Advanced Section #1: Moving averages, optimization algorithms, understanding dropout and batch normalization

AC 209B: Data Science 2 $\,$

Javier Zazo Pavlos Protopapas

Moving averages

Optimization algorithms

Tuning the learning rate

Gradient checking

How to address overfitting

Dropout

Batch normalization

Moving averages

Moving averages

- Given a stationary process x[n] and a sequence of observations $x_1, x_2, \ldots, x_n, \ldots$, we want to estimate the average of all values *dynamically*.
- We can use a *moving average* for instant n:

$$\overline{x}_{n+1} = \frac{1}{n} \left(x_1 + x_2 + \ldots + x_n \right)$$

► To save computations and memory:

$$\overline{x}_{n+1} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \left(x_n + \sum_{i=1}^{n-1} x_i \right) = \frac{1}{n} \left(x_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} x_i \right)$$
$$= \frac{1}{n} \left(x_n + (n-1) \overline{x}_n \right) = \overline{x}_n + \frac{1}{n} \left(x_n - \overline{x}_n \right)$$

• Essentially, for $\alpha_n = 1/n$,

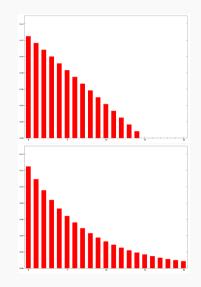
$$\overline{x}_{n+1} = \overline{x}_n + \alpha_n \left(x_n - \overline{x}_n \right)$$

Weighted moving averages

- Previous step size $\alpha_n = 1/n$ is dynamic.
- ► From stochastic approximation theory, the estimate converges to the true value with probability 1, if

$$\sum_{i=1}^{\infty} \alpha_i = \infty \quad \text{and} \quad \sum_{i=1}^{\infty} \alpha_i^2 < \infty$$

- $\alpha_n = \frac{1}{n}$ satisfies the previous conditions.
- Constant α does not satisfy the second!!
- ► This can be useful to track *non-stationary* processes.



Exponentially weighted moving average

▶ Update rule for constant step size is

$$\begin{aligned} \overline{x}_{n+1} &= \overline{x}_n + \alpha \left(x_n - \overline{x}_n \right) \\ &= \alpha x_n + (1 - \alpha) \overline{x}_n \\ &= \alpha x_n + (1 - \alpha) [\alpha x_{n-1} + (1 - \alpha) \overline{x}_{n-1}] \\ &= \alpha x_n + (1 - \alpha) \alpha x_{n-1} + (1 - \alpha)^2 \overline{x}_{n-1}] \\ &= \alpha x_n + (1 - \alpha) \alpha x_{n-1} + (1 - \alpha)^2 \alpha x_{n-2} + \dots + (1 - \alpha)^{n-1} \alpha x_1 + (1 - \alpha)^n \overline{x}_1 \\ &= \boxed{(1 - \alpha)^n \overline{x}_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} x_i} \end{aligned}$$

- Note that $(1-\alpha)^n + \sum_{i=1}^n \alpha (1-\alpha)^{n-i} = 1.$
- ▶ With infinite terms we get

$$\lim_{n \to \infty} \overline{x}_n = \lim_{n \to \infty} \frac{x_n + (1 - \alpha)x_{n-1} + (1 - \alpha)^2 x_{n-2} + (1 - \alpha)^3 x_{n-3} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + (1 - \alpha)^3 + \dots}$$

Exponentially weighted moving average

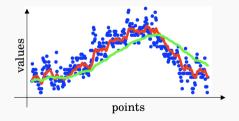
▶ Recap update rule, but change $1 - \alpha = \beta$

$$\overline{x}_{n-1} = \beta \overline{x}_{n-1} + (1-\beta)x_n,$$

- β controls the amount of points to consider (variance):
- ▶ Rule of thumb:

$$N=\frac{1+\beta}{1-\beta}$$
 amounts to 86% of influence.

