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Motivation for convnets

I Less parameters (weights) than a FC network.

I Invariant to object translation.

I Can tolerate some distortion in the images.

I Capable of generalizing and learning features.

I Require grid input.

4Source: http://cs231n.github.io/



CNN layers

I Convolutional layer: formed by filters, feature maps, and activation functions.

– Convolution can be full, same or valid.

noutput =
⌊ninput − f + 2p

s
+ 1
⌋
.

I Pooling layers: reduces overfitting.

I Fully connected layers: mix spacial and channel features together.

5Source: http://cs231n.github.io/



Introductory convolutional network example

Input

32x32x1
f = 2
s = 2
p = 0

 
 

f = 5
s = 1
p = 0

Convolutional layer Max­pooling
Fully connected

sigmoid or
softmax

200 neurons

10 channels 10 channels

28x28x10 14x14x10

I Training parameters:

– 250 weights on the conv. filter + 10 bias terms.
– 0 weights on the max-pool.
– 13× 13× 10 = 1, 690 output elements after max-pool.
– 1, 690× 200 = 338, 000 weights + 200 bias in the FC layer.
– Total: 338,460 parameters to be trained.
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Classic Networks
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LeNet-5

I Formulation is a bit outdated considering current practices.
I Uses convolutional networks followed by pooling layers and finishes with

fully connected layers.
I Starts with high dimensional features and reduces their size while

increasing the number of channels.
I Around 60k parameters.

   

32x32x1 28x28x6 14x14x6 10x10x16 5x5x16

f = 5
s = 1

f = 2
s = 2

avg pool avg pool

f = 2
s = 2

f = 5
s = 1

conv. layer conv. layer

120 84

 

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. 8



AlexNet

I 1.2 million high-resolution (227x227x3) images in the ImageNet 2010 contest;

I 1000 different classes; NN with 60 million parameters to optimize (∼ 255 MB);

I Uses ReLu activation functions;. GPUs for training; 12 layers.

=    

227x227x3
55x55x96 27x27x96 27x27x256 13x13x256

13x13x384 13x13x384 13x13x256 6x6x256 9216 4096

 

4096

f = 11
s = 4

f = 3
s = 2

f = 5
same

f = 3
s = 2

max-pool

f = 3
s = 1

f = 3
s = 2

Softmax
1000

Softmax
1000

f = 3
s = 1

max-pool

max-pool

conv. layer conv. layer

conv. layer conv. layer conv. layer

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classification with deep convolutional neural
networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012 9



VGG-16 and VGG-19

I ImageNet Challenge 2014; 16 or 19 layers; 138 million parameters (522 MB).

I Convolutional layers use ‘same’ padding and stride s = 1.

I Max-pooling layers use a filter size f = 2 and stride s = 2.

224x224x3

CONV = 3x3 filter, s = 1, same  
MAX-POOL = 2x2 filter, s = 2

[CONV 64]
x2

224x224x64
POOL

112x112x64
[CONV 128]

x2

112x112x128
POOL

56x56x128

[CONV 256]
3

56x56x256
POOL

28x28x256
[CONV 512]

x3

28x28x512
POOL

14x14x512

[CONV 512]
x3

14x14x512
POOL

7x7x512 FC
4096

FC
4096

Softmax
1000

Karen Simonyan and Andrew Zisserman, “Very deep convolutional networks for large-scale image recognition,” 2014. 10



Residual networks
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Residual block

I Residual nets appeared in 2016 to train very deep NN (100 or more layers).

I Their architecture uses ‘residual blocks’.

