Advanced Section \#2: Optimal Transport

AC 209B: Data Science 2

Javier Zazo Pavlos Protopapas

Historical overview

Definitions and formulations

Metric properties about optimal transport

Application I: Supervised learning with Wasserstein Loss

Application II: Domain adaptation

Historical overview
666. Memoires de l'Academie Royale

$$
\begin{aligned}
& M \quad \dot{E} M O \boldsymbol{I} R E \\
& S U R \quad L A \\
& \text { THEORIE DES DÉBLAIS } \\
& \text { ET DES REMBLAIS. } \\
& \text { Par M. MONGe. }
\end{aligned}
$$

- Gaspard Monge proposed the first idea in 1781.
- How to move dirt from one place (d'eblais) to another (remblais) with minimal effort?
- Enunciated the problem of finding a mapping F between two distributions of mass.
- Optimization with respect to a displacement cost $c(x, y)$.
- Formulated by Frank Lauren Hitchcock in 1941.

Factories \& warehouses example

- Fixed number of factories, each of which produces good at a fixed output rate.
- Fixed number of warehouses, each of which has a fixed storage capacity.
- There is a cost to transport goods from a factory to a warehouse.
- Goal: Find the transportation of goods from factory \rightarrow warehouse with lowest possible cost.

Transportation problem II: Example

Factories:

- F_{1} makes 5 units.
- F_{2} makes 4 units.
- F_{3} makes 6 units.

Warehouses:

- W_{1} can store 5 units.
- W_{2} can store 3 units.
- W_{3} can store 5 units.
- W_{4} can store 2 units.

Transportation costs:

	W_{1}	W_{2}	W_{3}	W_{4}
F_{1}	5	4	7	6
F_{2}	2	5	3	5
F_{3}	6	3	4	4

Transportation problem III:

- One factory can transport product to multiple warehouses.
- One warehouse can receive product from multiple factories.
- The Transportation problem can be formulated as an ordinary linear constrained optimization problem (LP):

$$
\begin{array}{ll}
\min _{x_{i j}} & 5 x_{11}+4 x_{12}+7 x_{13}+6 x_{14}+2 x_{21}+5 x_{22} \\
& +3 x_{23}+2 x_{24}+6 x_{31}+3 x_{32}+4 x_{33}+4 x_{34} \\
\text { s.t. } & x_{11}+x_{12}+x_{13}+x_{14}=5 \\
& x_{21}+x_{22}+x_{23}+x_{24}=4 \\
& x_{31}+x_{32}+x_{33}+x_{34}=6 \\
& x_{11}+x_{21}+x_{31} \leq 5 \\
& x_{12}+x_{22}+x_{32} \leq 3 \\
& x_{13}+x_{23}+x_{33} \leq 5 \\
& x_{14}+x_{24}+x_{34} \leq 2
\end{array}
$$

Definitions and formulations

Definitions

- Probability simplex:

$$
\Delta_{n}=\left\{a_{i} \in \mathbb{R}_{+}^{n} \mid \sum_{i=1}^{n} a_{i}=1\right\}
$$

- Discrete probability distribution: $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in \Delta_{n}$.
- Space \mathcal{X} : support for the distritution (coordinates vector/array, temperature, etc.).
- Discrete measure: given weights $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ locations,

$$
\alpha=\sum_{i} p_{i} \delta_{x_{i}}
$$

- Radon measure: $\alpha \in \mathcal{M}(\mathcal{X})$,
$-\mathcal{X}$ is equipped with a distance, integrating it against a continuous function f

$$
\int_{\mathcal{X}} f(x) d \alpha(x) \stackrel{\mathbb{R}^{d}}{=} \int_{\mathcal{X}} f(x) \rho_{\alpha}(x) d x
$$

More definitions

- Set of positive measures: \mathcal{M}_{+}, such that $\int_{\mathcal{X}} f(x) d \alpha(x) \rightarrow \mathbb{R}_{+}$.
- Set of probability measures: \mathcal{M}_{+}^{1}, such that $\int_{\mathcal{X}} d \alpha(x)=1$.