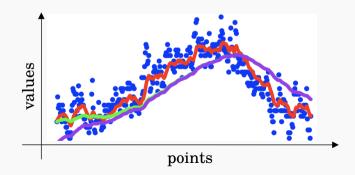
- $\beta = 0.9$ corresponds to 19 points.
- $\beta = .98$ corresponds to 99 points (wide window).
- $\beta = 0.5$ corresponds to 3 points (susceptible to outliers).



Bias correction

- ▶ The rule of thumb works for sufficiently large N.
- ▶ Otherwise, the first values are biased.
- ▶ We can correct the variance with:

$$\overline{x}_n^{\text{corrected}} = \frac{\overline{x}_n}{1 - \beta^t}.$$



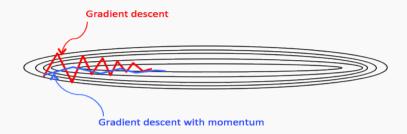
Bias correction II

- ▶ The bias correction can in practice be ignored (Keras does not implement it).
- ▶ Origin of bias comes from zero initialization:

$$\overline{x}_{n+1} = \beta^n \underbrace{\overline{x}_1}_{0} + (1-\beta) \sum_{i=1}^n \beta^{n-i} x_i$$

$$\mathbb{E}[\overline{x}_{n+1}] = \mathbb{E}\left[(1-\beta) \sum_{i=1}^{n} \beta^{n-i} x_i \right]$$
$$= \mathbb{E}[x_n](1-\beta) \sum_{i=1}^{n} \beta^{n-i} + \zeta$$
$$= \mathbb{E}[x_n](1-\beta^n) + \zeta$$

Optimization algorithms



- ▶ Gradient descent will have high variance if the problem is ill-conditioned.
- ▶ Aim to estimate directions of high variance and reduce their influence.
- ▶ Descent with momentum, RMSprop or Adam, help reduce the variance and speed up convergence.

- ► The algorithm:
 - 1: On iteration t for W update:
 - 2: Compute dW on current mini-batch.

3:
$$v_{dW} = \beta v_{dW} + (1 - \beta)dW.$$

- 4: $W = W \alpha v_{dW}$.
- Gradient with momentum performs an exponential moving average over the gradients.
- ▶ This will reduce the variance and give more stable descent directions.
- ▶ Bias correction is usually not applied.

- ► The algorithm:
 - 1: On iteration t for W update:
 - 2: Compute dW on current mini-batch.

3:
$$s_{dW} = \beta_2 s_{dW} + (1 - \beta_2) dW^2.$$

4: $W = W - \alpha \frac{dW}{\sqrt{s_{dW} + \epsilon}}.$

▶ $\epsilon = 10^{-8}$ controls numerical stability.

- ▶ High variance gradients will have larger values → the squared averages will be large → reduces the step size.
- \blacktriangleright Allows a higher learning rate \rightarrow faster convergence.

- ► The algorithm:
 - 1: On iteration t for W update:
 - 2: Compute dW on current mini-batch.

3:
$$v_{dW} = \beta_1 v_{dW} + (1 - \beta_1) dW.$$

4:
$$s_{dW} = \beta_2 s_{dW} + (1 - \beta_2) dW^2.$$

5:
$$v^{\text{corrected}} = \frac{v_{dW}}{1-\beta_1^t}$$

6:
$$s^{\text{corrected}} = \frac{s_{dW}}{1 - \beta_2^t}$$

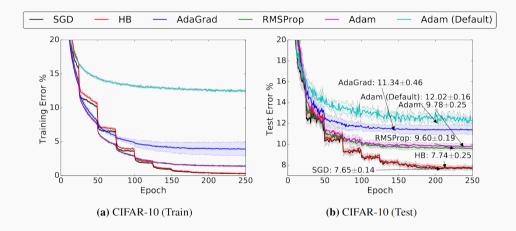
7:
$$W = W - \alpha \frac{v^{\text{corrected}}}{\sqrt{s_{dW}} + \epsilon}.$$

