
CS109A Introduction to Data Science
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Lecture 7: Model Selection and Regularization
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Study	break	next	week	(TBD):	

• Pizza and fun 

Homework:

• HW1 Grades will be released sometime today. Median = 4.8, STD= 0.60

• HW3: 2 weeks and thus longer.

• Read	the	submission	instructions	– please.

• Use the pre-made groups

ANNOUNCEMENTS
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ANNOUNCEMENTS
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Projects:	

1. Acquiring,	organizing,	and	working	with	real	data.

2. Collaborating with	your	peers.

3. Integrating statistics	and	machine	learning	methods.

4. Working	with	an	open	ended	problems.	Find	optimizable	second-best	approach	for	
problems	that	can	NOT	be	solved.

5. Communicating your	work	to	others.

6. Engage	fully	with	the	Data	Science	process—in	all	its	non-linearity—in	a	real	world	
project	situation.

ANNOUNCEMENTS
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Polynomial Regression

The simplest non-linear model we can consider, for a response Y and a 
predictor X, is a polynomial model of degree M,

Just as in the case of linear regression with cross terms, polynomial 
regression is a special case of linear regression - we treat each 𝑥" as a 
separate predictor. Thus, we can write
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Polynomial Regression
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Lecture Outline

Overfitting

Model Selection

Cross Validation 

Bias vs Variance

Regularization: LASSO and Ridge

Regularization Methods: A Comparison
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Overfitting
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Overfitting
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Overfitting
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Overfitting
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Overfitting
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Overfitting
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Validation

15



CS109A, PROTOPAPAS, RADER, TANNER

Train-Validation-Test

Question:
How would you report the performance of the model?

R2_test  = 0.52

R2_train(degree=1) = 0.83
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Model Selection

Model selection is the application of a principled method to determine 
the complexity of the model, e.g. choosing a subset of predictors, 
choosing the degree of the polynomial model etc.

A strong motivation for performing model selection is to avoid 
overfitting, which we saw can happen when: 

• there are too many predictors:
• the feature space has high dimensionality

• the polynomial degree is too high

• too many cross terms are considered

• the coefficients values are too extreme (we have not seen this yet) 

18
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Model Selection

Question: 
How many different models when considering J predictors?

19



CS109A, PROTOPAPAS, RADER, TANNER

Model Selection

Example:  3 predictors (𝑿𝟏, 𝑿𝟐, 𝑿𝟑)
• Models with 0 predictor:

M0: 

• Models with 1 predictor:  

M1: 𝑋-
M2: 𝑋.
M3: 𝑋/

• Models with 2 predictors: 

M4: {𝑋-, 𝑋.}
M5: {𝑋., 𝑋/}
M6: {𝑋/, 𝑋-}

• Models with 3 predictors: 

M7: {𝑋-, 𝑋., 𝑋/}
20

23	Models
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Stepwise Variable Selection and Cross Validation

Selecting optimal subsets of predictors (including choosing the 
degree of polynomial models) through:

• stepwise variable selection - iteratively building an optimal 
subset of predictors by optimizing a fixed model evaluation 
metric each time,

• validation - selecting an optimal model by evaluating each 
model on validation set.

We will also address the issue of discouraging extreme values in 
model parameters later. 
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Stepwise Variable Selection: Forward method

In forward selection, we find an ‘optimal’ set of predictors by iterative building up 
our set.

1. Start with the empty set P0, construct the null modelM0.

2. For 𝑘 = 1,… , 𝐽:

2.1 Let 𝑀BC-	 be the model constructed from the best set of

𝑘 − 1	 predictors, 𝑃BC-.

2.2 Select the predictor 𝑋FB , not in 𝑃BC-, so that the model constructed from 
𝑃B = 𝑋FB ∪ 𝑃BC- optimizes a fixed metric (this can be p -value, F -stat; validation 
MSE, 𝑅., or AIC/BIC on training set).

