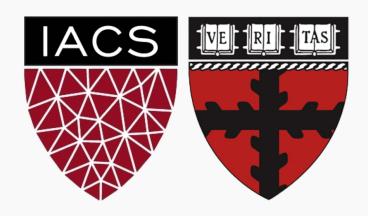
Lecture 8: EDA

CS109A Introduction to Data Science Pavlos Protopapas, Kevin Rader and Chris Tanner



Lecture Outline

Data Science Process Example

- Dataset considerations
 - Comprehensive vs Sampled
 - Biases

- Exploration (EDA)
- Communication

Lecture Outline

Data Science Process Example

- Dataset considerations
 - Comprehensive vs Sampled
 - Biases

- Exploration (EDA)
- Communication

Let's say that we are interested in the English Premier League (football/soccer) and want to build a model to predict a player's <u>market value</u>.

Question

Does age affect one's market value?

What do we do?

What do we do?

Ask an interesting question Get the Data Explore the Data Model the Data Communicate/Visualize the Results

Dataset Considerations

- What data is necessary to answer our question?
- Is the source <u>credible/authoritative?</u> (.com, .net, .org, .gov, .name)
- How difficult is it to analyze the dataset? (photos, videos, text?)
- What is the allowed usage of data under its license?
- Who collected the data?
- When was the data collected?

Dataset Considerations (continued)

- How was the data collected?
- How is the data formatted?
- Confidentiality concerns
- Does your data collection procedures need to be approved by an IRB?
- Comprehensive data vs sampled data?
- Biases

Dataset Considerations (continued)

- How was the data collected?
- How is the data formatted?
- Confidentiality concerns
- Does your data collection procedures need to be approved by an IRB?
- Comprehensive data vs sampled data?
- Biases

Lecture Outline

Data Science Process Example

- Dataset considerations
 - Comprehensive vs Sampled
 - Biases

- Exploration (EDA)
- Communication

Dataset Considerations: Comprehensive Data

- We have access to all the data points that exist, which is usually a lot
- Collected and digitized as part of generalized procedures of an institution

The New York Times

13 million articles

~500 million tweets per day

Dataset Considerations: Sampled Data

- When collecting individual data is relatively expensive
- Only a portion of the population is sampled
- Not just restricted to polling or surveys

1. Clover Food Lab

\$\$ · American (New), Sandwiches, Cafes

Lecture Outline

Data Science Process Example

- Dataset considerations
 - Comprehensive vs Sampled
 - Biases

- Exploration (EDA)
- Communication

- A bias in sampled data occurs when a procedure causes the sample to overrepresent a subpopulation
- Biases may not necessarily be intentional
- Even if you don't think over-representation of a subpopulation will bias the dataset with regard to your question, it's still a bias
- Always strive to minimize any biases in your data collection procedures

Gallup Polls

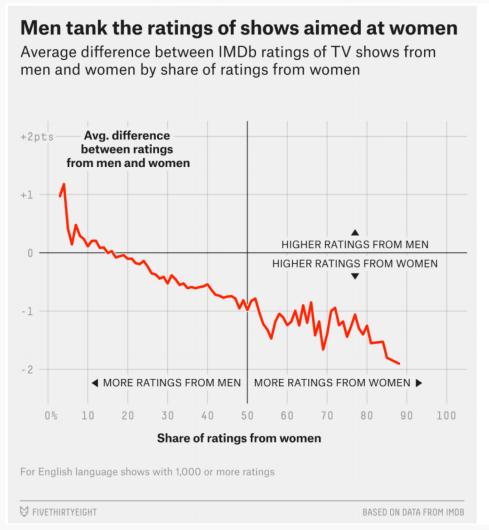
- Randomly calls two groups of ~500 people a day by sampling among all possible phone numbers
- For landlines, asks for household member who has the next birthday
- Calls people living in all 50 states
- Tries to assure 70% cellphone, 30% landlines
- Weights data to reflect the demographics of the general population

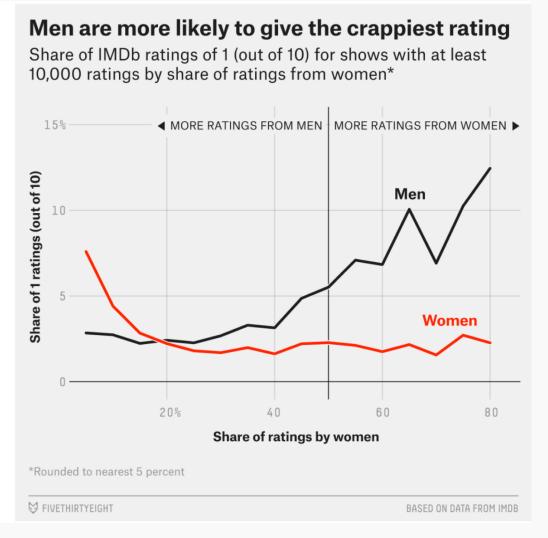
IMDb Movie Ratings

- Registered users rate films 1-10 stars; they are an overrepresented subpopulation relative to the general population
- Registered users who rate movies in their free time further over represents a specific segment of the general population
- "Men Are Sabotaging The Online Reviews Of TV Shows Aimed At Women1"
 - 60% who rated Sex in the City were women. Women gave it a 8.1, men gave it 5.8.

