∂h j−1
. (6)

The expression in the product of Eq. (6) is a derivative between two vectors and thus, it
is the Jacobian matrix of the state to state transition function. Hence, the gradient ∂ht/∂hk

is a product of Jacobian matrices each associated with a step in the forward computation.
We explore further the term in the product (6) by using Eq. (1), then we obtain

∂h j

∂h j−1
= UT g′, (7)

with prime denotes derivate with respect to ht−1. Taking the norm of the Jacobian (7)
yields ∥∥∥∥∥∥ ∂h j

∂h j−1

∥∥∥∥∥∥ =
∥∥∥UT g′

∥∥∥ ≤ ∥∥∥UT
∥∥∥ ∥∥∥g′

∥∥∥ = βU βh, (8)

Last Modified: March 6, 2019 2

where we assumed that βU, βh are the values of the norms
∥∥∥UT

∥∥∥ , ∥∥∥g′
∥∥∥, respectively.

Combining Eqs. (6) and (8) we get∥∥∥∥∥∂ht

∂hk

∥∥∥∥∥ =

∥∥∥∥∥∥∥
t∏

h=k+1

∂h j

∂h j−1

∥∥∥∥∥∥∥ ≤ (
βU βh

)t−k . (9)

Subsequently, as the sequence becomes larger and larger (t→ ∞) the term 9 blows up or
becomes very small whether the product (βU βh) is larger or smaller than one, respectively.
This is the exploding or vanishing gradient problem and happens very quickly since t is on
the exponent.

We can overpass the problem of exploding or vanishing gradients by using the clipping
gradient method, by using special RNN architectures with leaky units such as Long-Short-
Term-Memory (LSTM) and Gated Recurrent Units (GRU), or by using echo state RNNs.
In the following section we discuss about a quite special echo state RNN which is called
Reservoir Computing.

Exercise: Suppose a RNN with two time steps (2-sequence) and calculate the backpro-
gation by using the chain rule in the derivatives. Insightful exercise.

2 Reservoir Computing

The recurrent weights mapping from ht−1 to ht hidden states and the input weights map-
ping from xt to ht are some of the most difficult parameters to learn in an RNN. One
approach to avoid this difficulty is to fix the input and the recurrent weights such that
the recurrent hidden units do a good job of capturing the history of the past inputs, and
learn only the output weights. This is the backbone idea for the echo state networks (ESN)
and liquid state machines. This networks are called reservoir computing (RC) to denote the
fact that the hidden units form a reservoir of temporal features that may capture different
aspects of the history inputs (Fig. 2). An RC RNN work very well in the prediction
task including forecasting the weather, controlling complex dynamical systems, pattern
recognition, and predicting time series.

Figure 2: Reservoir Computing Network.

An insight way to think RC RNNs is that they map an arbitrary length sequence (the
history of the inputs up to the time t) into a high-dimensional fixed-length feature vector

Last Modified: March 6, 2019 3

(the recurrent state ht). Then a linear predictor, which is typically a linear regression, is
applied to solve the problem of the interest. This makes RC RNNs very efficient and
drastically speeds up the training since we only need to train the output weights by using
the well known, from linear regression, learning algorithms. An important question that
may naturally be asked is how to set the input and the recurrent weights so that a rich set
of sequential history can be represented in the RNN state. The answer that is given, in the
context of RC, is to view the recurrent net as a dynamical system and set the input and the
recurrent weights such that the dynamical system is near the edge of stability. The stability
is crucial for avoiding the exploding/vanishing gradients because it essentially means that
the eigenvalues of the state to state Jacobian are close to one and hence the gradients do
not explode or vanish (see Eq. (9)). Moreover, RC very often employs leaky hidden units
that makes the hidden neurons to partially remember the its previous activation. This
type of neurons performs a leaky integration of its activation from previous time steps
and thus, they are called leaky integrator neurons. In summary, an RC is distinguished from
traditional feed-forward NNs by the following qualities:

• The network nodes each have distinct dynamical behavior

• Time delays of signal may occur along the network links

• The network hidden part has recurrent connections

• The input and internal weights are fixed and randomly chosen

• Only the output weight are adjusted during the training.

