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Historical overview
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The origins of optimal transport

I Gaspard Monge proposed the first idea in 1781.

I How to move dirt from one place (d’eblais) to another (remblais) with minimal effort?

I Enunciated the problem of finding a mapping F between two distributions of mass.

I Optimization with respect to a displacement cost c(x, y).
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Transportation problem I

I Formulated by Frank Lauren Hitchcock in 1941.

Factories & warehouses example

I Fixed number of factories, each of which produces good at a fixed output rate.

I Fixed number of warehouses, each of which has a fixed storage capacity.

I There is a cost to transport goods from a factory to a warehouse.

I Goal: Find the transportation of goods from factory → warehouse with lowest
possible cost.
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Transportation problem II: Example

Factories:

I F1 makes 5 units.

I F2 makes 4 units.

I F3 makes 6 units.

Warehouses:

I W1 can store 5 units.

I W2 can store 3 units.

I W3 can store 5 units.

I W4 can store 2 units.

Transportation costs:

W1 W2 W3 W4

F1 5 4 7 6
F2 2 5 3 5
F3 6 3 4 4
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Transportation problem III:

I One factory can transport product to multiple warehouses.

I One warehouse can receive product from multiple factories.

I The Transportation problem can be formulated as an ordinary linear constrained
optimization problem (LP):

min
xij

5x11 + 4x12 + 7x13 + 6x14 + 2x21 + 5x22

+3x23 + 2x24 + 6x31 + 3x32 + 4x33 + 4x34

s.t. x11 + x12 + x13 + x14 = 5

x21 + x22 + x23 + x24 = 4

x31 + x32 + x33 + x34 = 6

x11 + x21 + x31 ≤ 5

x12 + x22 + x32 ≤ 3

x13 + x23 + x33 ≤ 5

x14 + x24 + x34 ≤ 2
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Definitions and formulations
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Definitions

I Probability simplex:

∆n =

{
ai ∈ Rn+

∣∣∣ n∑
i=1

ai = 1

}
I Discrete probability distribution: p = (p1, p2, . . . , pn) ∈ ∆n.

I Space X : support for the distritution (coordinates vector/array, temperature, etc.).

I Discrete measure: given weights p = (p1, p2, . . . , pn) and x = (x1, x2, . . . , xn)
locations,

α =
∑
i

piδxi

I Radon measure: α ∈M(X ),

– X is equipped with a distance, integrating it against a continuous function f∫
X
f(x)dα(x)

Rd
=

∫
X
f(x)ρα(x)dx
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More definitions

I Set of positive measures: M+, such that
∫
X f(x)dα(x)→ R+.

I Set of probability measures: M1
+, such that

∫
X dα(x) = 1.
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Assingment and Monge problems

I n origin elements (factories),

I m = n destination elements (warehouses),

I we look for a permutation (an assignment
in the general case) of elements

min
σ∈Perm(n)

1

n

n∑
i=1

Ci,σ(i)

I The set of n discrete elements has n! possible permutations.

I Works after Monge, aimed to simplify the problem, such as Hitchcock in 1941, or
Kantorovich in 1942.
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Kantorovich relaxation

I Goal: find a minimal transport plan F such that

F ∈ U(p,q) = {F ∈ Rn×n+ | F1 = p and FT1 = q }

I F1 = p sum the rows of F → all goods are transported from p.

I FT1 = q sum the columns of F → all goods are received in q.

I p and q are probability distributions → mass is conserved and equals 1.

12



Relation to linear programming

I The Kantorovich problem is an LP:

LC(p,q) = min
F≥0

tr(FC)

F1 = p, FT1 = q
(1)

I LP programs can be solved with simplex method, interior point methods, dual
descent methods, etc. The problem is convex.

I One option is to use LP solvers: Clp, Gurobi, Mosek, SeDuMi, CPLEX, ECOS, etc.

I Spezialized methods exist (and Python, C, Julia, etc. libraries)

– Network simplex
– Approximate methods: Sinkhorn, smoothed versions, etc.
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Kantorovich formulation for arbitrary measures

I Now C needs to be a function:

c(x, y) : X × Y → R+

I Discrete measures α =
∑
i piδxi and β =

∑
i qiδyi :

– c(x, y) is still a matrix where costs depends on locations of measures.

I For arbitrary probabilistic measures:

– Define a coupling π ∈M1
+(X ,Y) → joint probability distribution of X and Y.

U(α, β) =
{
π ∈M1

+(X ,Y)
∣∣∣ PX ]π = α and PY]π = β

}
– The continuous problem:

Lc(α, β) = min
π∈U(α,β)

∫
X×Y

c(x, y)dπ(x, y) = min
(X,Y )

{
E(X,Y )(c(X,Y ))

∣∣∣X ∼ α, Y ∼ β}
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Example of transport maps for arbitrary measures
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Metric properties about optimal transport
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Metric properties of the discrete optimal transport

I Wasserstein distance is also referred as OT, or Earth mover’s distance (EMD).