¹ fivethirtyeight.com

IMDb Movie Ratings



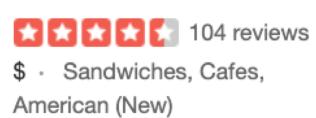


Yelp Reviews

- Registered users rate businesses on a 1-5 star scale
- Registered users tend to represent a certain subset of the population (those who are more social media inclined and opinionated)
- Customers with extreme experiences are more likely to voice their opinions

Yelp Reviews

6. Clover Food Lab



1. Clover Food Lab

\$\$ - American (New), Sandwiches, Cafes

Yelp Reviews

1. Clover Food Lab 🗙 🖈 🖈 😭 821 reviews \$\$ · American (New),

Longwood Medical

Harvard Square

Back to our example...

Let's say that we are interested in the English Premier League (football/soccer) and want to build a model to predict a player's <u>market value</u>.

Question

Does age affect one's market value?

Example: Get the data

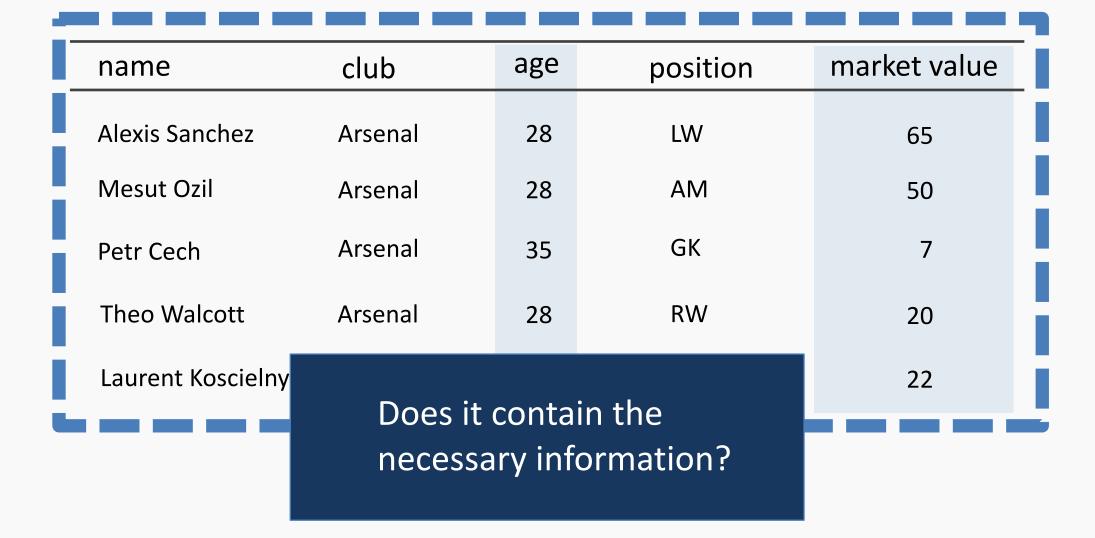
name	club	age	position	market value
Alexis Sanchez	Arsenal	28	LW	65
Mesut Ozil	Arsenal	28	AM	50
Petr Cech	Arsenal	35	GK	7
Theo Walcott	Arsenal	28	RW	20
Laurent Koscielny	Arsenal	31	СВ	22

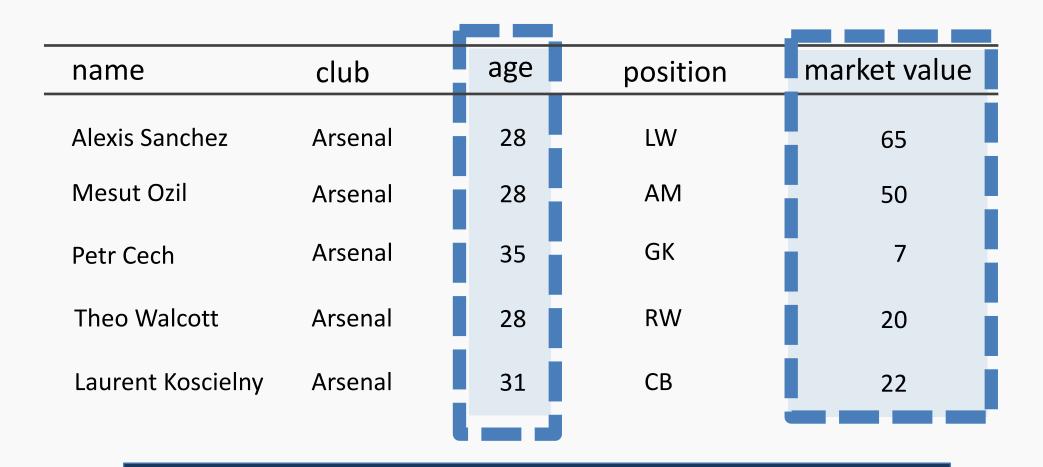
from www.transfermarkt.us

Example: Get the data

name	club	age	position	market value
Alexis Sanchez	Arsenal	28	LW	65
Mesut Ozil	Arsenal	28	AM	50
	Α Ι	Þ	GK	7
Credible/Trustworthy?		3	RW	20
 Possibly subjective market values? 		1	СВ	22
Sampled date	ta		from <u>www</u>	transfermarkt.us

name	club	age	position	market value
Alexis Sanchez	Arsenal	28	LW	65
Mesut Ozil	Arsenal	28	AM	50
Petr Cech	Arsenal	35	GK	7
Theo Walcott	Arsenal	28	RW	20
Laurent Koscielny	Arsenal	31	СВ	22





Missing data? Imputation needed?

