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Historical overview




The origins of optimal transport
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Gaspard Monge proposed the first idea in 1781.
How to move dirt from one place (d’eblais) to another (remblais) with minimal effort?

Enunciated the problem of finding a mapping F' between two distributions of mass.

vV v v .Yy

Optimization with respect to a displacement cost c(z,y).



Transportation problem I

» Formulated by Frank Lauren Hitchcock in 1941.

Factories & warehouses example

» Fixed number of factories, each of which produces good at a fixed output rate.
» Fixed number of warehouses, each of which has a fixed storage capacity.
» There is a cost to transport goods from a factory to a warehouse.

» Goal: Find the transportation of goods from factory — warehouse with lowest
possible cost.



Transportation problem II: Example

Transportation costs:

| Wy Wo Wi Wi
» [ makes 5 units. EF | 5 4 7 6

» [ makes 4 units. | 2 5 3 5
F| 6 3 4 4

» [3 makes 6 units.

Warehouses:

W1 can store 5 units.

| 2

» W5 can store 3 units.
» V3 can store 5 units.
| 2

W, can store 2 units.




Transportation problem III:

» One factory can transport product to multiple warehouses.

» One warehouse can receive product from multiple factories.

» The Transportation problem can be formulated as an ordinary linear constrained
optimization problem (LP):

min
Tij

s.t.

d5x11 +4x12 + Tx13 4 6214 + 2721 + S92
+3x93 + 2294 + 6131 + 3130 + 433 + 434

11 +T12 + 713 + T4 =5
T21 + T2z + Tz + XT2g = 4
x31 + T32 + w33 + X34 =6
11 + 221 + 231 <9
T12 + T2 + 32 < 3
x13 + X23 + 233 < 5
14+ Toa + 34 < 2



Definitions and formulations




Definitions

» Probability simplex:
Anz{aiem ( Zaizl}
i=1

» Discrete probability distribution: p = (p1,pa,...,Pn) € Ay,.
» Space X: support for the distritution (coordinates vector/array, temperature, etc.).

» Discrete measure: given weights p = (p1,pa,...,pn) and x = (21,22, ..., Zy,)
locations,
i

» Radon measure: o € M(X),

— X is equipped with a distance, integrating it against a continuous function f

/f oz /f 2)pal®



More definitions

> Set of positive measures: M, such that [, f(z)da(z) — Ry.
> Set of probability measures: MY, such that [, da(z) = 1.

LI
1y (1, O '@ AA.

Discrete d =1  Discrete d = 2 Density d =1

Density d = 2
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Assingment and Monge problems

> n origin elements (factories),

» m = n destination elements (warehouses),

& €y .\
> we look for a permutation (an assignment b ./. Y2

2
in the general case) of elements

: .
Y1, Y2 T x3
1 n T4 Y3
min — E Ci,0(3) : 7
oc€Perm(n) N U1

i=1
» The set of n discrete elements has n! possible permutations.

» Works after Monge, aimed to simplify the problem, such as Hitchcock in 1941, or
Kantorovich in 1942.
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Kantorovich relaxation

» Goal: find a minimal transport plan F such that
FeU(p,q)={FeRY" | Fl=pand F'1=q}
» F1 = p sum the rows of F — all goods are transported from p.

» F71 = q sum the columns of F — all goods are received in q.

» p and q are probability distributions — mass is conserved and equals 1.
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Relation to linear programming

» The Kantorovich problem is an LP:

Lc(p,q) = mlr& tr(FC)

: 1)
Fl1=p, F'1=q

» LP programs can be solved with simplex method, interior point methods, dual
descent methods, etc. The problem is convex.

» One option is to use LP solvers: Clp, Gurobi, Mosek, SeDuMi, CPLEX, ECOS, etc.
» Spezialized methods exist (and Python, C, Julia, etc. libraries)

— Network simplex
— Approximate methods: Sinkhorn, smoothed versions, etc.
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Kantorovich formulation for arbitrary measures

» Now C needs to be a function:
clz,y): X xY =Ry

» Discrete measures a = ). pidg, and f =) . qidy,:
— ¢(z,y) is still a matrix where costs depends on locations of measures.