2.3 Let 𝑀B denote the model constructed from the optimal 𝑃B .

3. Select the model 𝑀 amongst {𝑀I,𝑀-,… ,𝑀3}		that optimizes a fixed metric (this 
can be validation MSE, 𝑅.;	or AIC/BIS on training set)
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Stepwise Variable Selection Computational Complexity

How many models did we evaluate?

• 1st step, J Models

• 2nd step, J-1 Models (add 1 predictor out of J-1 possible)

• 3rd step, J-2 Models (add 1 predictor out of J-2 possible)

• …

23

O(J2) ⌧ 2J for large J



CS109A, PROTOPAPAS, RADER, TANNER

Lecture Outline

Overfitting

Model Selection

Cross Validation 

Bias vs Variance

Regularization: LASSO and Ridge

Regularization Methods: A Comparison

24



CS109A, PROTOPAPAS, RADER, TANNER

Cross Validation
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Cross Validation
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Cross Validation
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Cross Validation
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Cross Validation
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Validation
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Cross Validation: Motivation 

Using a single validation set to select amongst multiple models can be 
problematic - there is the possibility of overfitting to the validation 
set.

One solution to the problems raised by using a single validation set is to 
evaluate each model on multiple validation sets and average the 
validation performance. 

One can randomly split the training set into training and validation 
multiple times but randomly creating these sets can create the scenario 
where important features of the data never appear in our random draws.

31
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Cross Validation
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K-Fold Cross Validation

Given a data set 𝑋-,… , 𝑋F , where each 𝑋-,… , 𝑋F contains J features. 

To ensure that every observation in the dataset is included in at least one 
training set and at least one validation set we use the K-fold validation: 

• split the data into K uniformly sized chunks, {𝐶-, … , 𝐶L}

• we create K number of training/validation splits, using one of the K 
chunks for validation and the rest for training. 

We fit the model on each training set, denoted 𝑓NOPQ , and evaluate it on the 

corresponding validation set, 𝑓NOPQ	(𝐶R). The cross validation is the performance of 
the model averaged across all validation sets:

where L is a loss function. 
33
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Leave-One-Out

Or using the leave one out method: 

• validation set: {𝑋R}	
• training set: 𝑋CR = {𝑋-,… , 𝑋RC-, 𝑋RX-, … , 𝑋F}		

for 𝑖 = 1,… , 𝑛:	

We fit the model on each training set, denoted 𝑓N[PQ,	and evaluate it on the 

corresponding validation set, 𝑓N[PQ	(𝑋R). 
The cross validation score is the performance of the model averaged across all 
validation sets: 

where L is a loss function. 

34
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Predictor Selection: Cross Validation

Question: What is the right ratio of train/validate/test, how do I choose K?

Question: What is the difference in multiple predictors and polynomial 
regression in model selection?

We can frame the problem of degree selection for polynomial models as a 
predictor selection problem:  

which of the predictors {𝑥, 𝑥., … , 𝑥"}, should we select for modeling?

35
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kNN Revisited
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kNN Revisited

Recall our first simple, intuitive, 

non-parametric model for regression –

the kNN model. We saw that it is vitally 

important to select an appropriate k for 

the data.

If the k is too small then the model is very sensitive to noise (since a new 
prediction is based on very few observed neighbors), and if the k is too large, 
the model tends towards making constant predictions.

A principled way to choose k is through K-fold cross validation.

37
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K-fold with k=100 
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Bias vs Variance
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Bias vs Variance
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Bias vs Variance
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Bias vs Variance
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Linear models: 20 data points per line 2000 simulations
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Bias vs Variance
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Bias vs Variance
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Bias vs Variance
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Poly 10 degree models : 20 data points per line 2000 simulations
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Bias vs Variance

Left: 2000 best fit straight lines, each fitted on a different 20 point 
training set. 

Right: Best-fit models using degree 10 polynomial
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Bias vs Variance

Left: Linear regression coefficients

Right: Poly regression of order 10 coefficients
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Regularization: LASSO and Ridge
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Regularization: An Overview

The idea of regularization revolves around modifying the loss function L; 
in particular, we add a regularization term that penalizes some specified 
properties of the model parameters

where 𝜆 is a scalar that gives the weight (or importance) of the 
regularization term.

