Lecture 6: Multiple and Poly Linear Regression

CS109A Introduction to Data Science Pavlos Protopapas, Kevin Rader and Chris Tanner

ANNOUNCEMENTS

• Office Hours:

More office hours, schedule will be posted soon.

On-line office hours are for everyone, please take advantage of them.

• **Projects:**

Project guidelines and project descriptions will be posted Thursday 9/25. Milestone-1: Signup for project is Wed 10/2.

We **assume** a simple form of the statistical model f: $Y = f(X) + \epsilon = \beta_0 + \beta_1 X + \epsilon$

We fit the model, i.e. estimate, $\hat{\beta}_0$, $\hat{\beta}_1$ that minimize the loss function, which we **assume** to be the MSE:

$$L_{MSE}(\beta_0, \beta_1) = \frac{1}{n} \sum_{n} [y_i - (\beta_0 + \beta_1 X)^2]$$

$$\widehat{\beta}_0, \widehat{\beta}_1 = \underset{\beta_0, \beta_1}{\operatorname{argmin}} L(\beta_0, \beta_1).$$

Δ

We acknowledge that because there are errors in measurements and a limited sample, there is an inherent uncertainty in the estimation of $\hat{\beta}_0$, $\hat{\beta}_1$.

We used **bootstrap** to estimate the distributions of $\hat{\beta}_0$, $\hat{\beta}_1$

We calculate the confidence intervals, which are the ranges of values such that the **true** value of β_1 is contained in this interval with *n* percent probability.

We evaluate the importance of predictors using hypothesis testing, using the t-statistics and p-values.

Model Fitness

How does the model perform predicting?

Comparison of Two Models

How do we choose from two different models?

Evaluating Significance of Predictors

Does the outcome depend on the predictors?

How well do we know \widehat{f}

The confidence intervals of our \hat{f}

The confidence intervals of our \hat{f}

- Multi-linear Regression
 - Formulate it in Linear Algebra
 - Categorical Variables
- Interaction terms
- Polynomial Regression
 - Linear Algebra Formulation

The confidence intervals of our \hat{f}

- Multi-linear Regression
 - Formulate it in Linear Algebra
 - Categorical Variables
- Interaction terms
- Polynomial Regression
 - Linear Algebra Formulation

Our confidence in f is directly connected with the confidence in β s. So for each bootstrap sample, we have one β_0 , β_1 which we can use to predict y for all x's.

Here we show two difference set of models given the fitted coefficients.

There is one such regression line for every bootstrapped sample.

Below we show all regression lines for a thousand of such bootstrapped samples.

For a given x, we examine the distribution of \hat{f} , and determine the mean and standard deviation.

Below we show all regression lines for a thousand of such sub-samples. For a given x, we examine the distribution of \hat{f} , and determine the mean and standard deviation.

Below we show all regression lines for a thousand of such sub-samples. For a given x, we examine the distribution of \hat{f} , and determine the distribution of \hat{f} .

For every x, we calculate the mean of the models, \hat{f} (shown with dotted line) and the 95% CI of those models (shaded area).

Confidence in predicting \hat{y}

Confidence in predicting \hat{y}

- for a given x, we have a distribution of models f(x)
- for each of these f(x), the prediction for $y \sim N(f, \sigma_{\epsilon})$

Confidence in predicting \hat{y}

- for a given x, we have a distribution of models f(x)•
- for each of these f(x), the prediction for $y \sim N(f, \sigma_{\epsilon})$ ullet
- The prediction confidence intervals are then

Lecture Outline

How well do we know \widehat{f}

The confidence intervals of our \hat{f}

- Multi-linear Regression
 - Brute Force
 - Exact method
 - Gradient Descent
- Polynomial Regression

If you have to guess someone's height, would you rather be told

- Their weight, only
- Their weight and gender
- Their weight, gender, and income
- Their weight, gender, income, and favorite number

Of course, you'd always want as much data about a person as possible. Even though height and favorite number may not be strongly related, at worst you could just ignore the information on favorite number. We want our models to be able to take in lots of data as they make their predictions.

In practice, it is unlikely that any response variable Y depends solely on one predictor x. Rather, we expect that is a function of multiple predictors $f(X_1, ..., X_J)$. Using the notation we introduced last lecture,

$$Y = y_1, ..., y_n, X = X_1, ..., X_J$$
 and $X_j = x_{1j}, ..., x_{ij}, ..., x_{nj}$

In this case, we can still assume a simple form for f -a multilinear form:

$$Y = f(X_1, \dots, X_J) + \epsilon = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_J X_J + \epsilon$$

Hence, \hat{f} , has the form

$$\hat{Y} = \hat{f}(X_1, \dots, X_J) + \epsilon = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \dots + \hat{\beta}_J X_J + \epsilon$$

Again, to fit this model means to compute $\hat{\beta}_0, \dots, \hat{\beta}_J$ or to minimize a loss function; we will again choose the **MSE** as our loss function.