Assingment and Monge problems

- n origin elements (factories),
- $m=n$ destination elements (warehouses),
- we look for a permutation (an assignment in the general case) of elements

$$
\min _{\sigma \in \operatorname{Perm}(\mathrm{n})} \frac{1}{n} \sum_{i=1}^{n} C_{i, \sigma(i)}
$$

- The set of n discrete elements has n ! possible permutations.
- Works after Monge, aimed to simplify the problem, such as Hitchcock in 1941, or Kantorovich in 1942.
- Goal: find a minimal transport plan \mathbf{F} such that

$$
\mathbf{F} \in U(\mathbf{p}, \mathbf{q})=\left\{\mathbf{F} \in \mathbb{R}_{+}^{n \times n} \mid \mathbf{F} \mathbf{1}=\mathbf{p} \text { and } \mathbf{F}^{T} \mathbf{1}=\mathbf{q}\right\}
$$

- $\mathbf{F 1}=\mathbf{p}$ sum the rows of $\mathbf{F} \rightarrow$ all goods are transported from \mathbf{p}.
- $\mathbf{F}^{T} \mathbf{1}=\mathbf{q}$ sum the columns of $\mathbf{F} \rightarrow$ all goods are received in \mathbf{q}.
- \mathbf{p} and \mathbf{q} are probability distributions \rightarrow mass is conserved and equals 1 .
- The Kantorovich problem is an LP:

$$
\begin{align*}
& \hline L_{\mathbf{C}}(\mathbf{p}, \mathbf{q})=\min _{\mathbf{F} \geq 0} \operatorname{tr}(\mathbf{F C}) \tag{1}\\
& \mathbf{F} \mathbf{1}=\mathbf{p}, \quad \mathbf{F}^{T} \mathbf{1}=\mathbf{q} \\
& \hline
\end{align*}
$$

- LP programs can be solved with simplex method, interior point methods, dual descent methods, etc. The problem is convex.
- One option is to use LP solvers: Clp, Gurobi, Mosek, SeDuMi, CPLEX, ECOS, etc.
- Spezialized methods exist (and Python, C, Julia, etc. libraries)
- Network simplex
- Approximate methods: Sinkhorn, smoothed versions, etc.
- Now C needs to be a function:

$$
c(x, y): \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}_{+}
$$

- Discrete measures $\alpha=\sum_{i} p_{i} \delta_{x_{i}}$ and $\beta=\sum_{i} q_{i} \delta_{y_{i}}$:
- $c(x, y)$ is still a matrix where costs depends on locations of measures.
- For arbitrary probabilistic measures:
- Define a coupling $\pi \in \mathcal{M}_{+}^{1}(\mathcal{X}, \mathcal{Y}) \rightarrow$ joint probability distribution of \mathcal{X} and \mathcal{Y}.

$$
U(\alpha, \beta)=\left\{\pi \in \mathcal{M}_{+}^{1}(\mathcal{X}, \mathcal{Y}) \mid P_{\mathcal{X} \sharp} \pi=\alpha \text { and } P_{\mathcal{Y} \sharp} \pi=\beta\right\}
$$

- The continuous problem:

$$
\mathcal{L}_{c}(\alpha, \beta)=\min _{\pi \in U(\alpha, \beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d \pi(x, y)=\min _{(X, Y)}\left\{\mathbb{E}_{(X, Y)}(c(X, Y)) \mid X \sim \alpha, Y \sim \beta\right\}
$$

Metric properties about optimal transport

- Wasserstein distance is also referred as OT, or Earth mover's distance (EMD).