Fitting the model using the modified loss function Lreg would result in 
model parameters with desirable properties (specified by R).

56
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LASSO Regression

Since we wish to discourage extreme values in model parameter, we need 
to choose a regularization term that penalizes parameter magnitudes. For 
our loss function, we will again use MSE.

Together our regularized loss function is:

Note that              is the l1 norm of the vector b
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LASSO Regression

Hence, we often say that LLASSO is the loss function for l1 regularization.

Finding the model parameters bLASSO that minimize the l1 regularized 
loss function is called LASSO regression.
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Ridge Regression

Alternatively, we can choose a regularization term that penalizes the 
squares of the parameter magnitudes. Then, our regularized loss function 
is:

Note that               is the l2 norm of the vector b
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Ridge Regression

Hence, we often say that Lridge is the loss function for l2 regularization.

Finding the model parameters bridge that minimize the l2 regularized loss 
function is called ridge regression.
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Choosing l

In both ridge and LASSO regression, we see that the larger our choice of 
the regularization parameter l, the more heavily we penalize large 
values in b,

• If l is close to zero, we recover the MSE, i.e. ridge and LASSO regression 
is just ordinary regression.

• If l is sufficiently large, the MSE term in the regularized loss function 
will be insignificant and the regularization term will force bridge and 
bLASSO to be close to zero.

To avoid ad-hoc choices, we should select l using cross-validation.
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Ridge - Computational complexity

Solution to ridge regression:

The solution of the Ridge/Lasso regression involves three steps

• Select l 

• Find the minimum of the ridge/Lasso regression cost function (using 
linear algebra) as with the multiple regression and record the  R2 on 
the test set. 

• Find the l that gives the largest R2

62
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The Geometry of Regularization (LASSO)
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The Geometry of Regularization (LASSO)
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The Geometry of Regularization (Ridge)
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The Geometry of Regularization (Ridge)
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The Geometry of Regularization
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Ridge regularization with validation only: step by step

1. split data into { 𝑋, 𝑌 yz{RF, 𝑋, 𝑌 |{}Ru{yR~F, 𝑋, 𝑌 yw�y}	

2. for 𝜆	in	 𝜆"RF, … 𝜆"{� :	

1. determine the 𝛽 that minimizes the 𝐿zRuvw, 
𝛽NtRuvw 𝜆 = X�X + 𝜆𝐼 C-𝑋e𝑌 , using the train data.

2. record 𝐿m`n 𝜆 using validation data.

3. select the 𝜆	that minimizes the loss on the validation data, 
																	𝜆zRuvw = argmin�	𝐿m`n 𝜆

4. Refit the model using both train and validation data, 
{ 𝑋, 𝑌 yz{RF, 𝑋, 𝑌 |{}Ru{yR~F },  resulting to 	𝛽NzRuvw 𝜆zRuvw

5. report MSE or R2 on 𝑋, 𝑌 yw�y given the 𝛽NzRuvw 𝜆zRuvw
68
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Ridge regularization with validation only: step by step
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Lasso regularization with validation only: step by step

1. split data into { 𝑋, 𝑌 yz{RF, 𝑋, 𝑌 |{}Ru{yR~F, 𝑋, 𝑌 yw�y}	

2. for 𝜆	in	 𝜆"RF, … 𝜆"{� :	

A. determine the 𝛽 that minimizes the 𝐿}{��~, 𝛽N}{��~ 𝜆 , 
using the train data. This is done using a solver. 

B. record 𝐿m`n 𝜆 using validation data

3. select the 𝜆	that minimizes the loss on the validation data,                  
											𝜆}{��~= argmin�	𝐿m`n 𝜆