Discrete Wasserstein distance

Consider p,q ∈ ∆n and

C ∈ Cn =
{

C ∈ Rn×n+

∣∣∣C = CT ,diag(C) = 0 and ∀(i, j, k) Ci,j ≤ Ci,k + Ck,j

}
.

Then,
Wp(p,q) = LCp(p,q)1/p

defines a p-Wasserstein distance on ∆n.

I Recall that LC(p,q) refers to the discrete Kantorovich problem:

LC(p,q) =
{

min tr(FC)
∣∣∣ F ≥ 0, F1 = p, FT1 = q

}
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Proof that p-Wasserstein constitutes a distance

I We need to show positivity, symmetry and triangular inequality.

I Since diag(C) = 0, Wp(p,p) = 0, and F∗ = diag(p).

I Because of strict positivity of off-diagonal elements, Wp(p,q) = tr(CF) > 0 for p 6= q.

I Since Wp(p,q) = tr(CF), and C is symmetric, Wp(p,q) = Wp(q,p).

I For triangularity, define p, q and t and

F = sol(Wp(p,q)) G = sol(Wp(q, t)).

I For simplicity, assume q > 0 (detailed proof in the lecture notes). Define

S = F diag(1/q)G ∈ Rn×n+ .

I Note that F ∈ U(p, t), i.e., is a feasible transport plan:

S1 = F diag(1/q) G1︸︷︷︸
q

= F diag(q/q)︸ ︷︷ ︸
1

= F1 = p

ST1 = GT diag(1/q) FT1︸︷︷︸
q

= GT diag(q/q)︸ ︷︷ ︸
1

= GT1 = t
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Wasserstein distance for arbitrary measures

Wasserstein distance for arbitrary measures

Consider α(x) ∈M1
+(X ), β(y) ∈M1

+(Y), X = Y, and for some p ≥ 1,

I c(x, y) = c(y, x) ≥ 0;

I c(x, y) = 0 if and only if x = y;

I ∀(x, y, z) ∈ X 3, c(x, y) ≤ c(x, z) + c(z, y)

Then,
Wp(α, β) = Lcp(α, β)1/p

defines a p-Wasserstein distance on X .

I Recall, that the Kantorovich problem for arbitrary measures is given by:

Lc(α, β) = min
π∈U(α,β)

∫
X×Y

c(x, y)dπ(x, y)
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Special cases I

I Binary cost matrix: If C = 11T − I, then LC(p,q) = ‖p− q‖1.

I 1D case of empirical measures:

– X = R; α = 1
n

∑
i δxi β = 1

n

∑
i δyi ;

– x1 ≤ x2, . . . ≤ xn and y1 ≤ y2, . . . ≤ yn ordered observations.

Wp(p,q)p =

n∑
i=1

|xi − yi|p

I Histogram equalization:
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Color transfer
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Special cases II: Distance between Gaussians

I If α = N (mα,Σα) and β = N (mβ ,Σβ) are two gaussians in Rd,
I The following map:

T : x→mβ +A(x−mα)

where A = Σ
−1/2
α (Σ

1/2
α ΣβΣ

1/2
α )1/2Σ

−1/2
α constitutes an optimal transport plan.

I Furthermore,W 2
2 (α, β) = ‖mα −mβ‖2 + tr(Σα + Σβ − 2(Σ

1/2
α ΣβΣ

1/2
α )1/2)2.
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Application I: Supervised learning with Wasserstein Loss
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Learning with Wasserstein Loss

I Natural metric on the outputs that can be used to improve predictions.

I Wasserstein distance provides a natural notion of dissimilarity for probability
measures −→ Can encourage smoothness on the predictions.

– In ImageNet, 1000 categories may have inherent semantic relationships.
– Speech recognition systems, output correspond to keywords that also have

semantic relations → this correlation can be exploited.
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Semantic relationships: Flickr dataset
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Problem setup

I Goal: Learn a mapping X ⊂ Rd → K ⊂ Y = RK+ , where |K| = K.

I Assume K possesses a metric dK(·, ·), or ground metric.

I Learning over a hypothessis space H of predictors: hθ : X → Y, param. by θ ∈ Θ.

– These can be a logistic regression, output of a NN, etc.

I Empirical risk minimization:

min
hθ∈H

E {l(hθ(x), y)} ≈ 1

N

N∑
i=1

l(hθ(xi), yi)

26



Discrete Wasserstein loss

I Assuming hθ outputs a probability measure (or a discrete probability distribution),
and yi corresponds to the one-hot encoding of the label classes,

Wc(α, β) =

N∑
i=1

LC(hθ(xi),yi)

where C encodes the ground metric given by c(x, y).

I In order to optimize the loss function, how do we compute gradients?

– Gradients are easy to compute in the dual domain.
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Dual problem formulation

1. Construct the Lagrangian:

L(x, λ, ν) = f(x)+
∑
i

λigi(x)+
∑
j

νjhj(x).

2. Dual function: the minimum of the
Lagrangian over x:

q(λ, ν) = min
x
L(x, λ, ν).

