
CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Lecture 6: Multiple and Poly Linear Regression
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• Office	Hours:

More	office	hours,	schedule	will	be	posted	soon.

On-line	office	hours	are	for	everyone,	please	take	advantage	of	them.

• Projects:

Project	guidelines	and	project	descriptions	will	be	posted	Thursday	9/25.

Milestone-1:	Signup	for	project	is	Wed	10/2	.

ANNOUNCEMENTS
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Summary from last lecture

We assume a simple form of the statistical model 𝑓:
𝑌 = 𝑓 𝑋 + 𝜖 = 𝛽) + 𝛽*𝑋 + 𝜖
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Summary from last lecture

We fit the model, i.e. estimate, 𝛽,), 𝛽,*that minimize the loss 
function, which we assume to be the MSE: 

𝐿./0 𝛽), 𝛽* =
1
𝑛
3 𝑦5 − 𝛽) + 𝛽*𝑋 7
�

9

4

b�0, b�1 = argmin
�0,�1

L(�0,�1).
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Summary from last lecture

We	acknowledge	that	because	there	are	errors	in	measurements	
and	a	limited	sample,	there	is	an	inherent	uncertainty	in	the	
estimation	of	𝛽,), 𝛽,*.
We	used	bootstrap to	estimate	the	distributions	of	𝛽,), 𝛽,*

5
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Summary from last lecture

6

We calculate the confidence intervals, which are the ranges of values 
such that the true value of 𝛽*is contained in this interval with n percent 
probability.

68%
95%
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Summary from last lecture

7

We evaluate the importance of predictors using hypothesis testing, 
using the t-statistics and p-values.

𝜎STU

𝜇STU − 0
2
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Summary from last lecture

Model Fitness 

How does the model perform predicting? 

Comparison of Two Models   

How do we choose from two different models?

Evaluating Significance of Predictors 

Does the outcome depend on the predictors?

How well do we know 𝒇Y

The confidence intervals of our 𝑓,	

8

This lecture
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Summary

How well do we know 𝑓,

The confidence intervals of our 𝑓,	

• Multi-linear Regression

• Formulate it in Linear Algebra

• Categorical Variables

• Interaction terms 

• Polynomial Regression 

• Linear Algebra Formulation
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Summary

How well do we know 𝑓,

The confidence intervals of our 𝑓,	

• Multi-linear Regression

• Formulate it in Linear Algebra

• Categorical Variables

• Interaction terms 

• Polynomial Regression 

• Linear Algebra Formulation
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How well do we know 𝑓,? 

11

Our confidence in 𝑓 is directly connected with the confidence in 𝛽s. So for 
each bootstrap sample, we have one 𝛽), 𝛽* which we can use to predict y
for all x’s. 
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How well do we know 𝑓,? 

12

Here we show two difference set of models given the fitted coefficients. 
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How well do we know 𝑓,? 

13

There is one such regression line for every bootstrapped sample. 
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How well do we know 𝑓,? 

14

Below we show all regression lines for a thousand of such bootstrapped 
samples. 
For a given 𝑥, we examine the distribution of 𝑓,, and determine the mean 
and standard deviation.  
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How well do we know 𝑓,? 
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Below we show all regression lines for a thousand of such sub-samples.  
For a given 𝑥, we examine the distribution of 𝑓,, and determine the mean 
and standard deviation.  
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How well do we know 𝑓,? 

16

Below we show all regression lines for a thousand of such sub-samples.  
For a given 𝑥, we examine the distribution of 𝑓,, and determine the mean 
and standard deviation.  
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How well do we know 𝑓,? 
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For every 𝑥, we calculate the mean of the models, 𝑓, (shown with dotted 
line) and the 95% CI of those models (shaded area).

Estimated	𝑓,
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Confidence in predicting 𝑦]

18
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Confidence in predicting 𝑦]

19

• for a given x, we have a distribution of models 𝑓 𝑥
• for each of these 𝑓 𝑥 ,	the prediction for 𝑦~𝑁(𝑓, 𝜎a)



CS109A, PROTOPAPAS, RADER, TANNER PAVLOS PROTOPAPAS

Confidence in predicting 𝑦]

20

• for a given x, we have a distribution of models 𝑓 𝑥
• for each of these 𝑓 𝑥 ,	the prediction for 𝑦~𝑁 𝑓, 𝜎a
• The prediction confidence intervals are then
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Lecture Outline 
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How well do we know 𝒇Y

The confidence intervals of our 𝑓,	

• Multi-linear Regression

• Brute Force

• Exact method

• Gradient Descent 

• Polynomial Regression 
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Multiple Linear Regression 

If you have to guess someone's height, would you rather be told

• Their weight, only

• Their weight and gender

• Their weight, gender, and income

• Their weight, gender, income, and favorite number

Of course, you'd always want as much data about a person as possible. 
Even though height and favorite number may not be strongly related, at 
worst you could just ignore the information on favorite number. We want 
our models to be able to take in lots of data as they make their 
predictions.