Discrete Wasserstein distance

Consider $\mathbf{p}, \mathbf{q} \in \Delta_{n}$ and

$$
\mathbf{C} \in \mathcal{C}_{n}=\left\{\mathbf{C} \in \mathbb{R}_{+}^{n \times n} \mid \mathbf{C}=\mathbf{C}^{T}, \operatorname{diag}(\mathbf{C})=0 \text { and } \forall(i, j, k) \quad C_{i, j} \leq C_{i, k}+C_{k, j}\right\} .
$$

Then,

$$
W_{p}(\mathbf{p}, \mathbf{q})=L_{\mathbf{C}^{p}}(\mathbf{p}, \mathbf{q})^{1 / p}
$$

defines a \boldsymbol{p}-Wasserstein distance on Δ_{n}.

- Recall that $L_{\mathbf{C}}(\mathbf{p}, \mathbf{q})$ refers to the discrete Kantorovich problem:

$$
L_{\mathbf{C}}(\mathbf{p}, \mathbf{q})=\left\{\min \operatorname{tr}(\mathbf{F C}) \mid \mathbf{F} \geq 0, \quad \mathbf{F} \mathbf{1}=\mathbf{p}, \quad \mathbf{F}^{T} \mathbf{1}=\mathbf{q}\right\}
$$

- We need to show positivity, symmetry and triangular inequality.
- Since $\operatorname{diag}(\mathbf{C})=0, W_{p}(\mathbf{p}, \mathbf{p})=0$, and $\mathbf{F}^{*}=\operatorname{diag}(\mathbf{p})$.
- Because of strict positivity of off-diagonal elements, $W_{p}(\mathbf{p}, \mathbf{q})=\operatorname{tr}(\mathbf{C F})>0$ for $\mathbf{p} \neq \mathbf{q}$.
- Since $W_{p}(\mathbf{p}, \mathbf{q})=\operatorname{tr}(\mathbf{C F})$, and \mathbf{C} is symmetric, $W_{p}(\mathbf{p}, \mathbf{q})=W_{p}(\mathbf{q}, \mathbf{p})$.
- For triangularity, define \mathbf{p}, \mathbf{q} and \mathbf{t} and

$$
\mathbf{F}=\operatorname{sol}\left(W_{p}(\mathbf{p}, \mathbf{q})\right) \quad \mathbf{G}=\operatorname{sol}\left(W_{p}(\mathbf{q}, \mathbf{t})\right) .
$$

- For simplicity, assume $\mathbf{q}>0$ (detailed proof in the lecture notes). Define

$$
\mathbf{S}=\mathbf{F} \operatorname{diag}(1 / \mathbf{q}) \mathbf{G} \in \mathbb{R}_{+}^{n \times n} .
$$

- Note that $\mathbf{F} \in U(\mathbf{p}, \mathbf{t})$, i.e., is a feasible transport plan:

$$
\begin{aligned}
& \mathbf{S} \mathbf{1}=\mathbf{F} \operatorname{diag}(1 / \mathbf{q}) \underbrace{\mathbf{G} \mathbf{1}}_{\mathbf{q}}=\mathbf{F} \underbrace{\operatorname{diag}(\mathbf{q} / \mathbf{q})}_{\mathbf{1}}=\mathbf{F} \mathbf{1}=\mathbf{p} \\
& \mathbf{S}^{T} \mathbf{1}=\mathbf{G}^{T} \operatorname{diag}(1 / \mathbf{q}) \underbrace{\mathbf{F}^{T} \mathbf{1}}_{\mathbf{q}}=\mathbf{G}^{T} \underbrace{\operatorname{diag}(\mathbf{q} / \mathbf{q})}_{\mathbf{1}}=\mathbf{G}^{T} \mathbf{1}=\mathbf{t}
\end{aligned}
$$

Wasserstein distance for arbitrary measures

Consider $\alpha(x) \in \mathcal{M}_{+}^{1}(\mathcal{X}), \beta(y) \in \mathcal{M}_{+}^{1}(\mathcal{Y}), \mathcal{X}=\mathcal{Y}$, and for some $p \geq 1$,

- $c(x, y)=c(y, x) \geq 0 ;$
- $c(x, y)=0$ if and only if $x=y$;
- $\forall(x, y, z) \in \mathcal{X}^{3}, c(x, y) \leq c(x, z)+c(z, y)$

Then,

$$
W_{p}(\alpha, \beta)=\mathcal{L}_{c^{p}}(\alpha, \beta)^{1 / p}
$$

defines a \boldsymbol{p}-Wasserstein distance on \mathcal{X}.