Given a set of observations,

$$\{(x_{1,1},\ldots,x_{1,J},y_1),\ldots,(x_{n,1},\ldots,x_{n,J},y_n)\},\$$

the data and the model can be expressed in vector notation,

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_y \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 1 & x_{1,1} & \dots & x_{1,J} \\ 1 & x_{2,1} & \dots & x_{2,J} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \dots & x_{n,J} \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_J \end{pmatrix},$$

For our data Sales = $\beta_0 + \beta_1 \times TV + \beta_2 \times Radio + \beta_3 \times Newspaper + \epsilon$

In linear algebra notation

$$Y = \begin{pmatrix} Sales_{1} \\ \vdots \\ Sales_{n} \end{pmatrix}, X = \begin{pmatrix} 1 & TV_{1} & Radio_{1} & News_{1} \\ \vdots & \vdots \\ 1 & TV_{n}. & Radio_{n} & News_{n} \end{pmatrix}, \beta = \begin{pmatrix} \beta_{0} \\ \vdots \\ \beta_{3} \end{pmatrix}$$
$$Sales_{1} = \langle 1 & TV_{1} & Radio_{1} & News_{1} \rangle \times \beta_{0}$$

 β_3

Multiple Linear Regression

The model takes a simple algebraic form:

$$\mathbf{Y} = \mathbf{X}\beta + \epsilon$$

Thus, the MSE can be expressed in vector notation as $\mathrm{MSE}(\beta) = \frac{1}{n} \| \bm{Y} - \bm{X} \bm{\beta} \|^2$

Minimizing the MSE using vector calculus yields,

$$\widehat{\boldsymbol{\beta}} = \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \mathbf{Y} = \operatorname*{argmin}_{\boldsymbol{\beta}} \mathrm{MSE}(\boldsymbol{\beta}).$$

Standard Errors for Multiple Linear Regression

As with the simple linear regression, he standard errors can be calculated either using statistical modeling

$$SE(\beta_1) = \sigma^2 (XX^T)^{-1}$$

Collinearity refers to the case in which two or more predictors are correlated (related).

We will re-visit collinearity in the next lecture when we address **overfitting**, but for now we want to examine how does collinearity affects our confidence on the coefficients and consequently on the importance of those coefficients.

Collinearity

Three individual models

TV

Coef.	Std.Err.	Std.Err. t P> t		[0.025	0.975]	
6.679	0.478	13.957	2.804e-31	5.735	7.622	
0.048	0.0027	17.303	1.802e-41	0.042	0.053	

RADIO

Coef.	Std.Err. t		P> t	[0.025	0.975]	
9.567	0.553	17.279	2.133e-41	8.475	10.659	
0.195	0.020	9.429	1.134e-17	0.154	0.236	

	_					
	Coef.	Std.Err.	t	P> t	[0.025	0.975]
eta_0	2.602	0.332	7.820	3.176e-13	1.945	3.258
β_{TV}	0.046	0.0015	29.887	6.314e-75	0.043	0.049
β_{RADIO}	0.175	0.0094	18.576	4.297e-45	0.156	0.194
β_{NEWS}	0.013	0.028	2.338	0.0203	0.008	0.035

One model

NEWS

Coef.	Std.Err.	t	P> t	[0.025	0.975]	
11.55	0.576	20.036	1.628e-49	10.414	12.688	
0.074	0.014	5.134	6.734e-07	0.0456	0.102	

Finding Significant Predictors: Hypothesis Testing

For checking the significance of linear regression coefficients:

1. we set up our hypotheses H_0 :

$$H_0: \beta_0 = \beta_1 = \ldots = \beta_J = 0$$
 (Null)
$$H_1: \beta_j \neq 0, \text{ for at least one } j$$
 (Alternative)

2. we choose the F-stat to evaluate the null hypothesis,

$$F = \frac{\text{explained variance}}{\text{unexplained variance}}$$

Finding Significant Predictors: Hypothesis Testing

3. we can compute the F-stat for linear regression models by

$$F = \frac{(\text{TSS} - \text{RSS})/J}{\text{RSS}/(n - J - 1)}, \quad \text{TSS} = \sum_{i} (y_i - \overline{y})^2, \text{RSS} = \sum_{i} (y_i - \widehat{y}_i)^2$$

4. If F = 1 we consider this evidence for H_0 ; if F > 1, we consider this evidence against H_0 .

So far, we have assumed that all variables are quantitative. But in practice, often some predictors are **qualitative**.

Example: The Credit data set contains information about balance, age, cards, education, income, limit , and rating for a number of potential customers.

Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance
14.890	3606	283	2	34	11	Male	Νο	Yes	Caucasian	333
106.02	6645	483	3	82	15	Female	Yes	Yes	Asian	903
104.59	7075	514	4	71	11	Male	No	No	Asian	580
148.92	9504	681	3	36	11	Female	No	No	Asian	964
55.882	4897	357	2	68	16	Male	No	Yes	Caucasian	331

If the predictor takes only two values, then we create an **indicator** or **dummy variable** that takes on two possible numerical values. For example for the gender, we create a new variable:

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ 0 & \text{if } i \text{ th person is male} \end{cases}$$

We then use this variable as a predictor in the regression equation.

