Lecture 6: Multiple and Poly Linear Regression

CS109A Introduction to Data Science
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ANNOUNCEMENTS

* Office Hours:
More office hours, schedule will be posted soon.
On-line office hours are for everyone, please take advantage of them.
* Projects:
Project guidelines and project descriptions will be posted Thursday 9/25.

Milestone-1: Signup for project is Wed 10/2 .
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Summary from last lecture

>
0
4

We assume a simple form of the statistical model f:
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Summary from last lecture

We fit the model, i.e. estimate, By, £;that minimize the loss
function, which we assume to be the MSE:

1
Lysg(Bo, b1) = EZ[yi — (Bo + B1X)?]
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Summary from last lecture

We acknowledge that because there are errors in measurements

and a limited sample, there is an inherent uncertainty in the
estimation of S, (5.

We used bootstrap to estimate the distributions of £, 5,
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Summary from last lecture
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We calculate the confidence intervals, which are the ranges of values
such that the true value of f;is contained in this interval with n percent

probability.
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Summary from last lecture

We evaluate the importance of predictors using hypothesis testing,
using the t-statistics and p-values.
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Summary from last lecture

How well do we know f

_ . R } This lecture
The confidence intervals of our f
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Summary

How well do we know f

The confidence intervals of our f

* Multi-linear Regression
* Formulate it in Linear Algebra

* Categorical Variables
* Interaction terms

* Polynomial Regression

* Linear Algebra Formulation
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Summary

How well do we know f

The confidence intervals of our f
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How well do we know f?

Our confidence in f is directly connected with the confidence in s. So for
each bootstrap sample, we have one [y, f; which we can use to predict y

for all x’s.
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How well do we know f?

Here we show two difference set of models given the fitted coefficients.
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How well do we know f?

There is one such regression line for every bootstrapped sample.
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How well do we know f?

Below we show all regression lines for a thousand of such bootstrapped
samples.
For a given x, we examine the distribution of f, and determine the mean

and standard deviation. bensity
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How well do we know f?

Below we show all regression lines for a thousand of such sub-samples.
For a given x, we examine the distribution of f, and determineddgymean

o O

and standard deviation. S o

30 =

Sales in $1000
— — n nN
O & o o
[ | ] | 1
i

o1
1

| | | | |
0 50 100 150 200 250 300
TV budget in $1000

% CS109A, PROTOPAPAS, RADER, TANNER PAvVLOS PROTOPAPAS

15



How well do we know f?

Below we show all regression lines for a thousand of such sub-samples.
For a given x, we examine the distribution of f, and determinegdageymean

and standard deviation. $ $
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How well do we know f?

For every x, we calculate the mean of the models, f (shown with dotted
line) and the 95% CI of those models (shaded area).

30 =
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Confidence in predicting y
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Confidence in predicting y

» for a given x, we have a distribution of models f(x)
« for each of these f(x), the prediction for y~N(f, o,)
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Confidence in predicting y

» for a given x, we have a distribution of models f(x)
« for each of these f(x), the prediction for y~N(f, o,)
* The prediction confidence intervals are then
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Lecture Qutline

* Multi-linear Regression
* Brute Force
e Exact method

e Gradient Descent
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Multiple Linear Regression

If you have to guess someone's height, would you rather be told
* Their weight, only
* Their weight and gender
* Their weight, gender, and income
* Their weight, gender, income, and favorite number

Of course, you'd always want as much data about a person as possible.
Even though height and favorite number may not be strongly related, at
worst you could just ignore the information on favorite number. We want
our models to be able to take in lots of data as they make their
predictions.
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Response vs. Predictor Variables
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Multilinear Models

In practice, it is unlikely that any response variable Y depends solely on
one predictor x. Rather, we expect that is a function of multiple
predictors f (X, ...,X;). Using the notation we introduced last lecture,

Y = yl' ___’yn, X — Xl' ,X] and X] — x]_j; )xl,_]l an]

In this case, we can still assume a simple form for f -a multilinear form:

Y =f(X1,...,X5)+e=Bo+ 51Xy + faXo+ ...+ 85X+ e

Hence, f, has the form

A

Y = f(X1,..., X)) +e=Bo+ b1 X1+ BoXa+...+ 81X+
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Multiple Linear Regression

Again, to fit this model means to compute Bo, ...,ﬁ] or to minimize a loss
function; we will again choose the MSE as our loss function.