- Recall, that the Kantorovich problem for arbitrary measures is given by:

$$
\mathcal{L}_{c}(\alpha, \beta)=\min _{\pi \in U(\alpha, \beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d \pi(x, y)
$$

Special cases I

- Binary cost matrix: If $\mathbf{C}=\mathbf{1 1}^{T}-\mathbf{I}$, then $L_{\mathbf{C}}(\mathbf{p}, \mathbf{q})=\|\mathbf{p}-\mathbf{q}\|_{1}$.
- 1D case of empirical measures:
- $\mathcal{X}=\mathbb{R} ; \alpha=\frac{1}{n} \sum_{i} \delta_{x_{i}} \beta=\frac{1}{n} \sum_{i} \delta_{y_{i}} ;$
$-x_{1} \leq x_{2}, \ldots \leq x_{n}$ and $y_{1} \leq y_{2}, \ldots \leq y_{n}$ ordered observations.

$$
W_{p}(\mathbf{p}, \mathbf{q})^{p}=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}
$$

- Histogram equalization:

$t=0$
$t=0.25$
$t=0.5$
$t=.75$
$t=1$

Color transfer

Special cases II: Distance between Gaussians

- If $\alpha=\mathcal{N}\left(\mathbf{m}_{\alpha}, \boldsymbol{\Sigma}_{\alpha}\right)$ and $\beta=\mathcal{N}\left(\mathbf{m}_{\beta}, \boldsymbol{\Sigma}_{\beta}\right)$ are two gaussians in \mathbb{R}^{d},
- The following map:

$$
T: x \rightarrow \mathbf{m}_{\beta}+A\left(x-\mathbf{m}_{\alpha}\right)
$$

where $A=\boldsymbol{\Sigma}_{\alpha}^{-\mathbf{1} / \mathbf{2}}\left(\boldsymbol{\Sigma}_{\alpha}^{\mathbf{1 / 2}} \boldsymbol{\Sigma}_{\beta} \boldsymbol{\Sigma}_{\alpha}^{\mathbf{1 / 2}}\right)^{\mathbf{1 / 2}} \boldsymbol{\Sigma}_{\alpha}^{-\mathbf{1} / \mathbf{2}}$ constitutes an optimal transport plan.
\rightarrow Furthermore, $W_{2}^{2}(\alpha, \beta)=\left\|\mathbf{m}_{\alpha}-\mathbf{m}_{\beta}\right\|^{2}+\operatorname{tr}\left(\boldsymbol{\Sigma}_{\alpha}+\boldsymbol{\Sigma}_{\beta}-\mathbf{2}\left(\boldsymbol{\Sigma}_{\alpha}^{\mathbf{1 / 2}} \boldsymbol{\Sigma}_{\beta} \boldsymbol{\Sigma}_{\alpha}^{\mathbf{1 / 2}}\right)^{\mathbf{1 / 2}}\right)^{\mathbf{2}}$.

Application I: Supervised learning with Wasserstein Loss

Learning with Wasserstein Loss

- Natural metric on the outputs that can be used to improve predictions.
- Wasserstein distance provides a natural notion of dissimilarity for probability measures \longrightarrow Can encourage smoothness on the predictions.
- In ImageNet, 1000 categories may have inherent semantic relationships.
- Speech recognition systems, output correspond to keywords that also have semantic relations \rightarrow this correlation can be exploited.

Siberian husky

Eskimo dog

Semantic relationships: Flickr dataset

(a) Flickr user tags: street, parade, dragon; our proposals: people, protest, parade; baseline proposals: music, car, band

(b) Flickr user tags: water, boat, reflection, sunshine; our proposals: water, river, lake, summer; baseline proposals: river, water, club, nature

(a) Flickr user tags: $\mathbf{z o o}$, run, mark; our proposals: running, summer, fun; baseline proposals: running, country, lake.

b) Flickr user tags: travel, a chitecture, tourism; our proposal ky, roof, building; baseline proposals: art, sky, beach.