I Plain network structure:

a[l] z[l+1] a[l+1] z[l+2] a[l+2]

linear ReLu linear ReLu

I Residual network block:

a[l] z[l+1] a[l+1] z[l+2] a[l+2]

identity

linear ReLu linear ReLu

+

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual learning for image recognition,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
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Equations of the residual block

I Plain network:

a[l] = g(z[l])

z[l+1] = W [l+1]a[l] + b[l+1]

a[l+1] = g(z[l+1])

z[l+2] = W [l+2]a[l+1] + b[l+2]

a[l+2] = g(z[l+2])

I Residual block:

a[l] = g(z[l])

z[l+1] = W [l+1]a[l] + b[l+1]

a[l+1] = g(z[l+1])

z[l+2] = W [l+2]a[l+1] + b[l+2]

a[l+2] = g(z[l+2] + a[l])

I With this extra connection gradients can travel backwards more easily.

I The residual block can very easily learn the identity function by setting W [l+2] = 0
and b[l+2] = 0.

I In such case, a[l+2] = g(a[l]) = a[l] for ReLu units.

– It becomes a flexible block that can expand the capacity of the network, or
simply transform into a identity function that would not affect training.

13



Residual network

I A residual network stacks residual blocks sequentially.

   

I The idea is to allow the network to become deeper without increasing the training
complexity.

# layers

tr
ai

ni
ng

 e
rr

or

Plain

# layers
tr

ai
ni

ng
 e

rr
or

ResNet

“practice”

“theory”
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Residual network

I Residual networks implement blocks with convolutional layers that use ‘same’
padding option (even when max-pooling).

– This allows the block to learn the identity function.

I The designer may want to reduce the size of features and use ‘valid’ padding.

– In such case, the shortcut path can implement a new set of convolutional layers
that reduces the size appropriately.

15



Residual network 34 layer example
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Classification error values on Imagenet

I Alexnet (2012) achieved a top-5 error of 15.3% (second place was 26.2%).

I ZFNet (2013) achieved a top-5 error of 14.8% (visualization of features).

method top-1 err. top-5 err.

VGG [40] (ILSVRC’14) - 8.43†

GoogLeNet [43] (ILSVRC’14) - 7.89
VGG [40] (v5) 24.4 7.1
PReLU-net [12] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

17



Dense Networks

I Goal: allow maximum information (and gradient) flow −→ connect every layer
directly with each other.

I DenseNets exploit the potential of the network through feature reuse −→ no need to
learn redundant feature maps.

I DenseNets layers are very narrow (e.g. 12 filters), and they just add a small set of
new feature-maps.

18



Dense Networks II

I DenseNets do not sum the output feature maps of the layer with the incoming
feature maps but concatenate them:

a[l] = g([a[0], a[1], . . . , a[l−1]])

I D imensions of the feature maps remains constant within a block, but the number of
filters changes between them −→ growth rate:

k[l] = k[0] + k · (l − 1)

19



Dense Networks III: Full architecture

20



Other combination blocks
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Network in network
I Influential concept in the deep learning literature [Lin2013].

I Authors goal was to generate a deeper network without simply stacking more layers.

I They replace few filters with a smaller perceptron layers:

– It is compatible with the backpropagation logic of neural nets.
– It can itself be a deep model leading to rich separation between latent features.

I There is a ReLu operation after every neuron:

– A richer nonlinear function approximator can serve as a better feature extractor.

. .
 .

. .
 .

Min Lin, Qiang Chen, and Shuicheng Yan, “Network in network,” 2013. 22



1x1 Convolution

I A particular case from the previous concept are 1x1 convolutions.

   

6x6x32 1x1x32 6x6x # filters 28x28x192 28x28x32

ReLU

CONV 1x1
32

I If the input had two dimensions, the 1× 1 convolution would correspond to a scalar
multiplication.

I With a greater number of channels (say, 32), the convolutional filter will have
1× 1× 32 elements (more than a simple scaling) + non-linear activation.

I 1x1 convolution leads to dimension reductionality → feature pooling technique.

– Reduces the overfitting capacity of the network.

I FC layers can be regarded as 1x1 convolutions if they go after a FC layer.

23



Global Average Pooling

I Another idea from [Lin2013] is a technique to simplify the last layers of CNNs.

