Advanced Section #1: Moving averages, optimization
algorithms, understanding dropout and batch normalization

AC 209B: Data Science 2

Javier Zazo Pavlos Protopapas

IACS |18 £ jusk

NAVALY,
SRy
oKy
K

Lecture Outline

Moving averages
Optimization algorithms
Tuning the learning rate
Gradient checking

How to address overfitting
Dropout

Batch normalization

Moving averages

Moving averages

» Given a stationary process z[n] and a sequence of observations a1, s, ..., %y, .

want to estimate the average of all values dynamically.

» We can use a moving average for instant n:

o 1
.I‘nJrl:E(,Tl-i-{EQ-i-...—‘rl‘n)

» To save computations and memory:

1 n 1 n—1 1 1 n—1
fn—o—l*ﬁ. Iiﬂ(%ﬂrZ%)n<l’n+(”1)n_1ziri>
1

I
[
£}
3
—+
—~
S
I
—
S
s
&
|
8
3
+
[
=
8
3

» Essentially, for a,, = 1/n,

‘En-‘rl =Ty + ap (xn - En)

.., We

Weighted moving averages

» Previous step size a,, = 1/n is dynamic.

From stochastic approximation theory, the
estimate converges to the true value with
probability 1, if

oo oo
E o; = 00 and E a? < oo
i=1 i=1

> o, = % satisfies the previous conditions.
» Constant o does not satisfy the second!!

» This can be useful to track non-stationary
processes.

Exponentially weighted moving average

» Update rule for constant step size is

Tl = T, =5 @ (5, =)

=az,+ (1 —a)z,
=az, + (1 — a)|azp_1 + (1 — a)Tp_1]
=az, + (1 —a)az,_1 + (1 — a)’T,_1]
(1-0a)

=az, +(1—a)ax, 1 +(1-a)az, o+...+(1—a)" taz; + (1 -)"z

=(1-a)"T + Za(l —a)" iy

» Note that (1 —)™ + Zl a(l—a) —i— 1.
» With infinite terms we get

o . Tnt+ (1l —a)rn 1+ (1 —0a)?zy 2+ (1—a)zy 3+...
lim Z,, = lim
n—oo n—o0 1+(1-a)+(1—-a)2+(1—-a)p+...

Exponentially weighted moving average

» Recap update rule, but change 1 —a = f

‘fn—l - 6fn—1 + (1 - ﬂ)xnv

» /3 controls the amount of points to consider
(variance):

» Rule of thumb:

148
N=1-3

amounts to 86% of influence.

values

— [= 0.9 corresponds to 19 points.

— [= .98 corresponds to 99 points (wide
window).

— B = 0.5 corresponds to 3 points (susceptible
to outliers).

points

Bias correction

» The rule of thumb works for sufficiently large N.
» Otherwise, the first values are biased.
» We can correct the variance with:

ted
gpeorrected _

values

points

Bias correction 11

» The bias correction can in practice be ignored (Keras does not implement it).
» Origin of bias comes from zero initialization:

n

Tn = 8" T+ -0) B
0 =il

» Derivation:

1-8)> Bz
=1
= E[z,)1-8)) 8" +¢
=1
=Elz,](1-8")+¢

E[fn+1] =]E

Optimization algorithms

10

Gradient descent

Gradient descent

= ——

Gradient descent with momentum

» Gradient descent will have high variance if the problem is ill-conditioned.
» Aim to estimate directions of high variance and reduce their influence.
» Descent with momentum, RMSprop or Adam, help reduce the variance and speed up

convergence.

11

Gradient descent with momentum

» The algorithm:
1: On iteration t for W update:

2: Compute dW on current mini-batch.
3: Vaw = 5wa -+ (1 = ﬁ)dW
4: W =W — avgw.

» Gradient with momentum performs an exponential moving average over
the gradients.
» This will reduce the variance and give more stable descent directions.

» Bias correction is usually not applied.

12

RMSprop

» The algorithm:
1: On iteration t for W update:

2: Compute dW on current mini-batch.
3: Saw = Pasaw + (1 — Bo)dW?.
£ W=W-—a 2

Saw €

» ¢ = 108 controls numerical stability.

» High variance gradients will have larger values — the squared averages
will be large — reduces the step size.

» Allows a higher learning rate — faster convergence.

13

Adaptive moment estimation (Adam)

» The algorithm:
1: On iteration t for W update:

2:

Compute dW on current mini-batch.

vaw = Brvaw + (1 — B1)dW.
Saw = Pasaw + (1 — Bg)dWQ.

Ucorrected — Vdw

140
Scorrected — Sdw
16

o vcorrected

W =W —atZ=s,

14

AMSGrad

» Adam/RMSprop fail to converge on certain convex problems.