Given a set of observations,

{(xl,la I 7x1,J7y1)7 R (xn,la I 7:Cn,J7yn)}7

the data and the model can be expressed in vector notation,

n (1 561,1 $1,J \ (50 \

I 201 ... X2y 51

Iy \1 xf,;,l 33,,;,J) \/BJ)
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Multilinear Model, example

For our data
Sales = [y + 1 X TV + f,XRadio + 3 XNewspaper + €

In linear algebra notation

Sales,

&

Sales,

),xz(=

Sales;} = 11 TV; Radio,
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Multiple Linear Regression

The model takes a simple algebraic form:

Y = X0 +e¢

Thus, the MSE can be expressed in vector notation as

MSE(8) = —[[Y — X

Minimizing the MSE using vector calculus yields,

AN

B
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B=(X"X) XY = argmin MSE(B).
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Standard Errors for Multiple Linear Regression

As with the simple linear regression, he standard errors can be
calculated either using statistical modeling

SE(B1) = o?(XX")™!

Or bootstrap

PAvVLOS PROTOPAPAS 28



Collinearity

Collinearity refers to the case in which two or more predictors
are correlated (related).

We will re-visit collinearity in the next lecture when we
address overfitting, but for now we want to examine how does
collinearity affects our confidence on the coefficients and
consequently on the importance of those coefficients.
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Collinearity

Three individual models

One model
Coef. | Std.Err. |t P>|t| [0.025 | 0.975]
B, |2.602 |0.332 |7.820 |3.176e-13 |1.945 |3.258
Bry | 0.046 |0.0015 |29.887 |6.314e-75 | 0.043 |0.049
Brapio | 0.175 | 0.0094 | 18.576 |4.297e-45 | 0.156 |0.194
Byvews | 0.013 | 0.028 |2.338 |0.0203 0.008 | 0.035

TV
Coef. | Std.Err. |t P>|t| [0.025 | 0.975]
6.679 | 0.478 13.957 | 2.804e-31 |5.735 |7.622
0.048 | 0.0027 |17.303 | 1.802e-41 |0.042 |0.053
RADIO
Coef. | Std.Err. |t P>|t]| [0.025 | 0.975]
9.567 | 0.553 17.279 | 2.133e-41 |8.475 | 10.659
0.195 | 0.020 |9.429 |1.134e-17 |0.154 |0.236
NEWS
Coef. | Std.Err. |t P>|t| [0.025 | 0.975]
11.55 [ 0.576 20.036 | 1.628e-49 |10.414 | 12.688
0.074 | 0.014 |5.134 |6.734e-07 | 0.0456 | 0.102
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Finding Significant Predictors: Hypothesis Testing

For checking the significance of linear regression coefficients:

1. we set up our hypotheses Hy:

Hozﬁozﬁlz...:ﬂ]:O (Null)
Hy : B; #0, for at least one j (Alternative)

2. we choose the F-stat to evaluate the null hypothesis,

5 explained variance

unexplained variance

CS109A, PROTOPAPAS, RADER, TANNER PAvVLOS PROTOPAPAS
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Finding Significant Predictors: Hypothesis Testing

3. we can compute the F-stat for linear regression models by

F= Igg/s(; E{?]S)_/ ‘1]), 1SS =" (i — 7/, RSS = 3 (v; — §))

) )

2

4. If F =1 we consider this evidence for Hy; if F > 1, we consider this
evidence against H,,.

CS109A, PROTOPAPAS, RADER, TANNER PAvVLOS PROTOPAPAS
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Qualitative Predictors

So far, we have assumed that all variables are quantitative. But in

practice, often some predictors are qualitative.

Example: The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential

customers.

Income Limit Rating Cards Age Education Gender Student Married Ethnicity @ Balance
14.890 3606 283 2 34 N Male No Yes Caucasian 333

106.02 6645 483 3 82 15 Female Yes Yes Asian 903

104.59 7075 514 4 71 1N Male No No Asian 580

148.92 9504 681 3 36 11 Female No No Asian 964

55882 4897 357 2 68 16 Male No Yes Caucasian 331

%@9@ CS109A, PROTOPAPAS, RADER, TANNER PAvLOS PROTOPAPAS 33




Qualitative Predictors

If the predictor takes only two values, then we create an indicator or
dummy variable that takes on two possible numerical values.

For example for the gender, we create a new variable:

S 1 if ¢ th person is female
*7 1 0 if 4th person is male

We then use this variable as a predictor in the regression equation.

o .| Bo+pBi+e if ith person is female
Yi = Po + Prai + e = { Bo + €; if ith person is male

CS109A, PROTOPAPAS, RADER, TANNER PAvVLOS PROTOPAPAS 34
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Qualitative Predictors

Question: What is interpretation of f, and ;?
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Qualitative Predictors

Question: What is interpretation of f, and ;?

* [, is the average credit card balance among males,

* [o + (1 is the average credit card balance among females,

* and p; the average difference in credit card balance between females
and males.

Example: Calculate 5, and f; for the Credit data.
You should find B,~$509, 8;~$19
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More than two levels: One hot encoding

Often, the qualitative predictor takes more than two values (e.g. ethnicity
in the credit data).

In this situation, a single dummy variable cannot represent all possible
values.