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{ th person is female} \\ \beta_0 + \epsilon_i & \text{if } i \text{ th person is male} \end{cases}$

Qualitative Predictors

Question: What is interpretation of β_0 and β_1 ?

Question: What is interpretation of β_0 and β_1 ?

- β_0 is the average credit card balance among males,
- $\beta_0 + \beta_1$ is the average credit card balance among females,
- and β_1 the average difference in credit card balance between females and males.

Example: Calculate β_0 and β_1 for the Credit data. You should find $\beta_0 \sim $509, \beta_1 \sim 19

Often, the qualitative predictor takes more than two values (e.g. ethnicity in the credit data).

In this situation, a single dummy variable cannot represent all possible values.

We create additional dummy variable as:

$$x_{i,1} = \begin{cases} 1 & \text{if } i \text{ th person is Asian} \\ 0 & \text{if } i \text{ th person is not Asian} \end{cases}$$

$$x_{i,2} = \begin{cases} 1 & \text{if } i \text{ th person is Caucasian} \\ 0 & \text{if } i \text{ th person is not Caucasian} \end{cases}$$

We then use these variables as predictors, the regression equation becomes:

$$y_{i} = \beta_{0} + \beta_{1}x_{i,1} + \beta_{2}x_{i,2} + \epsilon_{i} = \begin{cases} \beta_{0} + \beta_{1} + \epsilon_{i} & \text{if } i \text{ th person is Asian} \\ \beta_{0} + \beta_{2} + \epsilon_{i} & \text{if } i \text{ th person is Caucasian} \\ \beta_{0} + \epsilon_{i} & \text{if } i \text{ th person is AfricanAmerican} \end{cases}$$

Question: What is the interpretation of β_0 , β_1 , β_2 ?

In the Advertising data, we assumed that the effect on sales of increasing one advertising medium is independent of the amount spent on the other media.

If we assume linear model then the average effect on sales of a one-unit increase in TV is always β_1 , regardless of the amount spent on radio.

Synergy effect or **interaction effect** states that when an increase on the radio budget affects the effectiveness of the TV spending on sales.

We change

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

То

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

What does it mean?

We have a lot predictors!

Is it a problem?

Yes: Computational Cost Yes: Overfitting

Wait there is more ...

We started with

$$y = f(x) + \epsilon$$

We **assumed** the exact form of $f(x)$,to be,
$$f(x) = \beta_0 + \beta_1 x,$$

then estimated the $\hat{\beta}'s$.

What if that is not correct? Instead:

$$f(x) = \beta_0 + \beta_1 x + \phi(x),$$

But we model it as

$$\hat{y} = \hat{f}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$$

Then the residual

$$r = (y - \widehat{y}) = \widehat{f}(x) = \epsilon + \phi(x)$$

Residual Analysis

When we estimated the variance of ϵ , we assumed that the residuals $r_i = y_i - \hat{y}_i$ were uncorrelated and normally distributed with mean 0 and fixed variance.

These assumptions need to be verified using the data. In residual analysis, we typically create two types of plots:

- 1. a plot of r_i with respect to x_i or \hat{y}_i . This allows us to compare the distribution of the noise at different values of x_i .
- 2. 2. a histogram of r_i . This allows us to explore the distribution of the noise independent of x_i or \hat{y}_i .

Residual Analysis

Lecture Outline

How well do we know \widehat{f}

The confidence intervals of our \hat{f}

- Multi-linear Regression
 - Brute Force
 - Exact method
 - Gradient Descent
- Polynomial Regression

Polynomial Regression

The simplest non-linear model we can consider, for a response Y and a predictor X, is a polynomial model of degree *M*,

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_M x^M + \epsilon.$$

Just as in the case of linear regression with cross terms, polynomial regression is a special case of linear regression - we treat each x^m as a separate predictor. Thus, we can write

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \qquad \mathbf{X} = \begin{pmatrix} 1 & x_1^1 & \dots & x_1^M \\ 1 & x_2^1 & \dots & x_2^M \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^M \end{pmatrix}, \qquad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_M \end{pmatrix}$$

Again, minimizing the MSE using vector calculus yields,

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta}} \operatorname{MSE}(\boldsymbol{\beta}) = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{Y}.$$

In statistics, **overfitting** is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably"

More on this on Wednesday

The confidence intervals of our \hat{f}

- Multi-linear Regression
 - Formulate it in Linear Algebra
 - Categorical Variables
- Interaction terms
- Polynomial Regression
 - Linear Algebra Formulation

Quiz - to be completed in the next 10 min: Sway: Lecture 6: Multi and poly Regression

Programmatic – to be completed by lab time tomorrow: Lessons: Lecture 6:

