
Advanced Section #1: Moving averages, optimization
algorithms, understanding dropout and batch normalization

AC 209B: Data Science 2

Javier Zazo Pavlos Protopapas



Lecture Outline

Moving averages

Optimization algorithms

Tuning the learning rate

Gradient checking

How to address overfitting

Dropout

Batch normalization

2



Moving averages

3



Moving averages

I Given a stationary process x[n] and a sequence of observations x1, x2, . . . , xn, . . ., we
want to estimate the average of all values dynamically.

I We can use a moving average for instant n:

xn+1 =
1

n
(x1 + x2 + . . .+ xn)

I To save computations and memory:

xn+1 =
1

n

n∑
i=1

xi =
1

n

(
xn +

n−1∑
i=1

xi

)
=

1

n

(
xn + (n− 1)

1

n− 1

n−1∑
i=1

xi

)
=

1

n
(xn + (n− 1)xn) = xn +

1

n
(xn − xn)

I Essentially, for αn = 1/n,

xn+1 = xn + αn (xn − xn)

4



Weighted moving averages

I Previous step size αn = 1/n is dynamic.

I From stochastic approximation theory, the
estimate converges to the true value with
probability 1, if

∞∑
i=1

αi =∞ and

∞∑
i=1

α2
i <∞

I αn = 1
n satisfies the previous conditions.

I Constant α does not satisfy the second!!

I This can be useful to track non-stationary
processes.

5



Exponentially weighted moving average

I Update rule for constant step size is

xn+1 = xn + α (xn − xn)

= αxn + (1− α)xn

= αxn + (1− α)[αxn−1 + (1− α)xn−1]

= αxn + (1− α)αxn−1 + (1− α)2xn−1]

= αxn + (1− α)αxn−1 + (1− α)2αxn−2 + . . .+ (1− α)n−1αx1 + (1− α)nx1

= (1− α)nx1 +

n∑
i=1

α(1− α)n−ixi

I Note that (1− α)n +
∑n
i=1 α(1− α)n−i = 1.

I With infinite terms we get

lim
n→∞

xn = lim
n→∞

xn + (1− α)xn−1 + (1− α)2xn−2 + (1− α)3xn−3 + . . .

1 + (1− α) + (1− α)2 + (1− α)3 + . . .

6



Exponentially weighted moving average

I Recap update rule, but change 1− α = β

xn−1 = βxn−1 + (1− β)xn,

I β controls the amount of points to consider
(variance):

I Rule of thumb:

N =
1 + β

1− β
amounts to 86% of influence.

– β = 0.9 corresponds to 19 points.
– β = .98 corresponds to 99 points (wide

window).
– β = 0.5 corresponds to 3 points (susceptible

to outliers).

points

va
lu
es

7



Bias correction

I The rule of thumb works for sufficiently large N .
I Otherwise, the first values are biased.
I We can correct the variance with:

xcorrectedn =
xn

1− βt
.

points

va
lu
es

8



Bias correction II

I The bias correction can in practice be ignored (Keras does not implement it).

I Origin of bias comes from zero initialization:

xn+1 = βn x1︸︷︷︸
0

+(1− β)

n∑
i=1

βn−ixi

I Derivation:

E[xn+1] = E

[
(1− β)

n∑
i=1

βn−ixi

]

= E[xn](1− β)

n∑
i=1

βn−i + ζ

= E[xn](1− βn) + ζ

9



Optimization algorithms

10



Gradient descent

I Gradient descent will have high variance if the problem is ill-conditioned.

I Aim to estimate directions of high variance and reduce their influence.

I Descent with momentum, RMSprop or Adam, help reduce the variance and speed up
convergence.

11



Gradient descent with momentum

I The algorithm:

1: On iteration t for W update:

2: Compute dW on current mini-batch.
3: vdW = βvdW + (1− β)dW .
4: W = W − αvdW .

I Gradient with momentum performs an exponential moving average over
the gradients.

I This will reduce the variance and give more stable descent directions.

I Bias correction is usually not applied.

12



RMSprop

I The algorithm:

1: On iteration t for W update:

2: Compute dW on current mini-batch.
3: sdW = β2sdW + (1− β2)dW 2.
4: W = W − α dW√

sdW+ε
.