name	club	age	position	market value
Alexis Sanchez	Arsenal	28	LW	65
Mesut Ozil	Arsenal	28	AM	50
Petr Cech	Arsenal	35	GK	7
Theo Walcott	Arsenal	28	RW	20
Laurent Koscielny	Arsenal	31	СВ	22

Are the data types okay (df.dtypes)? Should be casted?

name	club	age	position	market value
Alexis Sanchez	Arsenal	28	LW	65
Mesut Ozil	Arsenal	28	AM	50
Petr Cech	Arsenal	35	GK	7
Theo Walcott	Arsenal	28	RW	20
Laurent Koscielny	Arsenal	31	СВ	22

Are the values reasonable? DataFrame.describe() ...

	age	page_views	fpl_value	fpl_points	market_value
count	461.000000	461.000000	461.000000	461.000000	461.000000
mean	26.804772	763.776573	5.447939	57.314534	11.012039
std	3.961892	931.805757	1.346695	53.113811	12.257403
min	17.000000	3.000000	4.000000	0.000000	0.050000
25%	24.000000	220.000000	4.500000	5.000000	3.000000
50%	27.000000	460.000000	5.000000	51.000000	7.000000
75%	30.000000	896.000000	5.500000	94.000000	15.000000
max	38.000000	7664.000000	12.500000	264.000000	75.000000

Are the values reasonable? DataFrame.describe() ...

	age	page_views	fpl_value	fpl_points	market_value
count	461.000000	461.000000	461.000000	461.000000	461.000000
mean	26.804772	763.776573	5.447939	57.314534	11.012039
std	3.961892	931.805757	1.346695	53.113811	12.257403
min	17.000000	3.000000	4.000000	0.000000	0.050000
25%	24.000000	220.000000	4.500000	5.000000	3.000000
50%	27.000000	460.000000	5.000000	51.000000	7.000000
75%	30.000000	896.000000	5.500000	94.000000	15.000000
max	38.000000	7664.000000	12.500000	264.000000	75.000000

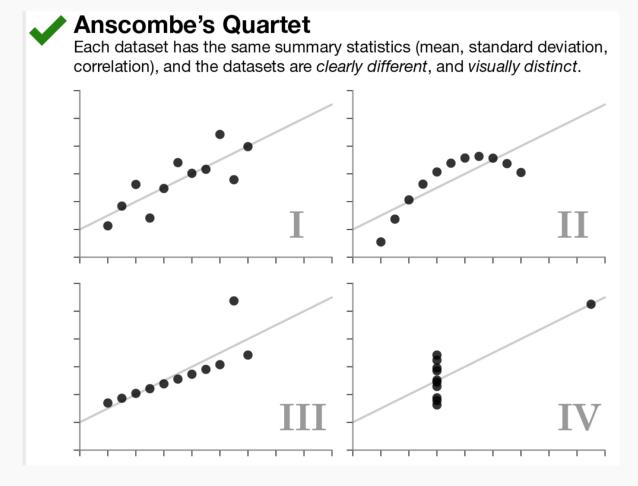
Summary statistics can only reveal so much

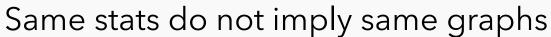
Lecture Outline

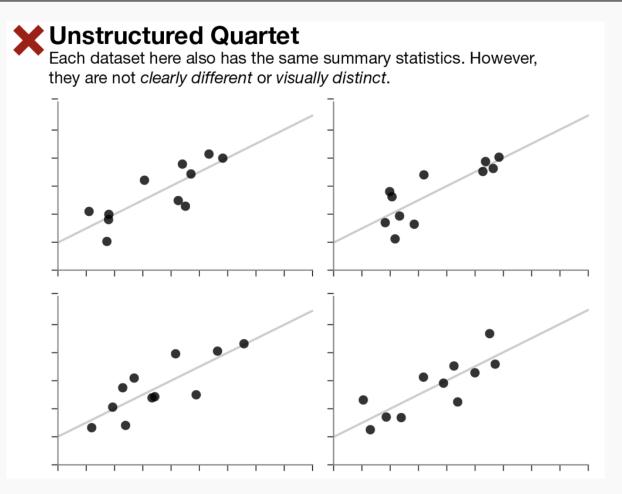
Data Science Process Example

- Dataset considerations
 - Comprehensive vs Sampled
 - Biases

- Exploration (EDA)
- Communication







Same graphs do not imply same stats

Bacteria	Penicillin	Streptomycin	Neomycin	Gram Staining
Aerobacter aerogenes	870	1	1.6	negative
Brucella abortus	1	2	0.02	negative
Brucella anthracis	0.001	0.01	0.007	positive
Diplococcus pneumoniae	0.005	11	10	positive
Escherichia coli	100	0.4	0.1	negative
Klebsiella pneumoniae	850	1.2	1	negative
Mycobacterium tuberculosis	800	5	2	negative
Proteus vulgaris	3	0.1	0.1	negative
Pseudomonas aeruginosa	850	2	0.4	negative
Salmonella (Eberthella) typhosa	1	0.4	0.008	negative
Salmonella schottmuelleri	10	0.8	0.09	negative
Staphylococcus albus	0.007	0.1	0.001	positive
Staphylococcus aureus	0.03	0.03	0.001	positive
Streptococcus fecalis	1	1	0.1	positive
Streptococcus hemolyticus	0.001	14	10	positive
Streptococcus viridans	0.005	10	40	positive