AMSGrad

- ▶ Adam/RMSprop fail to converge on certain convex problems.
- Reason is that some important descent directions are weakened by high second order estimations.
- ▶ AMSGrad proposes a conservative fix where second order moment estimator can only increase.
- ► The algorithm:
 - 1: On iteration t for W update:

2: Compute
$$dW$$
 on current mini-batch.
3: $v_{dW}^{n+1} = \beta_1 v_{dW}^n + (1 - \beta_1) dW.$
4: $s_{dW}^{n+1} = \beta_2 s_{dW}^n + (1 - \beta_2) dW^2.$
5: $\hat{s}_{dW}^{n+1} = \max(\hat{s}_{dW}^n, s_{dW}^{n+1})$
6: $W = W - \alpha \frac{v^{\text{corrected}}}{\sqrt{s_{dW}^{n+1} + \epsilon}}.$

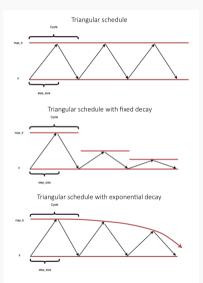
Marginal value of adaptive gradient methods



Tuning the learning rate

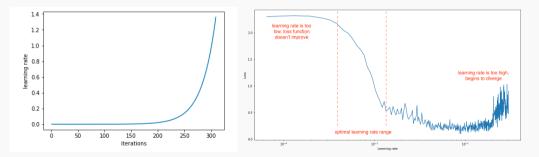
Cyclical Learning Rates for Neural Networks

- ► Use cyclical learning rates to escape local extreme points.
- Saddle points are abundant in high dimensions, and convergence becomes very slow. Furthermore, they can help escape sharp local minima (overfitting).
- Cyclic learning rates raise the learning rate periodically: short term negative effect and yet achieve a longer term beneficial effect.
- Decreasing learning rates may still help reduce error towards the end.



Estimating the learning rate

- ► How can we get a good LR estimate?
- ▶ Start with a small LR and increase it on every batch exponentially.
- ▶ Simultaneously, compute loss function on validation set.
- ▶ This also works for finding bounds for cyclic LRs.

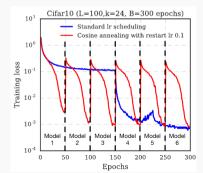


SGD with Warm Restarts

- \blacktriangleright Key idea: restart every T_i epochs. Record best estimates before restart.
- ▶ Restarts are not from scratch, but from last estimate, and learning rate is increased.

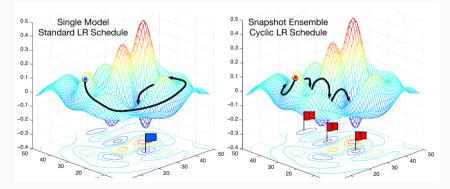
$$\alpha_t = \alpha_{\min}^i + \frac{1}{2}(\alpha_{\max}^i - \alpha_{\min}^i)(1 + \cos(\frac{T_c ur}{T_i}\pi))$$

- ▶ The cycle can be lengthened with time.
- ▶ α^i_{\min} and α^i_{\max} can be decayed after a cycle.



Snapshot ensembles: Train 1, get M for free

- Ensemble networks are much more robust and accurate than individual networks.
- ▶ They constitute another type of regularization technique.
- ▶ The novelty is to train a single neural network, but obtain M different models.
- ▶ The idea is to converge to M different local optima, and save network parameters.



Snapshot ensembles II

- Different initialization points, or hyperarameter choices may converge to different local minima.
- ▶ Although these local minima may perform similarly in terms of averaged errors, they may not make the same mistakes.
- Ensemble methods train many NN, and then optimize through majority vote, or averaging of the prediction outputs.
- ▶ The proposal uses a cycling step size procedure (cosine), in which the learning rate is abruptly raised and wait for new convergence.
- ▶ The final ensemble consists of snapshots of the optimization path.