I ε = 10−8 controls numerical stability.

I High variance gradients will have larger values → the squared averages
will be large → reduces the step size.

I Allows a higher learning rate → faster convergence.

13



Adaptive moment estimation (Adam)

I The algorithm:

1: On iteration t for W update:

2: Compute dW on current mini-batch.
3: vdW = β1vdW + (1− β1)dW .
4: sdW = β2sdW + (1− β2)dW 2.
5: vcorrected = vdW

1−βt
1

6: scorrected = sdW
1−βt

2

7: W = W − α vcorrected√
sdW+ε

.

14



AMSGrad

I Adam/RMSprop fail to converge on certain convex problems.

I Reason is that some important descent directions are weakened by high second order
estimations.

I AMSGrad proposes a conservative fix where second order moment estimator can only
increase.

I The algorithm:

1: On iteration t for W update:

2: Compute dW on current mini-batch.
3: vn+1

dW = β1v
n
dW + (1− β1)dW .

4: sn+1
dW = β2s

n
dW + (1− β2)dW 2.

5: ŝn+1
dW = max(ŝndW , s

n+1
dW )

6: W = W − α vcorrected√
ŝn+1
dW +ε

.

15



Marginal value of adaptive gradient methods

16



Tuning the learning rate

17



Cyclical Learning Rates for Neural Networks

I Use cyclical learning rates to escape
local extreme points.

I Saddle points are abundant in high
dimensions, and convergence becomes
very slow. Furthermore, they can help
escape sharp local minima (overfitting).

I Cyclic learning rates raise the learning
rate periodically: short term
negative effect and yet achieve a
longer term beneficial effect.

I Decreasing learning rates may still help
reduce error towards the end.

18



Estimating the learning rate

I How can we get a good LR estimate?

I Start with a small LR and increase it on every batch exponentially.

I Simultaneously, compute loss function on validation set.

I This also works for finding bounds for cyclic LRs.

19



SGD with Warm Restarts

I Key idea: restart every Ti epochs. Record best estimates before restart.

I Restarts are not from scratch, but from last estimate, and learning rate is increased.

αt = αimin +
1

2
(αimax − αimin)(1 + cos(

Tcur

Ti
π))

I The cycle can be lengthened with time.

I αimin and αimax can be decayed after a cycle.

20



Snapshot ensembles: Train 1, get M for free

I Ensemble networks are much more robust and accurate than individual networks.

I They constitute another type of regularization technique.

I The novelty is to train a single neural network, but obtain M different models.

I The idea is to converge to M different local optima, and save network parameters.

21



Snapshot ensembles II

I Different initialization points, or hyperarameter choices may converge to different
local minima.

I Although these local minima may perform similarly in terms of averaged errors, they
may not make the same mistakes.

I Ensemble methods train many NN, and then optimize through majority vote, or
averaging of the prediction outputs.

I The proposal uses a cycling step size procedure (cosine), in which the learning rate is
abruptly raised and wait for new convergence.

I The final ensemble consists of snapshots of the optimization path.

22



Snapshot ensembles III

23



Gradient checking

24



Gradient checking

I Useful technique to debug code of manual implementations of neural networks.

I Not intended for training of networks, but it can help to identify errors in a
backpropagation implementation.

I Derivative of a function:

f ′(x) = lim
ε→0

f(x+ ε)− f(x− ε)
2ε

≈ f(x+ ε)− f(x− ε)
2ε

.

I The approximation error is in the order O(ε2).

I In the multivariate case, the ε term affects a single component:

df(θ)

dθr
≈ f(θ+r )− f(θ−r )

2ε

where θ+r = (θ1, . . . , θr + ε, . . . , θn), θ−r = (θ1, . . . , θr − ε, . . . , θn).

25



Algorithm for gradient checking

1: Reshape input vector in a column vector θ.
2: for each r component do
3: θold ← θr
4: Calculate f(θ+r ) and f(θ−r ).

5: Compute approx. df(θ)
dθr

.
6: Restore θr ← θold
7: end for
8: Verify relative error is below some threshold:

ξ =
‖dθapprox − dθ‖
‖dθapprox‖+ ‖dθ‖

26



How to address overfitting

27



Estimators

I Point estimation is the attempt to provide the single “best” prediction of
some quantity of interest:

θ̂m = g(x(1), . . . ,x(m)).