22
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Response vs. Predictor Variables

TV radio newspaper sales

230.1 37.8 69.2 22.1

44.5 39.3 45.1 10.4

17.2 45.9 69.3 9.3

151.5 41.3 58.5 18.5

180.8 10.8 58.4 12.9

23

Y
outcome

response variable
dependent variable

X
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covariates
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Multilinear Models

In practice, it is unlikely that any response variable Y depends solely on 
one predictor x. Rather, we expect that is a function of multiple 
predictors 𝑓(𝑋*,… , 𝑋d). Using the notation we introduced last lecture, 

𝑌 = 𝑦*,… , 𝑦9, 𝑋 = 𝑋*,… , 𝑋d	and	𝑋e = 𝑥*e, … , 𝑥5e, … , 𝑥9e

In this case, we can still assume a simple form for 𝑓	-a multilinear form:

Hence, 𝑓,, has the form

24

Y = f(X1, . . . , XJ) + ✏ = �0 + �1X1 + �2X2 + . . .+ �JXJ + ✏

Ŷ = f̂(X1, . . . , XJ) + ✏ = �̂0 + �̂1X1 + �̂2X2 + . . .+ �̂JXJ + ✏
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Multiple Linear Regression

Again, to fit this model means to compute 𝛽,), … , 𝛽,d or to minimize a loss 
function; we will again choose the MSE as our loss function. 

Given a set of observations, 

the data and the model can be expressed in vector notation, 

25

{(x1,1, . . . , x1,J , y1), . . . (xn,1, . . . , xn,J , yn)},

Y =

0

B@
y1
...
yy

1

CA , X =

0

BBB@

1 x1,1 . . . x1,J

1 x2,1 . . . x2,J
...

...
. . .

...
1 xn,1 . . . xn,J

1

CCCA
, ��� =

0

BBB@

�0

�1
...
�J

1

CCCA
,
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For our data

Sales = 𝛽) + 𝛽*	×		𝑇𝑉 + 𝛽7×𝑅𝑎𝑑𝑖𝑜 + 𝛽o×𝑁𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟 + 𝜖		

In linear algebra notation 

𝒀 =
𝑆𝑎𝑙𝑒𝑠*
⋮

𝑆𝑎𝑙𝑒𝑠9
	 , 𝑿 =

1 𝑇𝑉*			𝑅𝑎𝑑𝑖𝑜* 𝑁𝑒𝑤𝑠*
⋮ ⋮ ⋮
1 𝑇𝑉9. 		𝑅𝑎𝑑𝑖𝑜9		 𝑁𝑒𝑤𝑠9

, 𝜷 =
𝛽)
⋮
𝛽o

Multilinear Model, example 

26

= ×
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Multiple Linear Regression

The model takes a simple algebraic form:

Thus, the MSE can be expressed in vector notation as

Minimizing the MSE using vector calculus yields, 

27

Y = X� + ✏

MSE(�) =
1

n
kY � X�k2

b��� =
�
X>X

��1
X>Y = argmin

���
MSE(���).
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As with the simple linear regression, he standard errors can be 
calculated either using statistical modeling 

Or bootstrap 

Standard Errors for Multiple Linear Regression

28

SE(�1) = �2(XXT )�1
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Collinearity

Collinearity refers to the case in which two or more predictors 
are correlated (related). 

We will re-visit collinearity in the next lecture when we 
address overfitting, but for now we want to examine how does 
collinearity affects our confidence on the coefficients and 
consequently on the importance of those coefficients. 

