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Abstract

We present the basic concepts of unconstrained and constrained op-
timization. This will allow you to understand the derivations to obtain
the dual problem of the optimal transport formulation.

1 Intro to optimization

We say an optimization problem is unconstrained when we minimize in the
whole Euclidean space, i.e., x € R™:

i ) 1
min - f(z) (1)
We have a constrained optimization problem when the minimization is with
respect to X C R™:

min  f(z). (2)

A set X C R" is convex if every point between two points belonging to the
set, also belongs to the same set. Examples of convex sets include the whole
Euclidean space, half-spaces (subspaces divided by hyperplanes), hyperplanes,
polytopes (the intersection of multiple halfspaces), etc. See also .

A function f(z) is convex in an open set X, if for every two points x;
and x5 € X, the points connecting f(z1) and f(z5) are greater than or equal
to the function f evaluated at those points. If the function f(z) is doubly
differentiable, the function is convex if its Hessian is positive semidefinite on

every point x € X. An example is given in [Figure 2|



& E

Figure 1: Three sets. The hexagon on the left is convex, the kidney shaped
set is non-convex, the squared set excluding part of the boundary is also non-

convex.
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Figure 2: Example of a convex function.

2 Unconstrained optimization

We want to solve problem (). If the function is differentiable, a necessary
condition for optimality on point z* is that its gradient is null evaluated on
that point, i.e.,
Ve f(z") = 0. (3)
If f(z) is additionally a convex function, then the condition is both necessary
and sufficient.
An example is to minimize the convex parabola f(x) = az? + bz + ¢ with
a > 0. Its derivate is d%f(x) = 2az + b, and its minimum becomes r* = 32

We can generalize to the multivariate case: .
fo(z) = 2" Az + 267w + ¢, (4)

with A being a symmetric positive definite matrix. The gradient is
V.fa(x) = 2Az + 20, (5)

and finding its root we obtain z* = —A~!b.

3 Constrained optimization

We want to solve problem . We can assume that X is represented in ana-
lytical with equality and inequality equations as follows:

X={zeR" | gi(x) <OAhj(x)=0, ie{l,....m},je{l,....p}}.
(6)



This allows us to rewrite in standard form:

min - f(z)
st. gi(z) <0 ie{l,...,m} (7)

hi()=0 je{l,....p}.

We say that problem (7)) is convex if f(z) is convex, every g;() is convex, and
every h;(z) are affine functions. Otherwise, the problem is non-convex. The
SVM problem that we introduced in the course is convex.

If we have a constrained convex problem, and it satisfies a special constraint
qualification, then we can use duality theory to solve it. The motivation to
derive the dual is threefold: it allows to check specific conditions for optimality;
it introduces other optimization tools to solve the original problem, hopefully
more efficient; it may give some theoretical insights about the problem, such
as pricing of a certain resource in an economic model.

Regarding the constraint qualification we mentioned, we need to verify if
the problem satisfies Slater’s condition:

32| ¢;(2) <0 Viand hj(z) =0 Vj. (8)

The previous expression can be relaxed to a simple feasibility requirement as
gi(2) <0, if g; is an affine expression.

We call the primal problem, because we optimize in the primal variable
x. We will derive now the dual problem. First we form the Lagrangian:

Lz, \v) = f(z) + Z)\ig,-(x) + Zyjhj(a:). (9)

The dual function is the minimum of the Lagrangian over variable x, and it is
a function over \; and v;:

q(A\,v) =min L(z, A\, v). (10)
And finally, the dual problem consists on the maximization of the dual function

over \; > 0:

A
Ae%l"{i,}szP A v) (11)

The motivation behind using duality theory to solve problem is that
sometimes it is easy to solve the minimum over x in the Lagrangian, and the
dual problem has an amenable form. Notice that the minimization over x of
the Lagrangian is an unconstrained problem, and therefore it is necessary that

V.L(z",\,v)=0 (12)
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for any candidate solution x*. This is the first necessary condition of the
Karush-Kuhn-Tucker (KKT) conditions. The rest of them refer to feasibility:

gi(z*) <0 Vi (13a)
hi(z*)=0 Vj (13b)
>0 Vi (13¢)
v eR (13d)

J

and complementarity slackness:
> Ngi(x") =0 (14a)
> vihi(x*) = 0. (14b)
J

The reason of imposing is to have the following relation:

maxmin Lz, \,v)
AV T

= f(=")+ Z Agi(a*) + Z vihi(z*) = f(z*).

We see then that when the KKT conditions are satisfied for points x*,
Af, Vi, and the problem is convex, then we achieve optimality of the primal
problem. The KKT conditions (provided that Slater condition holds) are then
necessary and sufficient.
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