» Reason is that some important descent directions are weakened by high second order
estimations.

» AMSGrad proposes a conservative fix where second order moment estimator can only
increase.
» The algorithm:
1: On iteration t for W update:
2: Compute dW on current mini-batch.

3 U =By + (1= Br)dW.
4: sl = Boshy + (1 — B2)dW2.
% gt = max(8%y, st

6: W _ W o ,Ucorrected

Marginal value of adaptive gradient methods

l — SGD — HB — AdaGrad — RMSProp — Adam Adam (Default)
20 20
18

o 15
ES . 16
s 2
] 014
210 5
=)
IS ¢ 12
© I~
= 5 10

o E SGD: 7.6540.14— 3

0 50 100 150 200 250 0 50 100 150 200 250
Epoch Epoch
(a) CIFAR-10 (Train) (b) CIFAR-10 (Test)

16

Tuning the learning rate

17

Cyclical Learning Rates for Neural Networks

>

>

Use cyclical learning rates to escape
local extreme points.

Saddle points are abundant in high
dimensions, and convergence becomes
very slow. Furthermore, they can help

escape sharp local minima (overfitting).

Cyclic learning rates raise the learning
rate periodically: short term
negative effect and yet achieve a
longer term beneficial effect.

Decreasing learning rates may still help
reduce error towards the end.

Triangular schedule

.....

Triangular schedule with fixed decay
ore

———

VA=

[e—

0.2

Triangular schedule with exponential decay

18

Estimating the learning rate

» How can we get a good LR estimate?

» Start with a small LR and increase it on every batch exponentially.

» Simultaneously, compute loss function on validation set.

» This also works for finding bounds for

14

learning rate

= = = = =

O = ¥
Lo

=
N}

=
=)

0 S 0o 180 200 X0 300
iterations

cyclic LRs.

learning rate is too
low, loss function
doesn't improve

learning rate is t00 high,
begins to diverge

optimal learning rate range

19

SGD with Warm Restarts

» Key idea: restart every T; epochs. Record best estimates before restart.
» Restarts are not from scratch, but from last estimate, and learning rate is increased.

, 1, . ; e
ar = g + = (00 — Qin) (1 + cos(7:”ﬂw))

min 9 max min

» The cycle can be lengthened with time.

3 a8
> Qmin and Crmax

can be decayed after a cycle.

10! Cifar10 (L=100,k=24, B=300 epochs)

~—— Standard Ir scheduling

—— Cosine annealing with restart Ir 0.1
10° | | | | |

| | | |

Training loss

| 1
Model | Model 1 Model | Model | Model | Model
1 2 3 4 5
o 1 1 1 1 1
Q 50 100 150 200 250 300 9
Epochs 0

Snapshot ensembles: Train 1, get M for free

» Ensemble networks are much more robust and accurate than individual networks.
» They constitute another type of regularization technique.
» The novelty is to train a single neural network, but obtain M different models.

» The idea is to converge to M different local optima, and save network parameters.

05 " Single Model %97 Snapshot Ensemble
04. Standard LR Schedule 0.4 Cyclil_: LR Scheglu]e
03 w o A 0.3 : o

0z - 0.2

21

Snapshot ensembles 11

>

Different initialization points, or hyperarameter choices may converge to different
local minima.

Although these local minima may perform similarly in terms of averaged errors, they
may not make the same mistakes.

Ensemble methods train many NN, and then optimize through majority vote, or
averaging of the prediction outputs.

The proposal uses a cycling step size procedure (cosine), in which the learning rate is
abruptly raised and wait for new convergence.

The final ensemble consists of snapshots of the optimization path.

22

Snapshot ensembles II1

Method C10 C100 SVHN Tiny ImageNet
Single model 5.52 28.02 1.96 46.50
NoCycle Snapshot Ensemble 549 26.97 1.78 43.69
ResNet-110 SingleCycle Ensembles 6.660 24.54 1.74 42.60
Snapshot Ensemble (ap = 0.1) 5.73 25.55 1.63 40.54
Snapshot Ensemble (g = 0.2) 5.32 24.19 1.66 39.40
Single model 543 23.55 1.90 39.63
Dropout 4.68 22.82 1.81 36.58
. . NoCycle Snapshot Ensemble 5.18 22.81 1.81 38.64
WideResNet-32 i 1eCycle Ensembles 505 2138 165 35.53
Snapshot Ensemble (g = 0.1) 441 21.26 1.64 3545
Snapshot Ensemble (g = 0.2) 4.73 21.56 1.51 32.90
Single model 5247 24427 1.77 39.09
Dropout 6.08 25.79 1.79* 39.68
. NoCycle Snapshot Ensemble 5.20 24.63 1.80 3851
DenseNet-40 SingleCycle Ensembles 543 2251 187 38.00
Snapshot Ensemble (ap = 0.1) 4.99 23.34 1.64 37.25
Snapshot Ensemble (ap = 0.2) 4.84 21.93 1.73 36.61
Single model 3.74* 19.257 - -
Dropout 3.65 18.77 - -
. NoCycle Snapshot Ensemble 3.80 19.30 - -
DenseNet-100 SingleCycle Ensembles 4.52 18.38
Snapshot Ensemble (g = 0.1) 3.57 18.12 - -
Snapshot Ensemble (ag = 0.2) 3.4 17.41 - -