29
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Collinearity

Three individual models

30

Coef. Std.Err. t P>|t| [0.025 0.975]

11.55 0.576 20.036 1.628e-49 10.414 12.688

0.074 0.014 5.134 6.734e-07 0.0456 0.102

Coef. Std.Err. t P>|t| [0.025 0.975]

6.679 0.478 13.957 2.804e-31 5.735 7.622

0.048 0.0027 17.303 1.802e-41 0.042 0.053

Coef. Std.Err. t P>|t| [0.025 0.975]

9.567 0.553 17.279 2.133e-41 8.475 10.659

0.195 0.020 9.429 1.134e-17 0.154 0.236

Coef. Std.Err. t P>|t| [0.025 0.975]

𝛽) 2.602 0.332 7.820 3.176e-13 1.945 3.258

𝛽{| 0.046 0.0015 29.887 6.314e-75 0.043 0.049

𝛽}~��� 0.175 0.0094 18.576 4.297e-45 0.156 0.194

𝛽�0�/ 0.013 0.028 2.338 0.0203 0.008 0.035

One model
TV

RADIO

NEWS
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Finding Significant Predictors: Hypothesis Testing

For checking the significance of linear regression coefficients:

1. we set up our hypotheses 𝐻): 

2. we choose the F-stat to evaluate the null hypothesis, 

31

H0 : �0 = �1 = . . . = �J = 0 (Null)

H1 : �j 6= 0, for at least one j (Alternative)

F =
explained variance

unexplained variance
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Finding Significant Predictors: Hypothesis Testing

3. we can compute the F-stat for linear regression models by

4. If 𝐹 = 1 we consider this evidence for 𝐻); if 𝐹 > 1, we consider this 
evidence against 𝐻). 

32

F =
(TSS� RSS)/J

RSS/(n� J � 1)
, TSS =

X

i

(yi � y) ,RSS =
X

i

(yi � byi)
2 2



CS109A, PROTOPAPAS, RADER, TANNER PAVLOS PROTOPAPAS

Qualitative Predictors

So far, we have assumed that all variables are quantitative. But in 
practice,  often some predictors are qualitative. 

Example:  The Credit data set contains information about balance, age, 
cards, education, income, limit , and rating for a number of potential 
customers.

33

Income Limit Rating Cards Age Education Gender Student Married Ethnicity Balance

14.890 3606 283 2 34 11 Male No Yes Caucasian 333

106.02 6645 483 3 82 15 Female Yes Yes Asian 903

104.59 7075 514 4 71 11 Male No No Asian 580

148.92 9504 681 3 36 11 Female No No Asian 964

55.882 4897 357 2 68 16 Male No Yes Caucasian 331
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Qualitative Predictors

If the predictor takes only two values, then we create an indicator or 
dummy variable that takes on two possible numerical values.

For example for the gender, we create a new variable:

We then use this variable as a predictor in the regression equation. 

34

xi =

⇢
1 if i th person is female
0 if i th person is male

yi = �0 + �1xi + ✏i =

⇢
�0 + �1 + ✏i if i th person is female
�0 + ✏i if i th person is male
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Qualitative Predictors

Question: What is interpretation of 𝛽) and 𝛽*? 

35
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Qualitative Predictors

Question: What is interpretation of 𝛽) and 𝛽*? 

• 𝛽) is the average credit card balance among males, 

• 𝛽) + 𝛽*	 is the average credit card balance among females, 

• and 𝛽* the average difference in credit card balance between females 
and males.

Example: Calculate 𝛽) and 𝛽* for the Credit data. 

You should find 𝛽)~$509, 𝛽*~$19

36
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More than two levels: One hot encoding

Often, the qualitative predictor takes more than two values (e.g. ethnicity 
in the credit data). 

In this situation, a single dummy variable cannot represent all possible 
values. 

We create additional dummy variable as:  

37

xi,2 =

⇢
1 if i th person is Caucasian
0 if i th person is not Caucasian

xi,1 =

⇢
1 if i th person is Asian
0 if i th person is not Asian
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More than two levels: One hot encoding

We then use these variables as predictors, the regression 
equation becomes:

Question: What is the interpretation of 𝛽), 𝛽*, 𝛽7?  

38

yi = �0 + �1xi,1 + �2xi,2 + ✏i =

8
<

:

�0 + �1 + ✏i if i th person is Asian
�0 + �2 + ✏i if i th person is Caucasian
�0 + ✏i if i th person is AfricanAmerican
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Beyond linearity

In the Advertising data, we assumed that the effect on sales of 
increasing one advertising medium is independent of the amount spent 
on the other media. 

If we assume linear model then the average effect on sales of a one-unit 
increase in TV is always 𝛽*, regardless of the amount spent on radio.

Synergy effect or interaction effect states that when an increase on the 
radio budget affects the effectiveness of the TV spending on sales. 