Snapshot ensembles III

	Method	C10	C100	SVHN	Tiny ImageNet
ResNet-110	Single model	5.52	28.02	1.96	46.50
	NoCycle Snapshot Ensemble	5.49	26.97	1.78	43.69
	SingleCycle Ensembles	6.66	24.54	1.74	42.60
	Snapshot Ensemble ($\alpha_0 = 0.1$)	5.73	25.55	1.63	40.54
	Snapshot Ensemble ($\alpha_0 = 0.2$)	5.32	24.19	1.66	39.40
Wide-ResNet-32	Single model	5.43	23.55	1.90	39.63
	Dropout	4.68	22.82	1.81	36.58
	NoCycle Snapshot Ensemble	5.18	22.81	1.81	38.64
	SingleCycle Ensembles	5.95	21.38	1.65	35.53
	Snapshot Ensemble ($\alpha_0 = 0.1$)	4.41	21.26	1.64	35.45
	Snapshot Ensemble ($\alpha_0 = 0.2$)	4.73	21.56	1.51	32.90
DenseNet-40	Single model	5.24*	24.42^{*}	1.77	39.09
	Dropout	6.08	25.79	1.79^{*}	39.68
	NoCycle Snapshot Ensemble	5.20	24.63	1.80	38.51
	SingleCycle Ensembles	5.43	22.51	1.87	38.00
	Snapshot Ensemble ($\alpha_0 = 0.1$)	4.99	23.34	1.64	37.25
	Snapshot Ensemble ($\alpha_0 = 0.2$)	4.84	21.93	1.73	36.61
DenseNet-100	Single model	3.74*	19.25*	-	-
	Dropout	3.65	18.77	-	-
	NoCycle Snapshot Ensemble	3.80	19.30	-	-
	SingleCycle Ensembles	4.52	18.38		
	Snapshot Ensemble ($\alpha_0 = 0.1$)	3.57	18.12	-	-
	Snapshot Ensemble ($\alpha_0 = 0.2$)	3.44	17.41	-	-

Gradient checking

Gradient checking

- ▶ Useful technique to debug code of manual implementations of neural networks.
- Not intended for training of networks, but it can help to identify errors in a backpropagation implementation.
- ▶ Derivative of a function:

$$f'(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon} \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}.$$

- The approximation error is in the order $O(\epsilon^2)$.
- ▶ In the multivariate case, the ϵ term affects a single component:

$$\frac{df(\theta)}{d\theta_r} \approx \frac{f(\theta_r^+) - f(\theta_r^-)}{2\epsilon}$$

where $\theta_r^+ = (\theta_1, \dots, \theta_r + \epsilon, \dots, \theta_n), \ \theta_r^- = (\theta_1, \dots, \theta_r - \epsilon, \dots, \theta_n).$

Algorithm for gradient checking

- 1: Reshape input vector in a column vector θ .
- 2: for each r component do

3:
$$\theta_{\text{old}} \leftarrow \theta_r$$

- 4: Calculate $f(\theta_r^+)$ and $f(\theta_r^-)$.
- 5: Compute approx. $\frac{df(\theta)}{d\theta_r}$.
- 6: Restore $\theta_r \leftarrow \theta_{\text{old}}$
- 7: end for
- 8: Verify relative error is below some threshold:

$$\xi = \frac{\|d\theta^{\text{approx}} - d\theta\|}{\|d\theta^{\text{approx}}\| + \|d\theta\|}$$

How to address overfitting

Point estimation is the attempt to provide the single "best" prediction of some quantity of interest:

$$\hat{\boldsymbol{\theta}}_m = g(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}).$$

 $- \theta$: true value.

- $-\hat{\theta}_m$: estimator for *m* samples.
- Frequentist perspective: $\boldsymbol{\theta}$ fixed but unknown.
- ▶ Data is random $\implies \hat{\theta}_m$ is a r.v.