I In traditional CNNs, feature maps of the last convolution layer are flattened and
passed on to one or more fully FC, which are then passed on to softmax.

– An estimate says that the last FC layers contain 90% of parameters of the NN.

I Global Average Pooling uses a FC
layer with as many outputs as the
number of classes being predicted.

I Then, each map is averaged given
rise to the raw scores of the classes
and fed to softmax.

– No new parameters to train
(unlike the FC layers),
leading to less overfitting.

– Robust to spatial translations
of the input.

24



Inception module

I The motivation behind inception networks is to use more than a single type of
convolutional layer at each layer.

I Use 1× 1, 3× 3, 5× 5 convolutional layers, and max-pooling layers in parallel.

I All modules use same convolution.

I Näıve implementation:

 

28x28x192

1x1
64 ch. 

3x3
‘same’

128 ch. 

5x5
‘same’
32 ch.

MAX-POOL
‘same’, s = 1

32 ch.

 
128

3232

64

 
 

28

28

28x28x256

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9. 25



Inception module with dimension reductions

I Use 1× 1 convolutions that reduce the size of the channel dimension.

– The number of channels can vary from the input to the output.

Previous 
Activation

1x1 
CONV

1x1 
CONV

3x3 
CONV

1x1 
CONV

5x5 
CONV

MAXPOOL
3x3,s = 1

same

1x1 
CONV

Channel
Concat

26



GoogLeNet network

I The inception network is formed by concatenating other inception modules.

I It includes several softmax output units to enforce regularization.
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Summary of networks

I We are now reaching top-5 error rates lower than human manual classification.

28



Object recognition systems
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Sliding-window detectors

I Brute force approach −→ several window sizes moved throughout the image.

I Patches are cut and warped −→ passed through a classification CNN.

I Pseudo-code:

for window in windows
patch = get patch(image, window)
results = detector(patch)

30



Sliding window architecture
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Selective Search

I Goal: Reduce number of proposed windows −→ Regions of interest (ROI).

I Start with single pixel as individual groups −→ pair groups w/ similarity.

– Capture all scales: use hierarchical algorithm.
– Diversification: multiple strategies that consider all use cases.
– Fast to Compute: should not become a bottleneck?

Uijlings, Jasper RR, et al. ”Selective search for object recognition.” International journal of computer vision (2013).
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R-CNN

I Use ROI proposal and feed a CNN.

I Pseudo-code:

ROIs = region proposal(image)
for ROI in ROIs

patch = get patch(image, ROI)
results = detector(patch)

33



Boundary box regressor

I ROI computation is expenseive.

I In order to reduce computation −→ simplify the ROI proposal.

I Refine the anchors −→ FC layer and regression loss.

34



Fast R-CNN

I R-CNN is slow in training & inference −→ repeat feature extractions 2,000 times.

I Use a feature extractor (a CNN) to extract features for the whole image first.

I Warp the patches to a fixed size using ROI pooling and feed them to FC layers.

I Pseudo-code:

feature maps = process(image)
ROIs = region proposal(image)
for ROI in ROIs

patch = roi pooling(feature maps, ROI)
results = detector2(patch)
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ROI Pooling

I Perform max-pooling operations on feature maps for regions of different sizes.
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Faster R-CNN

I Substitute the region proposal with a Region proposal network (RPN).

I For each location in the feature maps, RPN makes k guesses.
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RPN (Region Proposal Network)

I Faster R-CNN uses far more anchors. It deploys 9 anchor boxes: 3 different scales at
3 different aspect ratio. Using 9 anchors per location, it generates 2 9 objectness
scores and 4 9 coordinates per location.
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Visualizing ROI proposals

1. Perform ROI proposals (RPN or distance algorithm) −→ feed to CNN.

2. Output boundary box (refinements) and objectiveness score.

3. Perform per class non-maximum suppression −→ removes duplicate objects.
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Performance for R-CNN methods

I Faster R-CNN is even much faster.
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Mask R-CNN

I From Faster R-CNN we add another CNN to mask regions.