		Antibiotic		
Bacteria	Penicillin	Streptomycin	Neomycin	Gram Staining
Aerobacter aerogenes	870	1	1.6	negative
Brucella abortus	1	2	0.02	negative
Brucella anthracis	0.001	0.01	0.007	positive
Diplococcus pneumoniae	0.005	11	10	positive
Escherichia coli	100	0.4	0.1	negative
Klebsiella pneumoniae	850	1.2	1	negative
Mycobacterium tuberculosis	800	5	2	negative
Proteus vulgaris	3	0.1	0.1	negative
Pseudomonas aeruginosa	850	2	0.4	negative
Salmonella (Eberthella) typhosa	1	0.4	0.008	negative
Salmonella schottmuelleri	10	0.8	0.09	negative
Staphylococcus albus	0.007	0.1	0.001	positive
Staphylococcus aureus	0.03	0.03	0.001	positive
Streptococcus fecalis	1	1	0.1	positive
Streptococcus hemolyticus	0.001	14	10	positive
Streptococcus viridans	0.005	10	40	positive

		Antibiotic		
Bacteria	Penicillin	Streptomycin	Neomycin	Gram Staining
Aerobacter aerogenes	870	1	1.6	negative
Brucella abortus	1	2	0.02	negative
Brucella anthracis	0.001	0.01	0.007	positive
Diplococcus pneumoniae	0.005	11	10	positive
Escherichia coli	100	0.4	0.1	negative
Klebsiella pneumoniae	850	1.2	1	negative
Mycobacterium tuberculosis	800	5	2	negative
Proteus vulgaris	3	0.1	0.1	negative
Pseudomonas aeruginosa	850	2	0.4	negative
Salmonella (Eberthella) typhosa	1	0.4	0.008	negative
Salmonella schottmuelleri	10	0.8	0.09	negative
Staphylococcus albus	0.007	0.1	0.001	positive
Ctanbulacaccus aurous	0.02	0.02	0.001	positivo

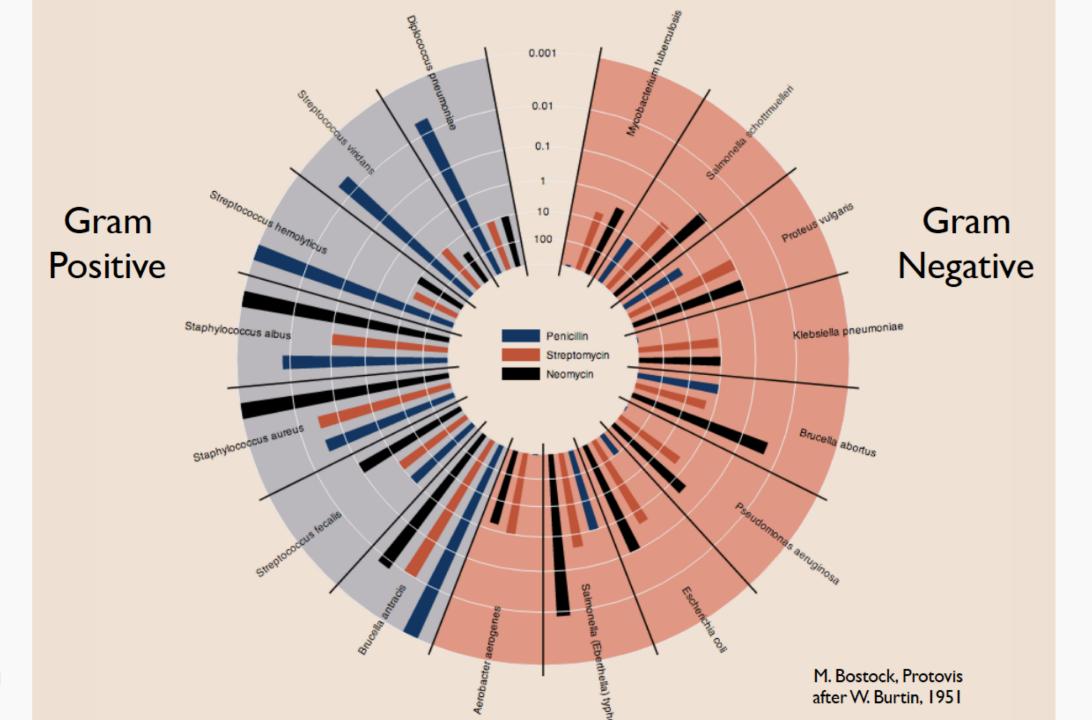
What are some questions we could ask?