Let us describe the formulation of the RC RNN of Fig. 2. We are seeking for a
functional relationship between M given sequential inputs u(t) ∈ IRM and P desired
outputs ŷ(t) ∈ IRP, with {t = 1, 2, · · · , T} and T is the number of data points in the training
dataset {u(t),y(t)}Tt=1. We suppose a reservoir with N dynamical recurrent hidden nodes
whose state vector is r(t) ∈ IRN. The reservoir nodes have recurrent connections denoted
by the matrix Wres ∈ IRN×N. The inputs u are connected to the reservoir nodes through a
linear input layer Win ∈ IRM×N. In turn, the reservoir nodes are connected to the outputs
through a linear output layer Wout ∈ IRN×P. The hidden states and the reservoir dynamics
are given by

r(t + ∆t) = (1 − α)r(t) + α f (Wresr(t) + Winu(t) + b) (10)

where ∆t � 1, b ∈ IRN is a bias vector, and f (.) is the activation function usually chosen
to be sigmoid or tanh(). Equation (10) describes leaky units with α is the leakage rate
parameter (0 < α ≤ 1) that controls how fast the reservoir evolves; for instance, α → 0
the reservoir evolves slowly. The weighted adjacent matrix Wres, the input matrix, and
the bias vector are initially randomly drawn and then they are fixed. The output vector is
taken to be a linear function of the reservoir state and defined as:

ŷ(t) = Woutr(t) + c (11)

Last Modified: March 6, 2019 4

where c ∈ IRP is the bias vector of the output layer. For the prediction task, we adjust
Wout and c by using a finite duration training data samples so that the resulting output
represents the input data in a least-square sense. In other words, we determine the Wout

and c by minimizing the loss function

L =

T∑
t=1

||Woutr(t) + c − y(t)||2 + β Tr
(
WoutWT

out

)
(12)

in the training set, where the second term is a regularization included to avoid overfitting
with β is the ridge regression parameter which typically takes small values, and the norm of
a vector reads ||q|| = qTq. The great advantage of RC comparing to other RNNs is that
we have to estimate only the weights of the output layer, hence the training becomes very
efficient and computationally feasible for relatively large N.

In addition to the parameters α, ∆t, b in Eq. (10), the reservoir dynamics depends on
the parameter D, ρ, and σ, which govern the random generation of the Win and Wres. In
particular, the adjacency matrix Wres is typically sparse with density of non-zero matrix
elements given by D/N, so the average degree of a reservoir node is D. The values of
the non-zero elements are randomly drawn independently from a uniform distribution
between -1 and 1. We then uniformly rescale all the elements of the Wres so that the
largest value of the magnitude of its eigenvalues becomes ρ, which is referred as the
spectral radius of the Wres. The elements of the Win are randomly chosen from a uniform
distribution in the range [σ, σ]. Unfortunately, there is not yet any method for optimizing
these parameters, so we usually chose them in a heuristic way (no free lunch). This is the
disadvantage of the RC network.

Figure 3: Predict the chaotic time-series of the Mackey-Glass system using RC. Black line
is the ground truth (data) whereas red is the RC prediction. For the implementation we
use the python RC code of the Ref. [5].

As implementation we employ an RC to predict a chaotic time-series of the Mackey-
Glass system which is a standard benchmark system for time series prediction and also this
is the example that was discussed in the seminal paper [2] where the RC was introduced.
We have one input u(t), one output ŷ(t), and employ N = 1000 reservoir neurons. A 2000
step sequence is used for training the output layer and predict the time series for 1000
future step. We found that the hyper-parameters D/N = 0.2, ρ = 1.5, and σ = 1, work well
in the specific task. The results are represented by Fig. 3 where the Mean Square Error
(MSE) in the testing data given by

MSE =

√
〈
(
ŷ(t) − y(t)

)2
〉

where 〈.〉 shows averaging in the testing time sequence, is calculated to be MSE = 0.09
verifying the good predictions of the RC network.

Last Modified: March 6, 2019 5

References

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press (2017).

[2] H. Jaeger, and H. Haas, Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
Energy in Wireless Communication, Science 304, 78-80 (2014).

[3] M. Lukosevicius, and H. Jaeger,Reservoir computing approaches to recurrent neural net-
work training, Computer Science Review 3 (3), 127-149 (2009).

[4] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E. Ott, Reservoir observers:
Model-free inference of unmeasured variables in chaotic systems, Chaos 27, 041102 (2017).

[5] https://github.com/cknd/pyESN

[6] G. N. Neofotistos, M. Mattheakis, G. Barbaris, J. Hitzanidi, G. P. Tsironis, and E. Kaxi-
ras, Machine learning with observers predicts complex spatiotemporal behavior, Frontier of
Phys. - Quantum Computing, 7, 24, (2019).

Last Modified: March 6, 2019 6

	Exploding and Vanishing Gradient
	Reservoir Computing