I The additional CNN mask is only for coloring.
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ROI Align

I Refinement of the ROI pooling.

I Makes every target cell to have the same size.

I It also applies interpolation.
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Single Shot Detectors

I Goal: Do not generate ROI proposals.

feature maps = process(image)
results = detector(feature maps) # No more separate step for ROIs.

I Sliding windows/ROIs requires too many shapes to cover most objects.

I Then use detectors to predict class and boundary box −→ this is expensive.

I Single shot detectors predict both boundary box and class at the same time.

I These networks are trained end to end −→ they are very fast, and increases accuracy
w.r.t. to purpose oriented subnetworks.

I Single shot detector often trades accuracy with real-time processing speed.
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Single Shot Detectors II

I ROI based:

I Single Shot:
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YOLO Architecture

I Number of predicted parameters on output feature maps 8× 8:

8× 8×D −→ (S, S,B · 5 + C) = 8× 8×B × 5 + 20 for C=20.

I YOLO has evolved to YOLOv2, YOLO9000 and YOLOv3, with iprovements (such as
multiscale, multiple box predictions, location box, word tree search, FPN, etc.).
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SSD Architecture

I Uses a CNN as a feature extractor −→ same as Faster R-CNN.

I Then add custom convolution layers to make predictions.

I Previous model can detect large objects only −→ make independent object detections
from multiple feature maps.
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Feature Pyramid Networks (FPN)

I Feature extractor to improve accuracy and speed.

I It helps to generate higher quality features.

I On higher layers the semantic value increases; vs. spatial resolution.

I We can mix the information flow.
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Feature Pyramid Networks (FPN) II

I FPNs can work with object detectors −→ RPNs and clasifiers:
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Face recognition systems
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Face recognition systems

I Verification

– Input: Image from a person to identify and a ID.
– Objective: decide whether the input image corresponds to the ID.

I Recognition

– Database of K people.
– Input: Image from a person to identify.
– Objective: Identify the person in the database or reject recognition.

I Recognition is a much harder problem than verification for a specified performance.
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One-shot learning

Verification:

I We only have a single photo to learn the characteristics of a given person.

I Then, given a new photo, output if they correspond to the same person.

I We can construct a similarity function or distance between images:

d(img1, img2)

– Then, set a threshold to balance accuracy and precision.
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Siamese network

I Build a NN to generate a latent representation of an image.

I Perform two independent calculations on the input.

I Construct a loss function to determine distance between latent features:

f(x, y) = ‖f(x)− f(y)‖2 = ‖a[L]
x − a[L]

y ‖2

Taigman, Yaniv, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. ”Deepface: Closing the gap to human-level
performance in face verification.” In Proceedings of the IEEE conference on computer vision and pattern recognition, 2014.
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Loss functions

I Loss should be small for the same person and far apart for different people.

I Use cross-entropy and define:

f(x, y) =
∑
i

wi|a[L](x)
i − a[L](y)

i |+ bi

I χ2 loss:

f(x, y) =
∑
i

wi
(a

[L](x)
i − a[L](y)

i )2

(a
[L](x)
i + a[L](y))

– The representations in DeepFace are normalized between 0 and 1 to reduce the
sensitivity to illumination changes.
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Triplet loss

I Given three images A, P, N:

‖f(A)− f(P )‖2 + α < ‖f(A)− f(N)‖2

L(A,P,N) = min
(
‖f(A)− f(P )‖2 − ‖f(A)− f(N)‖2 + α, 0

)
I Training:

I Evaluation:
f(x, y) = ‖a[L]

x − a[L]
y ‖2 ≶ τ

I Train on 10k pictures of 1k persons.

I Need to choose triplets that are “hard to train on.

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. ”Facenet: A unified embedding for face recognition and
clustering.” In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 815-823. 2015. 54



Thank you!

Questions?
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