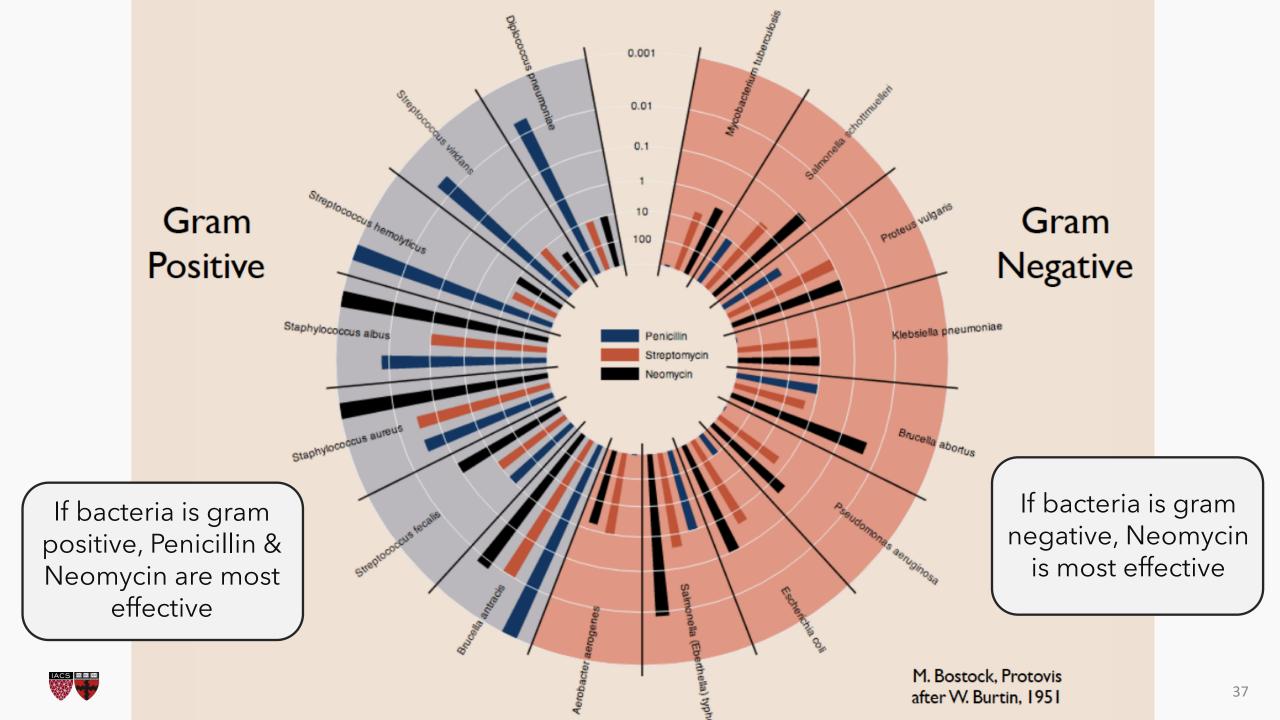
Streptococcus viriuaris 0.000 10 40 positive

		Antibiotic		
Bacteria	Penicillin	Streptomycin	Neomycin	Gram Staining
Aerobacter aerogenes	870	1	1.6	negative
Brucella abortus	1	2	0.02	negative
Brucella anthracis	0.001	0.01	0.007	positive
Diplococcus pneumoniae	0.005	11	10	positive
Escherichia coli	100	0.4	0.1	negative
Klebsiella pneumoniae	850	1.2	1	negative
Mycobacterium tuberculosis	800	5	2	negative
Proteus vulgaris	3	0.1	0.1	negative
Pseudomonas aeruginosa	850	2	0.4	negative
Salmonella (Eberthella) typhosa	1	0.4	0.008	negative
Salmonella schottmuelleri	10	0.8	0.09	negative
Staphylococcus albus	0.007	0.1	0.001	positive
Ctanbulacaccus aurous	0.02	0.02	0.001	positivo

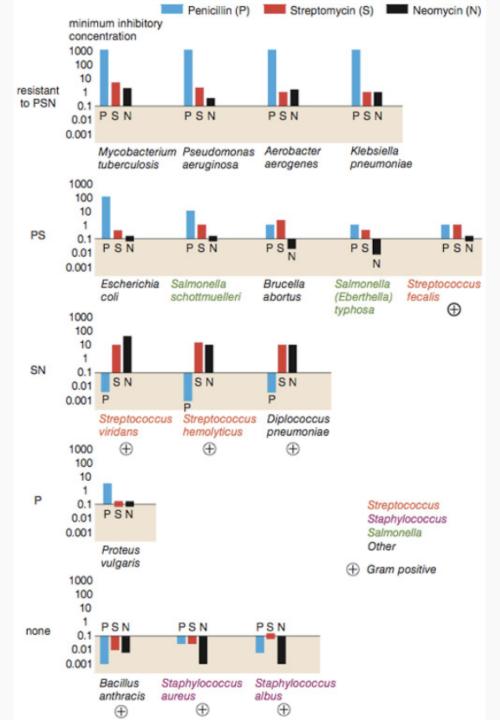
Q: How effective are the antibiotics?

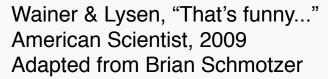
Streptococcus virtuaris 0.000 10 40 positive



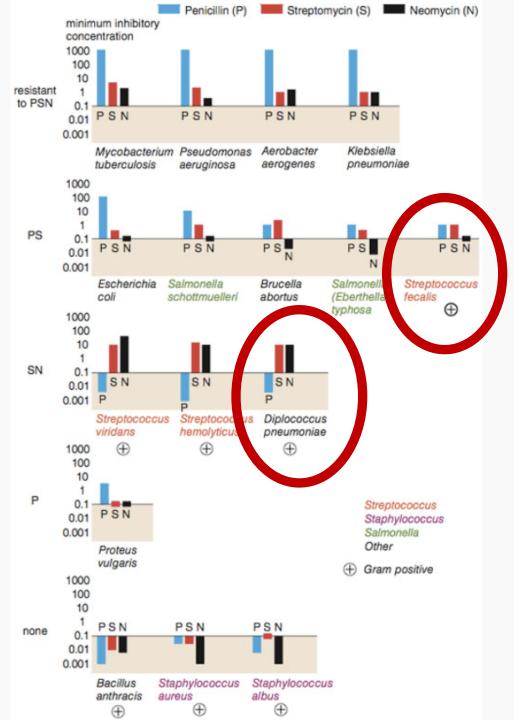


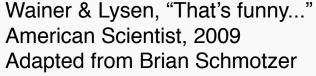
How do the bacteria compare?