– θ: true value.
– θ̂m : estimator for m samples.

I Frequentist perspective: θ fixed but unkwown.

I Data is random =⇒ θ̂m is a r.v.

28



Bias and Variance

I Bias: expected deviation from the true value.

I Variance: deviation from the expected estimator.

Examples:
– Sample mean: µ̂m = 1

m

∑
i x

(i)

– Sample variance σ̂2
m = 1

m

∑
i(x

(i) − µ̂m)2:

E[σ̂2
m] =

m− 1

m
σ2

– Unbiased sample variance: σ̃2
m = 1

m−1
∑
i(x

(i) − µ̂m)2

I How to choose estimators with different statistics?
– Mean square error (MSE).
– Cross-validation: empirical.

29



Bias-Variance Example

high bias &
underfitting

appropriate

high variance &
overfitting

high bias & variance
30



Diagnose bias-variance

I In high dimensions we cannot draw decision curves to inspect bias-variance.

I We calculate error values to infer the source of errors on the training set, as well as
on the val set.

I To determine bias, we need a base line, such as human level performance.

Bayes
error

Training
error

Val error

Avoidable
bias

Avoidable
variance

I Example:

Human level error ≈ 0%

Training error 0.5% 15% 1% 12%
Val error 1% 16% 11% 20%

low bias high bias high variance high bias
low variance high variance

31



Orthogonalization

Human
level error

Training
error

Val error

Avoidable
bias

Avoidable
variance

Train longer/better optimization alg.

Train a bigger model

NN architecture/hyperparameter search.

Use regularization (L2, dropout, data aug., etc.)

Get more data.

NN architecture/hyperparameter search.

I Orthogonalization aims to decompose the process to adjust NN performance.

I It assumes the errors come from different sources and uses a systematic approach to
minimize them.

I Early stopping is a popular regularization mechanism, but couples the bias and
variance errors.

32



Dropout

33



Dropout

I Regularization technique for deep NN.

I Employed at training time.

I Eliminates the output of some units randomly.

I Can be used in combination with other regularization techniques (such as L2, batch
normalization, etc.).

34



Motivation and direct implementation

I Purpose: prevent the co-adaptation of feature detectors for a set of neurons, and
avoid overfitting.

– It enforces the neurons to develop an individual role on their own given an
overall population behavior.

– Training weights are encouraged to be spread along the NN, because no neuron
is permanent.

I Interpretation: training examples provide gradients from different, randomly
sampled architectures.

I Direct implementation:

– At training time: eliminate the output of some units randomly.
– At test time: all units are present.

35



Inverted dropout

I Current implementations use inverted dropout

– Weighting is performed during training.
– Does not require re-weighting at test time.

I In particular, for layer l,

z[l] =
1

pl
W [l]D[l]a[l−1] + b[l]

a[l] = g(z[l]),
I Notation:

pl : Retention probability.

D[l] : Dropout activations.

a[l−1] : Output from previous layer.

W [l] : Layer weights.

b[l] : Offset weights.

z[l] : Linear output.

g(·) : Nonlinear activation function.
36



Understanding dropout

We aim to understand dropout as a regularization technique on simplified neural
architectures such as:

I Linear networks.

I Logistic regression.

I Deep networks.

These results are are based on the following reference:

Pierre Baldi and Peter J Sadowski, “Understanding dropout,”
in Advances in Neural Information Processing Systems, 2013, pp. 2814–2822.

37



Dropout in linear networks

I Linear network: all activations units correspond to the identity function.

I For a single training example we get

z[l] = W [l]D[l]z[l−1].

I The expectation over all possible network realizations:

E{z[l]} = plW
[l]z[l−1],

I pl corresponds to the probability of keeping a unit on layer l.

38



Dynamics of a single linear unit

I Consider the error terms for the averaged ensemble network, and dropout:

Eens = (y(i) − plW [l]x(i))2

Ed = (y(i) −W [l]D[l]x(i))2.

I We want to minimize these cost functions.

1. Compute the gradients.

2. Take expectation over dropout realizations.

3. Obtain:

E{Ed} = Eens +

n1∑
r=1

1

2
var(D[l])(x(i)r )2w2

r

I Dropout corresponds to a regularized cost function of the ensemble network.