3. Dual problem: maximization of the
dual function over λi ≥ 0:

max
λ∈Rm,νRp

q(λ, ν)

s.t. λi ≥ 0 ∀i.
(2)

strong duality weak duality
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Dual problem of the discrete Kantorovich problem

Dual of the discrete Kantorovich problem

Given p ∈ Rn, q ∈ Rn and C ∈ Rn×n, the dual of LC(p,q) has the following form:

max
r,s

pT r + qT s

s.t. r1T + 1T s ≤ C
(3)

where r ∈ Rn, s ∈ Rn.

I Because the primal OT Kantorovich problem is a feasible LP for p and q probability
distributions, the dual problem is also feasible and strong duality holds.

I The dual problem can play an important part in devising algorithms to solve the
Kantorovich problem.

I Interpretation of prices of dual variables.
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Dual problem of the discrete Kantorovich problem: Proof

I Semilagrangian of the primal problem:

J(F; r, s) = tr(CFT ) + rT (p− F1) + sT (q− FT1)

I Dual problem:

max
r,s

rTp + sTq + min
F≥0

tr(CFT )− rTF1︸ ︷︷ ︸
tr(FT r1T )

− sTFT1︸ ︷︷ ︸
FT 1sT

where Q = C− r1T − 1sT

min
F≥0

tr(CFT )− rTF1︸ ︷︷ ︸
tr(FT r1T )

− sTFT1︸ ︷︷ ︸
FT 1sT

=

{
0 if Q ≥ 0

−∞ otherwise

I Giving
max
r,s

rTp + sTq

s.t. r1T + 1T s ≤ C
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Gradient of the Wasserstein Loss

I Back to the Wasserstein loss function: LC(hθ(xi),yi) .

I If we write it in dual form:
max
r,s

rThθ(xi) + sTyi

s.t. r1T + 1T s ≤ C.

I We can take conditional subgradient w.r.t. hθ(x):

d

dhθ(x)
Wp(hθ(x), y) = r

I Note that the Wasserstein loss is subdifferientiable.

I Computing the Wasserstein loss for N examples can be costly in high dimensions...

I Once we have the subgradient, we can backpropagate to update θ with SGD.
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Effects of the ground metric I

I Authors compare discriminative power of Wp for different p norm values.
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Effects of the ground metric II

I KL loss vs. Wasserstein loss on the Flickr database:

l(xi, yi) = Wp(hθ(xi), yi) + αKL
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Homework proposal

I Train a Wasserstein loss classifier on the plane with semantic classes.
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Thank you for listening!

I There are more things I wanted to talk about.

1. Approximate methods such as Sinkhorn, or smooth OT, to scale problem
dimensions.

2. Domain adaptation transport a database of unlabelled data, to a domain where
such labels exist, according to a Wasserstein transport plan.

3. Ground metric learning allows to learn the cost matrix from data, potentially
improving performance compared to a p-Wasserstein loss as we have seen in examples.

4. Barycenter estimation: for clustering, or interpolation between histograms.

5. Transfer learning.

6. Unbalanced optimal transport.

7. Wasserstein discriminant analysis.

8. Etc.
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Application II: Domain adaptation
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Problem intuition

I We consider unsupervised domain adaptation −→ labels only in source domain.

I Assumption: data is processed to make the domains similar.

I Transformation follows a least effort principle.
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Procedure

1. Estimate the marginals µs and µt from source and target sample distributions.

2. Find a transport map T from µs to µt.

3. Use T to transport labeled samples xs and train a classifier from them.
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Related work

I The approach defines a local transformation for each sample in the domain.

I It can be seen as a graph matching problem −→ marginal distribution conservation.

I Related work:

1. Projection methods: inner products, region transformation, extraction of
common features.

2. Unsupervised: common latent space representations; feature extraction is key.
3. Gradual alignment of feature representation: kernel methods.
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Problem description

I K set of possible labels; only available for X .

I Source sample data: ((xsi )
N
i , (yi)

N
i ).

I Target sample data: ((xsi )
N
i ).

I Joint probability distribution in source: Ps(x
s, y)

I Marginal over x: µs.

I Joint probability distribution in target: Pt(x
t, y).

I Marginal over x: µt.
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Assumptions of the transportation

I The domain drift is to an unknown, possibly nonlinear transformation of the linear
space

T : X → Y

I From probabilistic perspective, T transforms µs into µt, i.e.,

T]µs :M1
+ →M1

+ = µt

Xt are drawn from same pdf as T]µs.

I Transformation preserves conditional distribution, i.e.,

Ps(y|xs) = Pt(y|xt) ⇐⇒ ft(T (xs)) = fs(x
s)
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Problem formulation

I Empirical distributions:

µs =

Ns∑
i=1

psi δxsi , µt =

Nt∑
i=1

ptiδxti

I Transport problem:
F = arg min

F∈U(µs,µt)

tr(FC)

where Cij = ‖xs − xt‖2.

I When Ns = Nt = N and forall i, psi = pti = 1/N , F is simply a permutation matrix,
which makes a correspondence of one to one from source to target domain.
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Results

I Once we have the transport plan, we can bring features with labels to the target
domain and train a classifier.

I Regularization can be induced to improve results using labels

I Results:
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Thanks again

Questions?
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