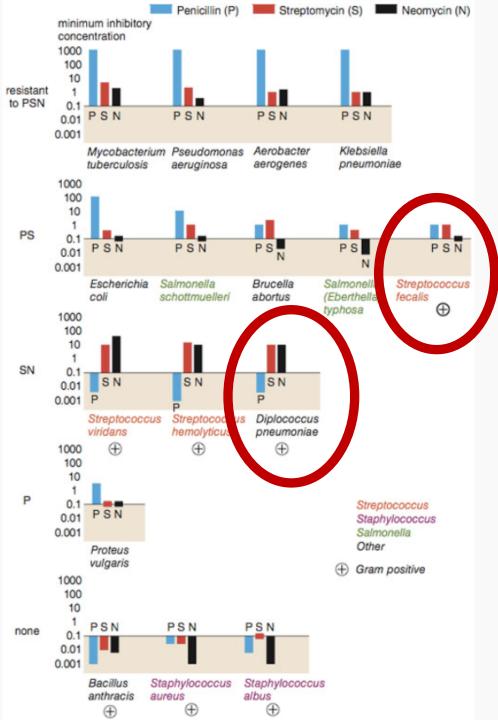


How do the bacteria compare?





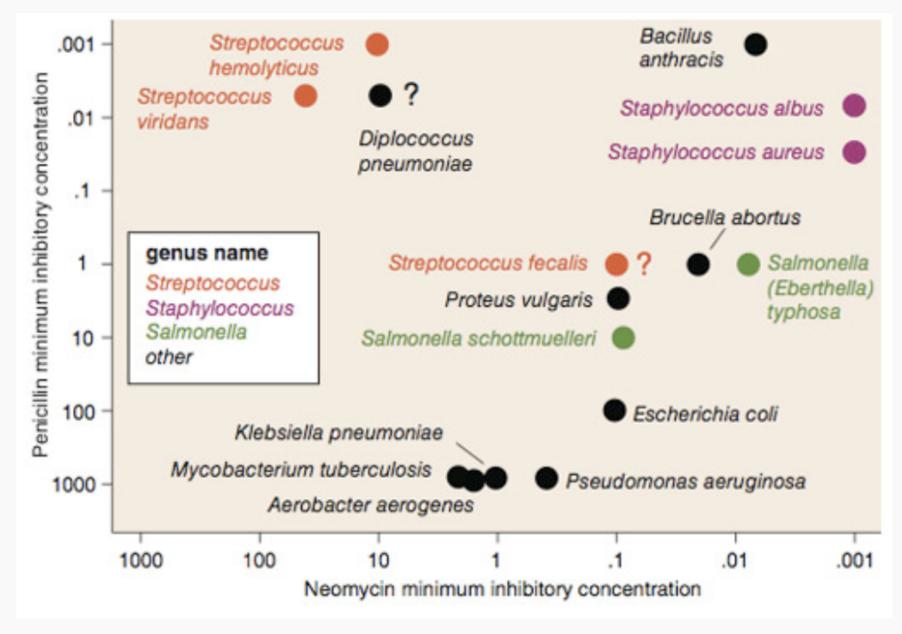
How do the bacteria compare?

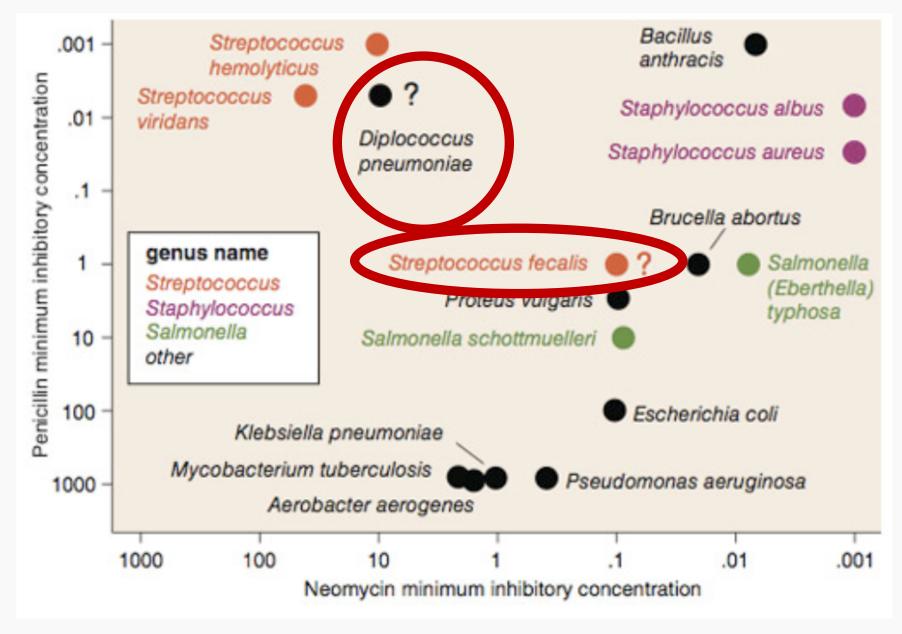


Not a streptococcus! (realized ~30 years later)

Actually a streptococcus! (realized ~20 years later)

Wainer & Lysen, "That's funny..." American Scientist, 2009 Adapted from Brian Schmotzer





Visualization

"The greatest value of a picture is when it forces us to notice what we never expected to see."