39



Dropout in logistic regression

I Single logistic unit with n inputs:

σ(z) = a[1] =
1

1 + e−z
and z = wTx.

I The normalized weighted geometric mean over al possible network
configurations corresponds to a feedforward pass of the averaged weights.

NWGM =
G

G+G′
=

1

1 + e−
∑

j pwjxj
= σ(pz).

I Definitions:

– Total number of network configurations: m = 2n.

– a
[1]
1 , . . . , a

[1]
m possible outcomes.

– Weighted geometric mean: G =
∏
i(a

[1]
i )Pi .

– Weighted geometric mean of the complements G′ =
∏
i(1− a

[1]
i )Pi .

40



Dynamics of a single logistic unit

I The result from a single linear unit generalizes to a sigmoidal unit as well.

I The expected gradient of the dropout network:

E
{∂Ed

∂wi

}
≈ ∂Eens

∂wi
+ λσ′(pz)x2i var(p)wi.

I The expectation of the dropout gradient corresponds approximately to the gradient
of the ensemble network plus a ridge regularization term.

41



Dropout in Deep Neural Networks

I Network of sigmoidal units.

I Output of unit i in layer l: a
[l]
i = σ

(∑
jW

[l]
ij a

[l−1]
)

I Normalized weighted geometric mean :

NWGM(a
[l]
i ) =

ΠN (a
[l]
i )P (N)

ΠN (1− a[l]i )P (N) + ΠN (a
[l]
i )P (N)

where N ranges over all possible configuration networks.

I Averaging properties of dropout:

E{a[l]i } = σ
(
E
{∑

j

W
[l]
ij a

[l−1]
i

})
I Take-home message: the expected dropout gradient corresponds to an

approximated ensemble network, regularized by an adaptive weight decay with a
propensity for self-consistent variance minimization.

I Convergence can be understood via analysis of stochastic gradient descent.

42



Batch normalization

43



Problems of deep networks

I Adaptive reparametrization, motivated by the difficulty of training very
deep models.

I Parameters from all layers are updated at the same time.
– composition of many functions can have unexpected results because all

functions have been changed simultaneously.
– learning rate becomes difficult to tune.

I Consider a linear network with a single neuron per layer and single input.

I We update w ← w − εg, where g = ∇wJ :

ŷ ← (w[1] − εg[1])(w[2] − εg[2]) . . . (w[L] − εg[L])x.

I Previous update has many high order components, that can influence
greatly the value of ŷ.

44



Input normalization

I The method is inspired by the normalization step normally applied to an
input:

X̃{i} =
X{i} − µ
σ + ε

where ε = 10−8 is frequently used,

µ =
1

m

∑
r

x{i}(r), and σ2 =
1

m

∑
r

(x{i}(r) − µ)2.

45



Batch normalization

I Batch normalization extends the concept to other hidden layers.

Z{i}[l]norm =
Z{i}[l] − µ{i}[l]

σ{i}[l] + ε

where

µ{i}[l] =
1

m

∑
r

z{i}[l](r), and (σ{i}[l])2 =
1

m

∑
r

(z{i}[l](r) − µ{i}[l])2.

I i refers to the mini-batch index; m to the number of elements.

– the normalization depends on the minibatch.

I The outcome is rescaled with new parameters:

Z̃{i}[l] = γ{i}[l]Z{i}[l]norm + β{i}[l],

where γ{i}[l] and β{i}[l] are incorporated in the learning process.

46



Batch normalization

I The scheme has the same expressive capabilities
– setting β{i}[l] = µ{i}[l] and γ{i}[l] = σ{i}[l].

I The weights from one layer do not affect the statistics (first and second
order) of the next layer.

I The offsets b[l] become obsolete.

I Testing: a weighted average on all parameters:

γt = βγt + (1− β)γ{i}[l]

βt = ββt + (1− β)β{i}[l]

µt = βµt + (1− β)µ{i}[l]

σt = βσt + (1− β)σ{i}[l]

47


	Moving averages
	Optimization algorithms
	Tuning the learning rate
	Gradient checking
	How to address overfitting
	Dropout
	Batch normalization