(c) Flickr user tags: spring, race training; our proposals: road, bike, trail, baseline proposals: dog, surf, bike.

Problem setup

- Goal: Learn a mapping $\mathcal{X} \subset \mathbb{R}^{d} \rightarrow \mathcal{K} \subset \mathcal{Y}=\mathbb{R}_{+}^{K}$, where $|\mathcal{K}|=K$.
- Assume \mathcal{K} possesses a metric $d_{\mathcal{K}}(\cdot, \cdot)$, or ground metric.
- Learning over a hypothessis space \mathcal{H} of predictors: $h_{\theta}: \mathcal{X} \rightarrow \mathcal{Y}$, param. by $\theta \in \Theta$.
- These can be a logistic regression, output of a NN, etc.
- Empirical risk minimization:

$$
\min _{h_{\theta} \in \mathcal{H}} \mathbb{E}\left\{l\left(h_{\theta}(x), y\right)\right\} \approx \frac{1}{N} \sum_{i=1}^{N} l\left(h_{\theta}\left(x_{i}\right), y_{i}\right)
$$

Discrete Wasserstein loss

- Assuming h_{θ} outputs a probability measure (or a discrete probability distribution), and \mathbf{y}_{i} corresponds to the one-hot encoding of the label classes,

$$
W_{c}(\alpha, \beta)=\sum_{i=1}^{N} L_{\mathbf{C}}\left(h_{\theta\left(x_{i}\right)}, \mathbf{y}_{i}\right)
$$

where \mathbf{C} encodes the ground metric given by $c(x, y)$.

- In order to optimize the loss function, how do we compute gradients?
- Gradients are easy to compute in the dual domain.

Dual problem formulation

1. Construct the Lagrangian:

$$
L(x, \lambda, \nu)=f(x)+\sum_{i} \lambda_{i} g_{i}(x)+\sum_{j} \nu_{j} h_{j}(x)
$$

2. Dual function: the minimum of the Lagrangian over x :

$$
q(\lambda, \nu)=\min _{x} L(x, \lambda, \nu) .
$$

3. Dual problem: maximization of the dual function over $\lambda_{i} \geq 0$:

$$
\begin{array}{rl}
\max _{\lambda \in \mathbb{R}^{m}, \nu \mathbb{R}^{p}} & q(\lambda, \nu) \tag{2}\\
\text { s.t. } & \lambda_{i} \geq 0 \quad \forall i .
\end{array}
$$

Dual problem of the discrete Kantorovich problem

Dual of the discrete Kantorovich problem

Given $\mathbf{p} \in \mathbb{R}^{n}, \mathbf{q} \in \mathbb{R}^{n}$ and $\mathbf{C} \in \mathbb{R}^{n \times n}$, the dual of $L_{\mathbf{C}}(\mathbf{p}, \mathbf{q})$ has the following form:

$$
\begin{align*}
\max _{\mathbf{r}, \mathbf{s}} & \mathbf{p}^{T} \mathbf{r}+\mathbf{q}^{T} \mathbf{s} \tag{3}\\
\text { s.t. } & \mathbf{r 1}^{T}+\mathbf{1}^{T} \mathbf{s} \leq \mathbf{C}
\end{align*}
$$

where $\mathbf{r} \in \mathbb{R}^{n}, \mathbf{s} \in \mathbb{R}^{n}$.