Bias and Variance

- ▶ Bias: expected deviation from the true value.
- ▶ Variance: deviation from the expected estimator.

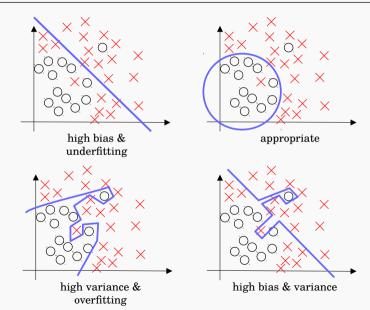
Examples:

- Sample mean: $\hat{\mu}_m = \frac{1}{m} \sum_i \mathbf{x}^{(i)}$
- Sample variance $\hat{\sigma}_m^2 = \frac{1}{m} \sum_i (x^{(i)} \hat{\mu}_m)^2$:

$$\mathbb{E}[\hat{\sigma}_m^2] = \frac{m-1}{m}\sigma^2$$

- Unbiased sample variance: $\tilde{\sigma}_m^2 = \frac{1}{m-1}\sum_i (x^{(i)} \hat{\mu}_m)^2$
- ▶ How to choose estimators with different statistics?
 - Mean square error (MSE).
 - Cross-validation: empirical.

Bias-Variance Example



Diagnose bias-variance

- ▶ In high dimensions we cannot draw decision curves to inspect bias-variance.
- We calculate error values to infer the source of errors on the training set, as well as on the val set.
- ▶ To determine bias, we need a base line, such as human level performance.

► Example:

Human level error	pprox 0%					
Training error	0.5%	15%	1%	12%		
Val error	1%	16%	11%	20%		
	low bias	high bias	high variance	high bias		
	low variance			high variance		

Orthogonalization

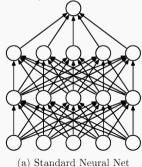
Human	
level error ↓ Avoidable bias Training	Train a bigger model Train longer/better optimization alg. NN architecture/hyperparameter search.
error Avoidable variance	Get more data. Use regularization (L2, dropout, data aug., etc.) NN architecture/hyperparameter search.
Val error	X .

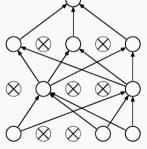
- \blacktriangleright Orthogonalization aims to decompose the process to adjust NN performance.
- ▶ It assumes the errors come from different sources and uses a systematic approach to minimize them.
- Early stopping is a popular regularization mechanism, but couples the bias and variance errors.

Dropout

Dropout

- ▶ Regularization technique for deep NN.
- ▶ Employed at training time.
- ▶ Eliminates the output of some units randomly.
- Can be used in combination with other regularization techniques (such as L2, batch normalization, etc.).

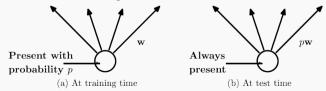




(b) After applying dropout.

Motivation and direct implementation

- ▶ **Purpose**: prevent the co-adaptation of feature detectors for a set of neurons, and avoid overfitting.
 - It enforces the neurons to develop an individual role on their own given an overall population behavior.
 - Training weights are encouraged to be spread along the NN, because no neuron is permanent.
- ▶ Interpretation: training examples provide gradients from different, randomly sampled architectures.
- ► Direct implementation:
 - At training time: eliminate the output of some units randomly.
 - At test time: all units are present.