23

Gradient checking

24

Gradient checking

» Useful technique to debug code of manual implementations of neural networks.

Not intended for training of networks, but it can help to identify errors in a
backpropagation implementation.

Derivative of a function:

oy JE e —fle—e flete)—flz—e
f(x)_!l—rf(l) 2¢ - 2¢ '

» The approximation error is in the order O(€?).

» In the multivariate case, the € term affects a single component:

af (o) f(65) = f67)

~
~

do, 2¢

where 0 = (01,...,0, +¢€,...,0,), 07 =(01,...,0, —€,...,0,).

25

Algorithm for gradient checking

1
2
S
4
5:
6
7
8

: for each r component do

Restore 0, < 0,4
. end for

é‘_

: Reshape input vector in a column vector 6.

eold — ‘91"
Calculate f(6) and f(6,).
Compute approx. %.

: Verify relative error is below some threshold:

“d@approx o dQH

~ [ld6ewerex|[+]|ab)]

26

How to address overfitting

27

Estimators

» Point estimation is the attempt to provide the single “best” prediction of
some quantity of interest:

0,, = g(xV, ..., x™).

— 6: true value.
— 0, : estimator for m samples.

» Frequentist perspective: @ fixed but unkwown.

» Data is random = 0,, is a r.v.

28

Bias and Variance

» Bias: expected deviation from the true value.

» Variance: deviation from the expected estimator.

Examples:

— Sample mean: fi,, = = 3. x®

— Sample variance 62, = L 3 (2() — fi,,)%:

—1
E[6%] = =0
m
— Unbiased sample variance: 52, = 1= 3 (2 — fi,,)?

» How to choose estimators with different statistics?

— Mean square error (MSE).
— Cross-validation: empirical.

29

Bias-Variance Example

high bias &
underfitting

\4

high variance &
overfitting

A\ 4

A\ 4

high bias & variance

A\

30

Diagnose bias-variance

» In high dimensions we cannot draw decision curves to inspect bias-variance.

» We calculate error values to infer the source of errors on the training set, as well as
on the val set.

» To determine bias, we need a base line, such as human level performance.

Avoidable Avoidable
Bayes bias Training variance Val error
error error
» Example:
| Human level error | ~ 0% ‘
Training error 0.5% 15% 1% 12%
Val error 1% 16% 11% 20%
low bias high bias high variance high bias
low variance high variance

31

Orthogonalization

Human
level error . .
. Train a bigger model
Av?)l.dable Train longer /better optimization alg.
ias
NN architecture/hyperparameter search.
Training
error
) Get more data.
AVO}dable Use regularization (L2, dropout, data aug., etc.)
variance
NN architecture/hyperparameter search.
Val error

» Orthogonalization aims to decompose the process to adjust NN performance.

» It assumes the errors come from different sources and uses a systematic approach to
minimize them.

» Early stopping is a popular regularization mechanism, but couples the bias and
variance errors.

32

Dropout

33

Dropout

Regularization technique for deep NN.
Employed at training time.

Eliminates the output of some units randomly.

vvyyy

Can be used in combination with other regularization techniques (such as L2, batch
normalization, etc.).

(a) Standard Neural Net (b) After applying dropout.

34

Motivation and direct implementation

» Purpose: prevent the co-adaptation of feature detectors for a set of neurons, and
avoid overfitting.
— It enforces the neurons to develop an individual role on their own given an
overall population behavior.
— Training weights are encouraged to be spread along the NN, because no neuron
is permanent.

» Interpretation: training examples provide gradients from different, randomly
sampled architectures.
» Direct implementation:

— At training time: eliminate the output of some units randomly.
— At test time: all units are present.

W

Present with Always
probability p present
(a) At training time (b) At test time

35

Inverted dropout

» Current implementations use inverted dropout
— Weighting is performed during training.
— Does not require re-weighting at test time.
» In particular, for layer [,
L= Lyupugi-u g
b
all = g(z11),
» Notation:

p; : Retention probability.