39
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Beyond linearity

We change

To  

40

Y = �0 + �1X1 + �2X2 + �3X1X2 + ✏

Y = �0 + �1X1 + �2X2 + ✏
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What does it mean?

41

𝑥/����9� = �
0 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽) + 𝛽*×𝐼𝑛𝑐𝑜𝑚𝑒.																										
1 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽) + 𝛽7 + 𝛽* + 𝛽o ×𝐼𝑛𝑐𝑜𝑚𝑒

𝑥/����9� = �
0 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽) + 𝛽*×𝐼𝑛𝑐𝑜𝑚𝑒.																										
1 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽) + 𝛽7 + 𝛽* ×𝐼𝑛𝑐𝑜𝑚𝑒.								
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Predictors predictors predictors

We have a lot predictors!  

Is it a problem? 

Yes: Computational Cost

Yes: Overfitting 

Wait there is more …

42
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Residuals

We started with 

We assumed the exact form of 𝑓 𝑥 ,to be, 
𝑓 𝑥 = 𝛽) + 𝛽*𝑥,

then estimated the 𝛽,�𝑠.	
What if that is not correct? Instead: 

𝑓 𝑥 = 𝛽0 + 𝛽1𝑥 + 𝜙 𝑥 ,
But we model it as

𝑦] = 𝑓, 𝑥 = 𝛽,) + 𝛽,*𝑥
Then the residual 

𝑟 = (𝑦 − 𝑦)� = 𝑓, 𝑥 = 𝜖 + 𝜙(𝑥)
44

y = f(x) + ✏
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Residuals

Residual Analysis
When we estimated the variance of ϵ, we assumed that the 
residuals 𝑟5 = 𝑦5 − 𝑦]5 were uncorrelated and normally 
distributed with mean 0 and fixed variance. 

These assumptions need to be verified using the data. In 
residual analysis, we typically create two types of plots: 

1. a plot of	𝑟5	with respect to 𝑥5 or 𝑦]5 . This allows us to 
compare the distribution of the noise at different values of
𝑥5 . 

2. 2. a histogram of 	𝑟5 . This allows us to explore the 
distribution of the noise independent of 𝑥5 or 𝑦]5 .

45
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Residual Analysis 

46CS109A, PROTOPAPAS, RADER, TANNER PAVLOS PROTOPAPAS

Residual Analysis 

45
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Lecture Outline 

47

How well do we know 𝒇Y

The confidence intervals of our 𝑓,	

• Multi-linear Regression

• Brute Force

• Exact method

• Gradient Descent 

• Polynomial Regression 
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Polynomial Regression

48



CS109A, PROTOPAPAS, RADER, TANNER PAVLOS PROTOPAPAS

Polynomial Regression

The simplest non-linear model we can consider, for a response Y and a 
predictor X, is a polynomial model of degree M,

Just as in the case of linear regression with cross terms, polynomial 
regression is a special case of linear regression - we treat each 𝑥� as a 
separate predictor. Thus, we can write

49

y = �0 + �1x+ �2x
2 + . . .+ �MxM + ✏.

Y =

0

B@
y1
...
yn

1

CA , X =

0

BBB@

1 x1
1 . . . xM

1

1 x1
2 . . . xM

2
...

...
. . .

...
1 xn . . . xM

n

1

CCCA
, ��� =

0

BBB@

�0

�1
...

�M

1

CCCA
.
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Polynomial Regression

Again, minimizing the MSE using vector calculus yields,

50

b��� = argmin
���

MSE(���) =
�
X>X

��1
X>Y.
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Polynomial Regression (cont)

51
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Polynomial Regression (cont)

52
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Polynomial Regression (cont)
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Polynomial Regression (cont)
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Polynomial Regression (cont)

55
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Polynomial Regression (cont)

56
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Overfitting

In statistics, overfitting is "the production of an analysis that 
corresponds too closely or exactly to a particular set of data, and 
may therefore fail to fit additional data or predict future 
observations reliably”

More on this on Wednesday 

57
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Summary

How well do we know 𝑓,

The confidence intervals of our 𝑓,	

• Multi-linear Regression

• Formulate it in Linear Algebra

• Categorical Variables

• Interaction terms 

• Polynomial Regression 

• Linear Algebra Formulation

58
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Afternoon Exercises

Quiz - to be completed in the next 10 min:

Sway: Lecture 6: Multi and poly Regression

Programmatic – to be completed by lab time tomorrow: 

Lessons: Lecture 6:

59