» For arbitrary probabilistic measures:

— Define a coupling m € ML (X,Y) — joint probability distribution of X and Y.
Ula, B) = {w e ML(x,Y) ‘ Py = o and Pyyr = ﬂ}

— The continuous problem:

L(a, B) = ﬂerg(igﬁ) /Xxy c(x,y)dr(z,y) = (I)I(l}g) {E(x,y)(C(X, Y)) ‘ X ~a,Y ~ 5}
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Example of transport maps for arbitrary measures
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Discrete Semidiscrete Continuous

15



Metric properties about optimal transport
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Metric properties of the discrete optimal transport

» Wasserstein distance is also referred as OT, or Earth mover’s distance (EMD).

Discrete Wasserstein distance

Consider p,q € A,, and

CeC,={CeR|C=CT,diag(C) =0 and (i, j,k) Ci; < Cip +Cry}-

Then,
W,(p.q) = Lcr(p,q)/?

defines a p- Wasserstein distance on A,,.

» Recall that Lc(p, q) refers to the discrete Kantorovich problem:

Lc(p,q) = {min tr(FC) |F >0, Fl=p, F'1= q}
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Proof that p-Wasserstein constitutes a distance

vVvYyVvYyy

We need to show positivity, symmetry and triangular inequality.
Since diag(C) = 0, W,(p,p) = 0, and F* = diag(p).
Because of strict positivity of off-diagonal elements, W,(p,q) = tr(CF) > 0 for p # q.
Since W, (p, q) = tr(CF), and C is symmetric, W,(p,q) = W,(q, p).
For triangularity, define p, q and t and
F =sol(Wp(p,q)) G =sol(W(q,t)).
For simplicity, assume q > 0 (detailed proof in the lecture notes). Define
S = Fdiag(1/q)G € R}*".

Note that F € U(p, t), i.e., is a feasible transport plan:

S1 = Fdiag(l/q)&‘r,l/ = Fdiag(q/q) =F1=p

a 1
ST1 = GT diag(1/q) F'1 = G" diag(q/q) = GT1 =t
q 1
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Wasserstein distance for arbitrary measures

Wasserstein distance for arbitrary measures

Consider a(z) € ML (X),B(y) € ML(Y), X =Y, and for some p > 1,
> c(z,y) = c(y, ) 2 0;
» c¢(z,y) =0 if and only if z = y;
> VY(z,y,2) € X3, c(x,y) < c(z,2) + c(2,9)

Then,
Wp(a7 B) = ‘CCP (aa ﬁ)l/p

defines a p- Wasserstein distance on X.

» Recall, that the Kantorovich problem for arbitrary measures is given by:

ci@ )= min [ e y)inty)
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Special cases |

» Binary cost matrix: If C = 117 — 1, then Lc(p,q) = ||p — ql|1-

» 1D case of empirical measures:

1
-~ X=Rya=330: B=7320;
-z <x9,... <z, and y; < yo,... < y, ordered observations.

n
Wo(p,@)” = |z — yil?
=1

» Histogram equalization:
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Color transfer
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Special cases II: Distance between Gaussians

> If a = N(m,, X,) and 8 = N (mg, X3) are two gaussians in R?,

» The following map:
T:z—mg+ Az —m,)

where A = E;lﬂ(2(11/2252(11/2)1/22;1/2 constitutes an optimal transport plan.

» Furthermore,W3(a, 8) = |m, — mg||* + tr(Zo + X5 — 2(Et11/2262<11/2)1/2)2~
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Application I: Supervised learning with Wasserstein Loss
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Learning with Wasserstein Loss

» Natural metric on the outputs that can be used to improve predictions.

» Wasserstein distance provides a natural notion of dissimilarity for probability
measures —» Can encourage smoothness on the predictions.