John Tukey

Visualization Goals

Communicate (explanatory)

- Present data and ideas
- Explain and inform
- Provide evidence and support
- Influence and persuade

Analyze (exploratory)

- Explore the data
- Assess a situation
- Determine how to proceed
- Decide what to do

Visualization Goals

Communicate (explanatory)

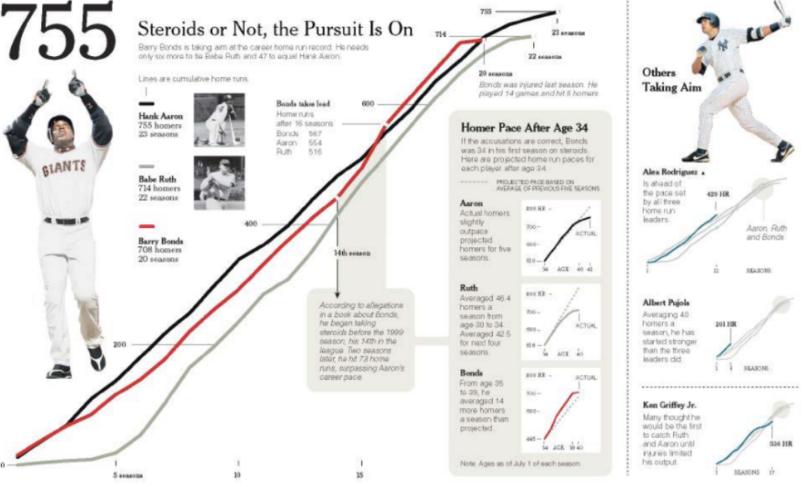
- Present data and ideas
- Explain and inform
- Provide evidence and support
- Influence and persuade

Analyze (exploratory)

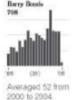
- Explore the data
- Assess a situation
- Determine how to proceed
- Decide what to do

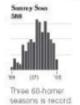
You're essentially communicating drafts to yourself

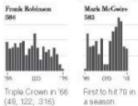
Communicate

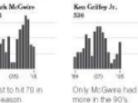


Differing Paths to the Top of the Charts The top seven players on the career home run list, along with a look at Grifley (12th), Rodriguez (37th) and Pujols (tied 257th).