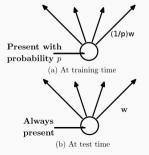
Inverted dropout

- ► Current implementations use *inverted dropout*
 - Weighting is performed during training.
 - Does not require re-weighting at test time.
- In particular, for layer l,

$$\begin{split} z^{[l]} &= \frac{1}{p_l} W^{[l]} \mathcal{D}^{[l]} a^{[l-1]} + b^{[l]} \\ a^{[l]} &= g(z^{[l]}), \end{split}$$

► Notation:

$$\begin{split} p_l: & \text{Retention probability.} \\ D^{[l]}: & \text{Dropout activations.} \\ a^{[l-1]}: & \text{Output from previous layer.} \\ W^{[l]}: & \text{Layer weights.} \\ b^{[l]}: & \text{Offset weights.} \\ z^{[l]}: & \text{Linear output.} \\ q(\cdot): & \text{Nonlinear activation function.} \end{split}$$



Understanding dropout

We aim to understand dropout as a regularization technique on simplified neural architectures such as:

- ► Linear networks.
- ► Logistic regression.
- ▶ Deep networks.

These results are are based on the following reference:

Pierre Baldi and Peter J Sadowski, "Understanding dropout," in Advances in Neural Information Processing Systems, 2013, pp. 2814–2822.

Dropout in linear networks

- **Linear network**: all activations units correspond to the identity function.
- ► For a single training example we get

 $z^{[l]} = W^{[l]} D^{[l]} z^{[l-1]}.$

▶ The expectation over all possible network realizations:

 $\mathbb{E}\{z^{[l]}\} = p_l W^{[l]} z^{[l-1]},$

• p_l corresponds to the probability of keeping a unit on layer l.

Dynamics of a single linear unit

• Consider the error terms for the averaged ensemble network, and dropout:

$$E^{\text{ens}} = (y^{(i)} - p_l W^{[l]} x^{(i)})^2$$
$$E^{\text{d}} = (y^{(i)} - W^{[l]} D^{[l]} x^{(i)})^2$$

- ▶ We want to minimize these cost functions.
- 1. Compute the gradients.
- 2. Take expectation over dropout realizations.
- 3. Obtain:

$$\mathbb{E}\{E^{d}\} = E^{ens} + \sum_{r=1}^{n_1} \frac{1}{2} \operatorname{var}(D^{[l]}) (x_r^{(i)})^2 w_r^2$$

▶ Dropout corresponds to a regularized cost function of the ensemble network.

• Single logistic unit with n inputs:

$$\sigma(z) = a^{[1]} = \frac{1}{1 + e^{-z}}$$
 and $z = w^T x$.

▶ The *normalized weighted geometric mean* over al possible network configurations corresponds to a feedforward pass of the averaged weights.

NWGM =
$$\frac{G}{G+G'} = \frac{1}{1+e^{-\sum_{j} pw_{j}x_{j}}} = \sigma(pz).$$

► Definitions:

- Total number of network configurations: $m = 2^n$.
- $-a_1^{[1]},\ldots,a_m^{[1]}$ possible outcomes.
- Weighted geometric mean: $G = \prod_i (a_i^{[1]})^{P_i}$.
- Weighted geometric mean of the complements $G' = \prod_i (1 a_i^{[1]})^{P_i}$.

Dynamics of a single logistic unit

- ▶ The result from a single linear unit generalizes to a sigmoidal unit as well.
- ▶ The expected gradient of the dropout network:

$$\mathbb{E}\left\{\frac{\partial E^{\mathrm{d}}}{\partial w_{i}}\right\} \approx \frac{\partial E^{\mathrm{ens}}}{\partial w_{i}} + \lambda \sigma'(pz)x_{i}^{2}\operatorname{var}(p)w_{i}.$$

▶ The expectation of the dropout gradient corresponds approximately to the gradient of the ensemble network plus a ridge regularization term.

Dropout in Deep Neural Networks

- ▶ Network of sigmoidal units.
- Output of unit *i* in layer *l*: $a_i^{[l]} = \sigma \left(\sum_j W_{ij}^{[l]} a^{[l-1]} \right)$
- ► Normalized weighted geometric mean:

$$NWGM(a_i^{[l]}) = \frac{\Pi_N(a_i^{[l]})^{P(N)}}{\Pi_N(1 - a_i^{[l]})^{P(N)} + \Pi_N(a_i^{[l]})^{P(N)}}$$

where N ranges over all possible configuration networks.