— In ImageNet, 1000 categories may have inherent semantic relationships.
— Speech recognition systems, output correspond to keywords that also have
semantic relations — this correlation can be exploited.
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Semantic relationships: Flickr dataset

(a) Flickr user tags: street, parade, dragon; our
proposals: people, protest, parade; baseline pro- c; our proposals: water, river, lake, summer;
posals: music, car, band. baseline proposals: river, water, club, nature.

(a) Flickr user tags: zoo, run, (b) Flickr user tags: travel, ar- (c) Flickr user tags: spring, race,
mark; our proposals: running, chitecture, tourism; our proposals: training; our proposals: road, bike,
summer, fun; baseline proposals: sky, roof, building: baseline pro- trail: baseline proposals: dog,
running, country, lake. sals: art, sky, beach. surf, bike.
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Problem setup

» Goal: Learn a mapping ¥ CRY - K C Y = Rf, where |K| = K.

» Assume K possesses a metric di(-,+), or ground metric.

» Learning over a hypothessis space H of predictors: hyg : X — ), param. by 6 € ©.
— These can be a logistic regression, output of a NN, etc.

» Empirical risk minimization:

i E{o(@), )} = 1 > Uba(w), 1)
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Discrete Wasserstein loss

» Assuming hg outputs a probability measure (or a discrete probability distribution),
and y; corresponds to the one-hot encoding of the label classes,

N

We(a, B) =Y Lo(hoa,), yi)

i=1
where C encodes the ground metric given by c(x,y).

» In order to optimize the loss function, how do we compute gradients?

— Gradients are easy to compute in the dual domain.

27



Dual problem formulation

1. Construct the Lagrangian:

L(z,\,v) —I—Z Xigi( )+Z vihj(x)

f(x)
2. Dual function: the minimum of the
Lagrangian over x: q(\) =
x A
q(A\,v) = min L(x, \,v). a0

x

Lo . strong duality
3. Dual problem: maximization of the

dual function over \; > 0:
Aeféﬁ,}sm q(Av) (2)
s.t. )\1' > 0 Vi

f@)

f(=)

weak duality
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Dual problem of the discrete Kantorovich problem

Dual of the discrete Kantorovich problem

Given p € R, g € R"® and C € R"*", the dual of Lc(p,q) has the following form:

max p'r+q’s 3)

st. r1T+17s<C

where r € R™, s € R".

» Because the primal OT Kantorovich problem is a feasible LP for p and q probability
distributions, the dual problem is also feasible and strong duality holds.

» The dual problem can play an important part in devising algorithms to solve the
Kantorovich problem.

» Interpretation of prices of dual variables.

29



Dual problem of the discrete Kantorovich problem: Proof

» Semilagrangian of the primal problem:
J(F;r,s) = tr(CFT) + vT(p — F1) + s (q — F71)
» Dual problem:
max r’p+sfq+ IPIIZII(;[ tr(CFT) — if‘_l/ - &il/
tr(FTr1T) FT1sT
where Q = C —r17 — 157

mintr(CFT) — rTF1 —sTFT1 =

F>0 —oo  otherwise

{o if Q>0
tr(FTr1T) FT1sT

» Giving
max er + qu
r,s

st. r1iT+17s<C
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Gradient of the Wasserstein Loss

» Back to the Wasserstein loss function: | Lo (ho(a,), ¥i) |

» If we write it in dual form:
max 1 hy(,) +5'Yi

st. r17+17s<C.
» We can take conditional subgradient w.r.t. hy(z):

d
Wwp(he(ff),y) =T

v

Note that the Wasserstein loss is subdifferientiable.

v

Computing the Wasserstein loss for N examples can be costly in high dimensions...

v

Once we have the subgradient, we can backpropagate to update 6 with SGD.
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Effects of the ground metric I

» Authors compare discriminative power
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(a) Posterior prediction for images of digit 0.
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(b) Posterior prediction for images of digit 4.
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Effects of the ground metric II

» KL loss vs. Wasserstein loss on the Flickr database:

Wy (ho(z:), yi) + oKL

Uz, yi)

- e \Wasserstein AUC

(a) Original Flickr tags dataset.