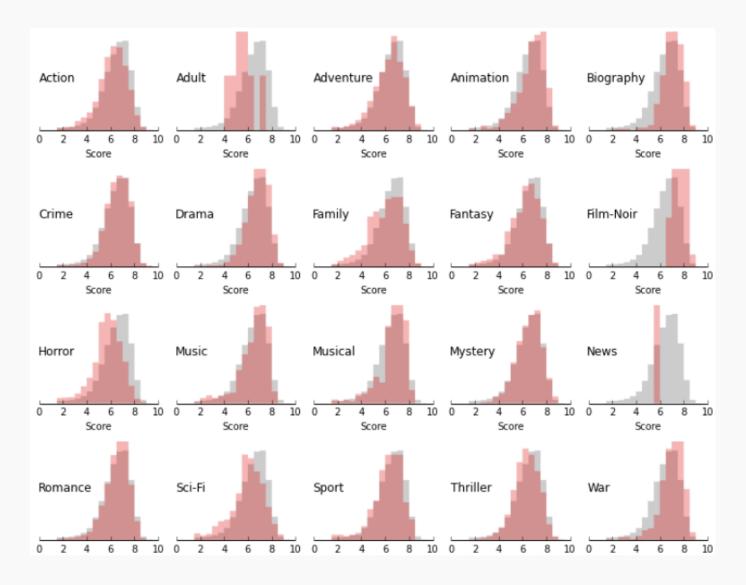


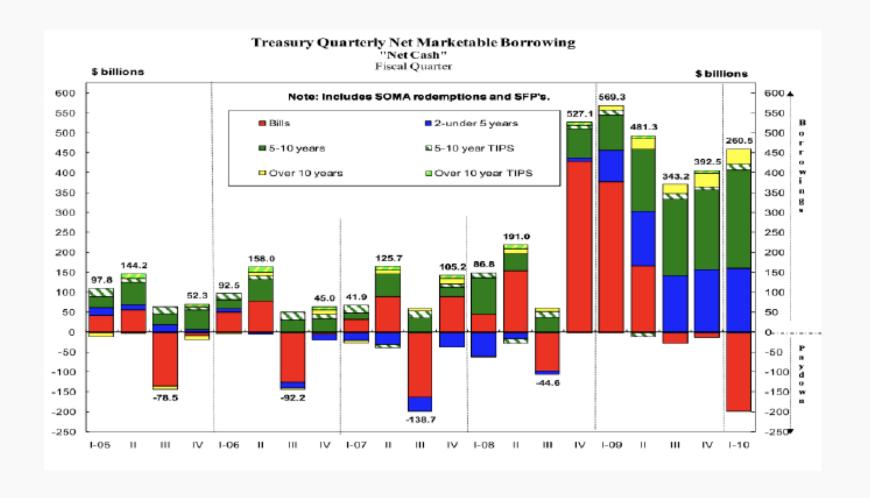


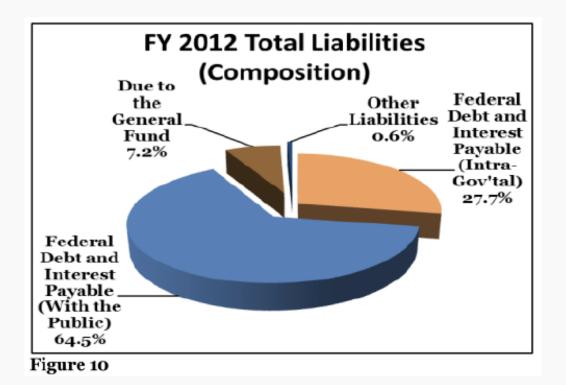


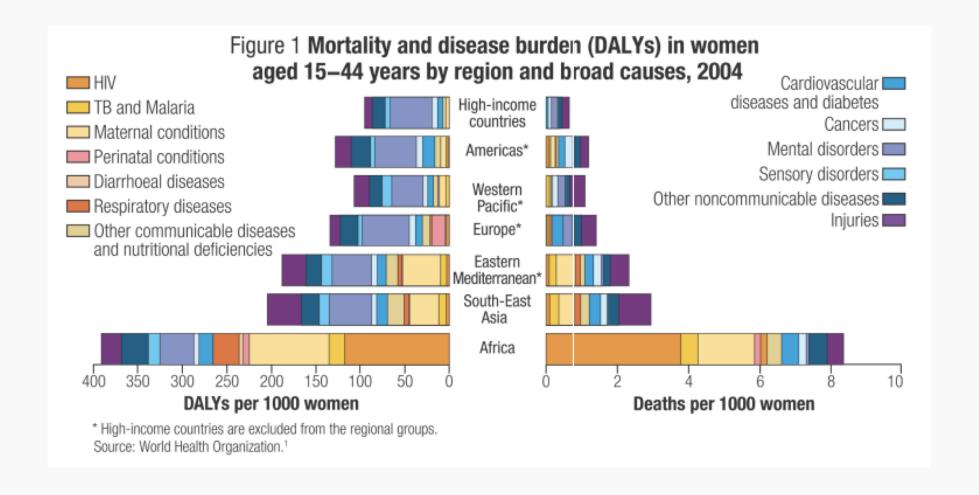


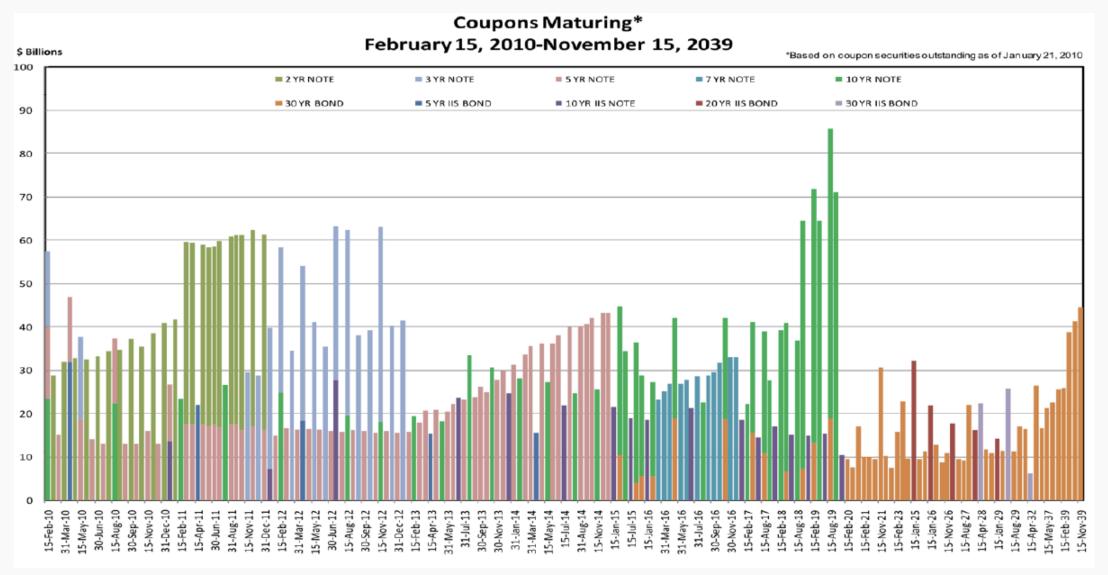
Explore











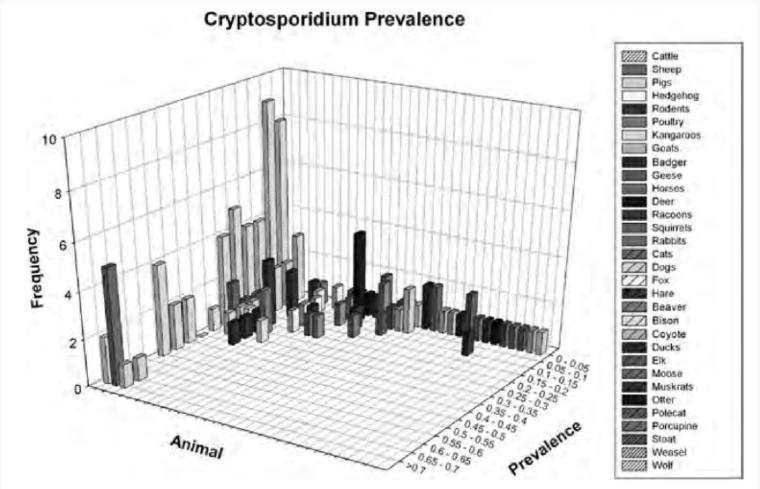


Figure 5.2 Mean prevalence rates of Cryptosporidium oocysts by animal species.

Visualization

Let's say that we are interested in the English Premier League (football/soccer) and want to build a model to predict a player's <u>market value</u>.

Question

Does age affect one's market value?

What type of visualization would help us explore this question?