- Because the primal OT Kantorovich problem is a feasible LP for \mathbf{p} and \mathbf{q} probability distributions, the dual problem is also feasible and strong duality holds.
- The dual problem can play an important part in devising algorithms to solve the Kantorovich problem.
- Interpretation of prices of dual variables.
- Semilagrangian of the primal problem:

$$
J(\mathbf{F} ; \mathbf{r}, \mathbf{s})=\operatorname{tr}\left(\mathbf{C F}^{T}\right)+\mathbf{r}^{T}(\mathbf{p}-\mathbf{F} \mathbf{1})+\mathbf{s}^{T}\left(\mathbf{q}-\mathbf{F}^{T} \mathbf{1}\right)
$$

- Dual problem:

$$
\max _{\mathbf{r}, \mathbf{s}} \mathbf{r}^{T} \mathbf{p}+\mathbf{s}^{T} \mathbf{q}+\min _{\mathbf{F} \geq 0} \operatorname{tr}\left(\mathbf{C F}^{T}\right)-\underbrace{\mathbf{r}^{T} \mathbf{F} \mathbf{1}}_{\operatorname{tr}\left(\mathbf{F}^{T} \mathbf{r} \mathbf{1}^{T}\right)}-\underbrace{\mathbf{s}^{T} \mathbf{F}^{T} \mathbf{1}}_{\mathbf{F}^{T} 1 \mathbf{s}^{T}}
$$

where $\mathbf{Q}=\mathbf{C}-\mathbf{r} \mathbf{1}^{T}-\mathbf{1 s}^{T}$

$$
\min _{\mathbf{F} \geq 0} \operatorname{tr}\left(\mathbf{C F}^{T}\right)-\underbrace{\mathbf{r}^{T} \mathbf{F} \mathbf{1}}_{\operatorname{tr}\left(\mathbf{F}^{T} \mathbf{r}^{T}\right)}-\underbrace{\mathbf{s}^{T} \mathbf{F}^{T} \mathbf{1}}_{\mathbf{F}^{T} \mathbf{1} \mathbf{s}^{T}}= \begin{cases}0 & \text { if } \mathbf{Q} \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

- Giving

$$
\begin{aligned}
\max _{\mathbf{r}, \mathbf{s}} & \mathbf{r}^{T} \mathbf{p}+\mathbf{s}^{T} \mathbf{q} \\
\text { s.t. } & \mathbf{r 1}^{T}+\mathbf{1}^{T} \mathbf{s} \leq \mathbf{C}
\end{aligned}
$$

Gradient of the Wasserstein Loss

- Back to the Wasserstein loss function: $L_{\mathbf{C}}\left(h_{\theta\left(x_{i}\right)}, \mathbf{y}_{i}\right)$.
- If we write it in dual form:

$$
\begin{aligned}
\max _{\mathbf{r}, \mathbf{s}} & \mathbf{r}^{T} h_{\theta\left(x_{i}\right)}+\mathbf{s}^{T} \mathbf{y}_{i} \\
\text { s.t. } & \mathbf{r} \mathbf{1}^{T}+\mathbf{1}^{T} \mathbf{s} \leq \mathbf{C} .
\end{aligned}
$$

- We can take conditional subgradient w.r.t. $h_{\theta}(x)$:

$$
\frac{d}{d h_{\theta}(x)} W_{p}\left(h_{\theta}(x), y\right)=\mathbf{r}
$$

- Note that the Wasserstein loss is subdifferientiable.
- Computing the Wasserstein loss for N examples can be costly in high dimensions...
- Once we have the subgradient, we can backpropagate to update θ with SGD.

Effects of the ground metric I

- Authors compare discriminative power of W_{p} for different p norm values.

(a) Posterior prediction for images of digit 0.

(b) Posterior prediction for images of digit 4.

Effects of the ground metric II

- KL loss vs. Wasserstein loss on the Flickr database:

$$
l\left(x_{i}, y_{i}\right)=W_{p}\left(h_{\theta}\left(x_{i}\right), y_{i}\right)+\alpha K L
$$

(a) Original Flickr tags dataset.

(b) Reduced-redundancy Flickr tags dataset.

Homework proposal

- Train a Wasserstein loss classifier on the plane with semantic classes.

(a) Noise level 0.1

(b) Noise level 0.5

Thank you for listening!

- There are more things I wanted to talk about.