;- —— Divergence AUC -
T T T
0.0 0.5 1.0 1.5 2.0
(a3

—=— Wasserstein AUC -

0.56 —— Divergence AUC B
U T T T

0.0 0.5 1.0 1.5 2.0

o

(b) Reduced-redundancy Flickr tags dataset.
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Homework proposal

» Train a Wasserstein loss classifier on the plane with semantic classes.

(a) Noise level 0.1

—— Divergence

—— Wasserstein

3
o
c
&
123
o

(b) Noise level 0.5

0.4
0.3
0.2 o
0.1

—— Divergence  —— Wasserstein

0.

1 02 03 04 05 06 07 08 0.9
Noise
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Thank you for listening!

>

L N & & P

There are more things I wanted to talk about.

. Approximate methods such as Sinkhorn, or smooth OT, to scale problem

dimensions.

Domain adaptation transport a database of unlabelled data, to a domain where
such labels exist, according to a Wasserstein transport plan.

Ground metric learning allows to learn the cost matrix from data, potentially

improving performance compared to a p-Wasserstein loss as we have seen in examples.

Barycenter estimation: for clustering, or interpolation between histograms.
Transfer learning.

Unbalanced optimal transport.

Wasserstein discriminant analysis.

Etc.
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Application II: Domain adaptation
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Problem intuition

Amaron,

TR
o

)

@h@@’i"@

A‘#‘

Probability Distribution Functions over the domains

» We consider unsupervised domain adaptation — labels only in source domain.
» Assumption: data is processed to make the domains similar.

» Transformation follows a least effort principle.
37



Procedure

Dataset

++ Class 1

00 Class 2
F 0 Samples x;

Samples x!

—— Classifier onx

s
i

Optimal transport

7.0

+0O Samples T, (x})

Classification on transported samples

+0 Samples T, (x3)

* Samples x%

— Classifier on T, (x})

1. Estimate the marginals ps and p; from source and target sample distributions.

2. Find a transport map T from ps to p.

3. Use T to transport labeled samples x4 and train a classifier from them.
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Related work

» The approach defines a local transformation for each sample in the domain.

» It can be seen as a graph matching problem — marginal distribution conservation.

» Related work:

1.

Projection methods: inner products, region transformation, extraction of
common features.

Unsupervised: common latent space representations; feature extraction is key.
Gradual alignment of feature representation: kernel methods.
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Problem description

vV vV vV V. VvV VY

KC set of possible labels; only available for X'
Source sample data: ((x5)N, (y;)N).

Target sample data: ((x$)N).

Joint probability distribution in source: Py(x*,y)
Marginal over z: 5.

Joint probability distribution in target: P;(x',y).

Marginal over z: .

40



Assumptions of the transportation

» The domain drift is to an unknown, possibly nonlinear transformation of the linear
space
T:X-=Y

» From probabilistic perspective, T transforms ug into puy, i.e.,
Tﬁ/is 3 Ml — Ml = Ut

X, are drawn from same pdf as THus.

» Transformation preserves conditional distribution, i.e.,

Py(ylx®) = P(ylx") = fi(T(x")) = fs(x*)

41



Problem formulation

» Empirical distributions:

N, Ny
Hs = praccfv Mt = Zpg(szf
=1 =il

» Transport problem:
F = arg min tr(FC)
FeU(ps )

where Cj; = ||xs — x¢[|%.

» When Ny = N; = N and forall 4, p{ = p! = 1/N, F is simply a permutation matrix,
which makes a correspondence of one to one from source to target domain.
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Results

» Once we have the transport plan, we can bring features with labels to the target
domain and train a classifier.

» Regularization can be induced to improve results using labels

» Results:
";.("'"""'-‘lp.‘
8y §
,:F % '}- e
“ : g
M gt

(a) source domain

(b) rotation=20° (c) rotation=40°

(d) rotation=90°
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Thanks again

Questions?
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