4. Refit the model using both train and validation data, 
{ 𝑋, 𝑌 yz{RF, 𝑋, 𝑌 |{}Ru{yR~F },  resulting to 𝛽N}{��~ 𝜆}{��~

5. report MSE or R2 on 𝑋, 𝑌 yw�y given the 𝛽N}{��~ 𝜆}{��~
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Ridge regularization with CV: step by step

1. remove 𝑋, 𝑌 yw�y from data

2. split the rest of data into K folds, { 𝑋, 𝑌 yz{RF
CB , 𝑋, 𝑌 |{}

B }	
3. for k in 1,… , 𝐾 	

1. for 𝜆	in	 𝜆I, … , 𝜆F :	

A. determine the 𝛽 that minimizes the 𝐿zRuvw, 𝛽NzRuvw 𝜆, 𝑘 = X�X + 𝜆𝐼 C-𝑋e𝑌 , 
using the train data of the fold, 𝑋, 𝑌 yz{RF

CB .

B. record 𝐿m`n 𝜆, 𝑘 using the validation data of the fold 𝑋, 𝑌 |{}
B

At this point we have a 2-D matrix, rows are for different k, and 
columns are for different 𝜆 values. 

4. Average the 𝐿m`n(𝜆, 𝑘) for each 𝜆, 𝐿�m`n 𝜆 .  
5. Find the 𝜆 that minimizes the 𝐿�m`n 𝜆 ,  resulting to 𝜆zRuvw.
6. Refit the model using the full training data, { 𝑋, 𝑌 yz{RF, 𝑋, 𝑌 |{} },  resulting 

to 	𝛽N	zRuvw 𝜆zRuvw
7. report MSE or R2 on 𝑋, 𝑌 yw�y given the 𝛽NzRuvw 𝜆zRuvw

71

𝝀𝟏 𝝀𝟐 … 𝝀𝒏
𝑘-
𝑘.
…

𝑘F

𝝀𝟏 𝝀𝟐 … 𝝀𝒏
𝒌𝟏
𝑘.
…

𝑘F

𝝀𝟏 𝝀𝟐 … 𝝀𝒏
𝒌𝟏
𝑘.
…

𝑘F

𝝀𝟏 𝝀𝟐 … 𝝀𝒏
𝒌𝟏 𝑳𝟏𝟏
𝑘.
…

𝑘F

𝝀𝟏 𝝀𝟐 … 𝝀𝒏
𝒌𝟏 𝑳𝟏𝟏 𝑳𝟏𝟐 .. …

𝑘. 𝑳𝟐𝟏 … .. …

… .. … .. …

𝑘F … … … …

𝝀𝟏 𝝀𝟐 … 𝝀𝒏
𝒌𝟏 𝑳𝟏𝟏 𝑳𝟏𝟐 .. …

𝑘. 𝑳𝟐𝟏 … .. …

… .. … .. …

𝑘F … … … …

E[] 𝐿�- 𝑳�𝟐 … 𝐿�F

𝝀𝟏 𝝀𝟐 … 𝝀𝒏
𝒌𝟏 𝑳𝟏𝟏 𝑳𝟏𝟐 .. …

𝑘. 𝑳𝟐𝟏 … .. …

… .. … .. …

𝑘F … … … …

E[] 𝐿�- 𝐿�. … 𝐿�F



CS109A, PROTOPAPAS, RADER, TANNER

Ridge regularization with validation only: step by step
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Variable Selection as Regularization

Since LASSO regression tend to produce zero estimates for a number of 
model parameters - we say that LASSO solutions are sparse - we consider 
LASSO to be a method for variable selection.

Many prefer using LASSO for variable selection (as well as for suppressing 
extreme parameter values) rather than stepwise selection, as LASSO 
avoids the statistic problems that arises in stepwise selection.

Question: What are the pros and cons of the two approaches? 
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Afternoon Exercises

Quiz - to be completed in the next 10 min:

Sway: Lecture 7

Programmatic – to be completed by Lab tomorrow: 

Lessons: Lecture 7:
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https://twitter.com/wdaali999/status/1161973951565881345