We create additional dummy variable as:

{ 1 if ¢th person is Asian

Vil =N 0 if ith person is not Asian
N 1 if 2th person is Caucasian
»2 71 0 if ith person is not Caucasian

CS109A, PROTOPAPAS, RADER, TANNER PAvVLOS PROTOPAPAS
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More than two levels: One hot encoding

We then use these variables as predictors, the regression

equation becomes:
Bo + B1 + €; if ith person is Asian

Yi = Bo + B1xi1 + Baxio +€ = Po+ B2+ e if ith person is Caucasian
Bo + ¢€; if 1 th person is AfricanAmerican

Question: What is the interpretation of Sy, f1, 27
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Beyond linearity

In the Advertising data, we assumed that the effect on sales of
Increasing one advertising medium is independent of the amount spent
on the other media.

If we assume linear model then the average effect on sales of a one-unit
increase in TV is always [4, regardless of the amount spent on radio.

Synergy effect or interaction effect states that when an increase on the
radio budget affects the effectiveness of the TV spending on sales.

CS109A, PROTOPAPAS, RADER, TANNER PAvVLOS PROTOPAPAS
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Beyond linearity

We change

To

0
0
Lol
8
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Y = 5o+ 51X1 + P2 Xa + ¢

Y =00+ 51 X1 + B2X2 +
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What does it mean?

Regression with no interaction term

2000 = Students

Non-students
1750 =
1500 =

1250 =

1000 =

Balance

750 =

500 =

250 =

O - T AL S ST +H

[] [ ] [ ] [ ] [] [] | ] | ]
0] 25 50 75 100 125 150 175

Income

0 Balance = [, + 1 XIncome,
1 Balance = (¢ + ;) + (1) XIncome.

|0 Balance = By + p; XIncome.
Astudent =11 Balance = (By + B,) + (B; + B3)xIncome

CS109A, PROTOPAPAS, RADER, TANNER PAvVLOS PROTOPAPAS 41

XStudent —




Predictors predictors predictors

We have a lot predictors!

Is it a problem?
Yes: Computational Cost
Yes: Overfitting

Wait there is more ...
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Residuals

We started with

y=f(z)+e
We assumed the exact form of f(x),to be,

f(x) = Bo + B1x,
then estimated the A's.
What if that is not correct? Instead:

f(x) = Bo + p1x + Pp(x),
But we model it as
= f(x) = By + P

Then the residual

r=y-— y)—f(x)—e+<b(x)

CS109A, PROTOPAPAS, RAD
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Residuals

Residual Analysis

When we estimated the variance of €, we assumed that the
residuals ; = y; — y; were uncorrelated and normally
distributed with mean 0 and fixed variance.

These assumptions need to be verified using the data. In

residual analysis, we typically create two types of plots:

1. a plotof r; with respect to x; or ;. This allows us to
compare the distribution of the noise at different values of
Xj.

2. 2.a histogram of 7;. This allows us to explore the
distribution of the noise independent of x; or J;.

e
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Residual Analysis
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Lecture Qutline

* Polynomial Regression

0
0
Lol
]
B

CS109A, PROTOPAPAS, RADER, TANNER

PAvVLOS PROTOPAPAS

47



Polynomial Regression
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Polynomial Regression

The simplest non-linear model we can consider, for a response Y and a
predictor X, is a polynomial model of degree M,

y:50+51$+52$2+...+5MxM—|—e.

Just as in the case of linear regression with cross terms, polynomial

regression is a special case of linear regression - we treat each x™ as a
separate predictor. Thus, we can write

” /1:1’;% x{w\ /50\

1 2 ... ¥ 51
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Polynomial Regression

Again, minimizing the MSE using vector calculus yields,

B = argmin MSE(8) = (X' X)) X'Y.
B

CS109A, PROTOPAPAS, RADER, TANNER

£
[e]
[0)]
€€
=]
7]

PAvVLOS PROTOPAPAS

50



Polynomial Regression (cont)
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Polynomial Regression (cont)

Polynomial Regression degree=1
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Polynomial Regression (cont)
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B
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Polynomial Regression (cont)

Polynomial Regression degree=6
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Polynomial Regression (cont)
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Polynomial Regression degree=9
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Polynomial Regression (cont)
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Overfitting

In statistics, overfitting is "the production of an analysis that
corresponds too closely or exactly to a particular set of data, and
may therefore fail to fit additional data or predict future

observations reliably”

More on this on Wednesday
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Summary

How well do we know f

The confidence intervals of our f

* Multi-linear Regression
 Formulate it in Linear Algebra

* Categorical Variables
* |nteraction terms

* Polynomial Regression

* Linear Algebra Formulation
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Afternoon Exercises

Quiz - to be completed in the next 10 min:
Sway: Lecture 6: Multi and poly Regression

Programmatic - to be completed by lab time tomorrow:
Lessons: Lecture 6:
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