D . Dropout activations.
ali—1

Present with
: Output from previous layer. probability p

(a) At training time

wil . Layer weights.
bl Offset weights.

2 Linear output. Always
present

g(+) : Nonlinear activation function. (b) At test time

Understanding dropout

We aim to understand dropout as a regularization technique on simplified neural
architectures such as:

» Linear networks.
» Logistic regression.

» Deep networks.

These results are are based on the following reference:

Pierre Baldi and Peter J Sadowski, “Understanding dropout,”
in Advances in Neural Information Processing Systems, 2013, pp. 2814-2822.

37

Dropout in linear networks

» Linear network: all activations units correspond to the identity function.

» For a single training example we get

L0yl pli =11

» The expectation over all possible network realizations:
E{z[l]} = p w1

» p; corresponds to the probability of keeping a unit on layer [.

38

Dynamics of a single linear unit

» Consider the error terms for the averaged ensemble network, and dropout:
Eens — (y(z) - plW[l]x(i))Q
Ed = (y@& — wll pllg))2,

» We want to minimize these cost functions.
1. Compute the gradients.
2. Take expectation over dropout realizations.

3. Obtain:
ni 1)
E{EY} = E°™ + Z =~ var(DW (V)22
=il 2

» Dropout corresponds to a regularized cost function of the ensemble network.

39

Dropout in logistic regression

» Single logistic unit with n inputs:

and z = w”z.

— 1] —

g) =g =

o(2) 14+e 7
» The normalized weighted geometric mean over al possible network

configurations corresponds to a feedforward pass of the averaged weights.

G 1
N M — = = .
WG G101 Srum o(pz)

» Definitions:

— Total number of network configurations: m = 2.
— a[ll], e ,aL}J possible outcomes.
Weighted geometric mean: G = Hi(agl])Pf.

Weighted geometric mean of the complements G’ = [],(1 — aE”)P 8

40

Dynamics of a single logistic unit

» The result from a single linear unit generalizes to a sigmoidal unit as well.

» The expected gradient of the dropout network:

+ Ao’ (pz)x? var(p)w;.

d ens
o)~

» The expectation of the dropout gradient corresponds approximately to the gradient
of the ensemble network plus a ridge regularization term.

41

Dropout in Deep Neural Networks

» Network of sigmoidal units.
» QOutput of unit ¢ in layer I: a = O'(Z W[l] b= 1])
» Normalized weighted geometric mean:
HN(GEZ])P(N)
Ty(1 - a))P() + Ty (a

where N ranges over all possible configuration networks.

l
NWGM(a!) = 1) p(N)

» Averaging properties of dropout:
1 Z l 1]

» Take-home message: the expected dropout gradient corresponds to an
approximated ensemble network, regularized by an adaptive weight decay with a
propensity for self-consistent variance minimization.

» Convergence can be understood via analysis of stochastic gradient descent.

42

Batch normalization

43

Problems of deep networks

» Adaptive reparametrization, motivated by the difficulty of training very
deep models.
» Parameters from all layers are updated at the same time.

— composition of many functions can have unexpected results because all
functions have been changed simultaneously.
— learning rate becomes difficult to tune.

» Consider a linear network with a single neuron per layer and single input.

» We update w < w — €g, where g = V,,J:

]

§ 4 (Wl — egth (W — gy . (Wit — eglthz.

» Previous update has many high order components, that can influence
greatly the value of 3.

44

Input normalization

» The method is inspired by the normalization step normally applied to an
input:
- {1y _
el P
o+e¢
where € = 1078 is frequently used,

1 A 1 ,
_ L B0 and o2 — & i) _)2
f m%:v , and o m%(:v 1)

original data zero-centered data normalized data

45

Batch normalization

» Batch normalization extends the concept to other hidden layers.
i il
203 _ z{B0 i
norm O'{l}[l] +e

where

i 1 é T i 1 i T é
a0 = — 3 LI and (oliH)2 = 1§ (ADIC) _ g2,

m
P

» i refers to the mini-batch index; m to the number of elements.
— the normalization depends on the minibatch.

» The outcome is rescaled with new parameters:

ZUH — Azl gladll,

norm

where 710 and {3 are incorporated in the learning process.

46

Batch normalization

» The scheme has the same expressive capabilities
~ setting LI = (M) and A{ 1 = oLa}0,

» The weights from one layer do not affect the statistics (first and second
order) of the next layer.
» The offsets b/ become obsolete.

» Testing: a weighted average on all parameters:

= B+ (1 Py
= BB + (1 — B)sH
= B + (1 ﬁ)ﬂ{

= Bo; + (1 — B)o'®

47

	Moving averages
	Optimization algorithms
	Tuning the learning rate
	Gradient checking
	How to address overfitting
	Dropout
	Batch normalization

