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Abstract

We present the basic concepts of unconstrained and constrained op-
timization. This will allow you to understand the derivations to obtain
the dual problem of the optimal transport formulation.

1 Intro to optimization

We say an optimization problem is unconstrained when we minimize in the
whole Euclidean space, i.e., x ∈ Rn:

min
x∈Rn

f(x). (1)

We have a constrained optimization problem when the minimization is with
respect to X ⊂ Rn:

min
x∈X

f(x). (2)

A set X ⊆ Rn is convex if every point between two points belonging to the
set, also belongs to the same set. Examples of convex sets include the whole
Euclidean space, half-spaces (subspaces divided by hyperplanes), hyperplanes,
polytopes (the intersection of multiple halfspaces), etc. See also Figure 1.

A function f(x) is convex in an open set X, if for every two points x1
and x2 ∈ X, the points connecting f(x1) and f(x2) are greater than or equal
to the function f evaluated at those points. If the function f(x) is doubly
differentiable, the function is convex if its Hessian is positive semidefinite on
every point x ∈ X. An example is given in Figure 2.
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Figure 1: Three sets. The hexagon on the left is convex, the kidney shaped
set is non-convex, the squared set excluding part of the boundary is also non-
convex.

(x f(x))

(y f(y))

Figure 2: Example of a convex function.

2 Unconstrained optimization

We want to solve problem (1). If the function is differentiable, a necessary
condition for optimality on point x∗ is that its gradient is null evaluated on
that point, i.e.,

∇xf(x∗) = 0. (3)

If f(x) is additionally a convex function, then the condition is both necessary
and sufficient.

An example is to minimize the convex parabola f1(x) = ax2 + bx+ c with
a > 0. Its derivate is d

dx
f(x) = 2ax + b, and its minimum becomes x∗ = −b

2a
.

We can generalize to the multivariate case:

f2(x) = xTAx+ 2bTx+ c, (4)

with A being a symmetric positive definite matrix. The gradient is

∇xf2(x) = 2Ax+ 2b, (5)

and finding its root we obtain x∗ = −A−1b.

3 Constrained optimization

We want to solve problem (2). We can assume that X is represented in ana-
lytical with equality and inequality equations as follows:

X = {x ∈ Rn | gi(x) ≤ 0 ∧ hj(x) = 0, i ∈ { 1, . . . ,m } , j ∈ { 1, . . . , p } } .
(6)

2



This allows us to rewrite (2) in standard form:

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0 i ∈ { 1, . . . ,m }
hj(x) = 0 j ∈ { 1, . . . , p } .

(7)

We say that problem (7) is convex if f(x) is convex, every gi(x) is convex, and
every hj(x) are affine functions. Otherwise, the problem is non-convex. The
SVM problem that we introduced in the course is convex.

If we have a constrained convex problem, and it satisfies a special constraint
qualification, then we can use duality theory to solve it. The motivation to
derive the dual is threefold: it allows to check specific conditions for optimality;
it introduces other optimization tools to solve the original problem, hopefully
more efficient; it may give some theoretical insights about the problem, such
as pricing of a certain resource in an economic model.

Regarding the constraint qualification we mentioned, we need to verify if
the problem satisfies Slater’s condition:

∃x̂ | gi(x̂) < 0 ∀i and hj(x̂) = 0 ∀j. (8)

The previous expression can be relaxed to a simple feasibility requirement as
gi(x̂) ≤ 0, if gi is an affine expression.

We call (7) the primal problem, because we optimize in the primal variable
x. We will derive now the dual problem. First we form the Lagrangian:

L(x, λ, ν) = f(x) +
∑
i

λigi(x) +
∑
j

νjhj(x). (9)

The dual function is the minimum of the Lagrangian over variable x, and it is
a function over λi and νj:

q(λ, ν) = min
x
L(x, λ, ν). (10)

And finally, the dual problem consists on the maximization of the dual function
over λi ≥ 0:

max
λ∈Rm,νRp

q(λ, ν)

s.t. λi ≥ 0 ∀i.
(11)

The motivation behind using duality theory to solve problem (7) is that
sometimes it is easy to solve the minimum over x in the Lagrangian, and the
dual problem has an amenable form. Notice that the minimization over x of
the Lagrangian is an unconstrained problem, and therefore it is necessary that

∇xL(x∗, λ, ν) = 0 (12)
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for any candidate solution x∗. This is the first necessary condition of the
Karush-Kuhn-Tucker (KKT) conditions. The rest of them refer to feasibility:

gi(x
∗) ≤ 0 ∀i (13a)

hj(x
∗) = 0 ∀j (13b)

λ∗i ≥ 0 ∀i (13c)

ν∗j ∈ R ∀j, (13d)

and complementarity slackness:∑
i

λ∗i gi(x
∗) = 0 (14a)∑

j

ν∗j hj(x
∗) = 0. (14b)

The reason of imposing (14) is to have the following relation:

max
λ,ν

min
x

L(x, λ, ν)

= f(x∗) +
∑
i

λ∗i gi(x
∗)︸ ︷︷ ︸

=0

+
∑
j

ν∗j hj(x
∗)︸ ︷︷ ︸

=0

= f(x∗).

We see then that when the KKT conditions are satisfied for points x∗,
λ∗i , ν

∗
j , and the problem is convex, then we achieve optimality of the primal

problem. The KKT conditions (provided that Slater condition holds) are then
necessary and sufficient.
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