1. Approximate methods such as Sinkhorn, or smooth OT, to scale problem dimensions.
2. Domain adaptation transport a database of unlabelled data, to a domain where such labels exist, according to a Wasserstein transport plan.
3. Ground metric learning allows to learn the cost matrix from data, potentially improving performance compared to a p-Wasserstein loss as we have seen in examples.
4. Barycenter estimation: for clustering, or interpolation between histograms.
5. Transfer learning.
6. Unbalanced optimal transport.
7. Wasserstein discriminant analysis.
8. Etc.

Application II: Domain adaptation

Problem intuition

Probability Distribution Functions over the domains

- We consider unsupervised domain adaptation \longrightarrow labels only in source domain.
- Assumption: data is processed to make the domains similar.
- Transformation follows a least effort principle.

Procedure

1. Estimate the marginals μ_{s} and μ_{t} from source and target sample distributions.
2. Find a transport map T from μ_{s} to μ_{t}.
3. Use T to transport labeled samples \mathbf{x}_{s} and train a classifier from them.

Related work

- The approach defines a local transformation for each sample in the domain.
- It can be seen as a graph matching problem \longrightarrow marginal distribution conservation.
- Related work:

1. Projection methods: inner products, region transformation, extraction of common features.
2. Unsupervised: common latent space representations; feature extraction is key.
3. Gradual alignment of feature representation: kernel methods.

Problem description

- \mathcal{K} set of possible labels; only available for \mathcal{X}.
- Source sample data: $\left(\left(\mathbf{x}_{i}^{s}\right)_{i}^{N},\left(y_{i}\right)_{i}^{N}\right)$.
- Target sample data: $\left(\left(\mathbf{x}_{i}^{s}\right)_{i}^{N}\right)$.
- Joint probability distribution in source: $P_{s}\left(\mathbf{x}^{s}, y\right)$
- Marginal over $x: \mu_{s}$.
- Joint probability distribution in target: $P_{t}\left(\mathbf{x}^{t}, y\right)$.
- Marginal over $x: \mu_{t}$.

Assumptions of the transportation

- The domain drift is to an unknown, possibly nonlinear transformation of the linear space

$$
T: \mathcal{X} \rightarrow \mathcal{Y}
$$

- From probabilistic perspective, T transforms μ_{s} into μ_{t}, i.e.,

$$
T \sharp \mu_{s}: \mathcal{M}_{+}^{1} \rightarrow \mathcal{M}_{+}^{1}=\mu_{t}
$$

X_{t} are drawn from same pdf as $T \sharp \mu_{s}$.

- Transformation preserves conditional distribution, i.e.,

$$
P_{s}\left(y \mid \mathbf{x}^{s}\right)=P_{t}\left(y \mid \mathbf{x}^{t}\right) \quad \Longleftrightarrow f_{t}\left(T\left(\mathbf{x}^{s}\right)\right)=f_{s}\left(\mathbf{x}^{s}\right)
$$

Problem formulation

- Empirical distributions:

$$
\mu_{s}=\sum_{i=1}^{N_{s}} p_{i}^{s} \delta_{x_{i}^{s}}, \quad \mu_{t}=\sum_{i=1}^{N_{t}} p_{i}^{t} \delta_{x_{i}^{t}}
$$

- Transport problem:

$$
\mathbf{F}=\underset{\mathbf{F} \in U\left(\mu_{s}, \mu_{t}\right)}{\arg \min } \operatorname{tr}(\mathbf{F C})
$$

where $C_{i j}=\left\|\mathbf{x}_{s}-\mathbf{x}_{t}\right\|^{2}$.

- When $N_{s}=N_{t}=N$ and forall $i, p_{i}^{s}=p_{i}^{t}=1 / N, \mathbf{F}$ is simply a permutation matrix, which makes a correspondence of one to one from source to target domain.

Results

- Once we have the transport plan, we can bring features with labels to the target domain and train a classifier.
- Regularization can be induced to improve results using labels
- Results:

(a) source domain

(b) rotation $=20^{\circ}$

(c) rotation $=40^{\circ}$

(d) rotation $=90^{\circ}$

Questions?