► Averaging properties of dropout:

$$\mathbb{E}\{a_i^{[l]}\} = \sigma\Big(\mathbb{E}\Big\{\sum_j W_{ij}^{[l]} a_i^{[l-1]}\Big\}\Big)$$

- ▶ **Take-home message:** the expected dropout gradient corresponds to an approximated ensemble network, regularized by an adaptive weight decay with a propensity for self-consistent variance minimization.
- Convergence can be understood via analysis of stochastic gradient descent.

Batch normalization

Problems of deep networks

- Adaptive reparametrization, motivated by the difficulty of training very deep models.
- ▶ Parameters from all layers are updated at the same time.
 - composition of many functions can have unexpected results because all functions have been changed simultaneously.
 - learning rate becomes difficult to tune.
- Consider a linear network with a single neuron per layer and single input.

• We update
$$w \leftarrow w - \epsilon g$$
, where $g = \nabla_w J$:

$$\hat{y} \leftarrow (w^{[1]} - \epsilon g^{[1]})(w^{[2]} - \epsilon g^{[2]})\dots(w^{[L]} - \epsilon g^{[L]})x.$$

• Previous update has many high order components, that can influence greatly the value of \hat{y} .

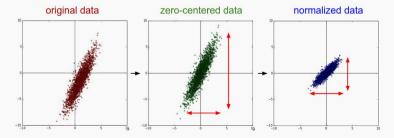
Input normalization

▶ The method is inspired by the normalization step normally applied to an input:

$$\widetilde{X}^{\{i\}} = \frac{X^{\{i\}} - \mu}{\sigma + \epsilon}$$

where $\epsilon = 10^{-8}$ is frequently used,

$$\mu = \frac{1}{m} \sum_{r} x^{\{i\}(r)}, \text{ and } \sigma^2 = \frac{1}{m} \sum_{r} (x^{\{i\}(r)} - \mu)^2.$$



Batch normalization

▶ Batch normalization extends the concept to other hidden layers.

$$Z_{\text{norm}}^{\{i\}[l]} = \frac{Z^{\{i\}[l]} - \mu^{\{i\}[l]}}{\sigma^{\{i\}[l]} + \epsilon}$$

where

$$\mu^{\{i\}[l]} = \frac{1}{m} \sum_{r} z^{\{i\}[l](r)}, \text{ and } (\sigma^{\{i\}[l]})^2 = \frac{1}{m} \sum_{r} (z^{\{i\}[l](r)} - \mu^{\{i\}[l]})^2.$$

 \blacktriangleright i refers to the mini-batch index; m to the number of elements.

- the normalization depends on the minibatch.

▶ The outcome is rescaled with new parameters:

$$\widetilde{Z}^{\{i\}[l]} = \gamma^{\{i\}[l]} Z_{\text{norm}}^{\{i\}[l]} + \beta^{\{i\}[l]},$$

where $\gamma^{\{i\}[l]}$ and $\beta^{\{i\}[l]}$ are incorporated in the learning process.

Batch normalization

- The scheme has the same expressive capabilities – setting $\beta^{\{i\}[l]} = \mu^{\{i\}[l]}$ and $\gamma^{\{i\}[l]} = \sigma^{\{i\}[l]}$.
- ▶ The weights from one layer do not affect the statistics (first and second order) of the next layer.
- ▶ The offsets $b^{[l]}$ become obsolete.
- ▶ **Testing:** a weighted average on all parameters:

$$\begin{aligned} \gamma_t &= \beta \gamma_t + (1 - \beta) \gamma^{\{i\}[l]} \\ \beta_t &= \beta \beta_t + (1 - \beta) \beta^{\{i\}[l]} \\ \mu_t &= \beta \mu_t + (1 - \beta) \mu^{\{i\}[l]} \\ \sigma_t &= \beta \sigma_t + (1 - \beta) \sigma^{\{i\}[l]} \end{aligned}$$