
CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Lecture 5: Linear Regression
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• Advanced	Sections	(A-Sections):

TODAY	@	4:30pm (MD	 G115)

Linear	Algebra	and	Hypothesis	Testing,	Pavlos	+	Kevin

• ED-Exercises	grading:	

• All	exercises	together	are	equivalent	to	one	question	for	that	day’s	quiz.

• We	grade	for	accuracy.	You	will	receive	full	grade	even	if	it	fails	the	finicky	test.

• We	will	grade	these	exercises	very	leniently.

ANNOUNCEMENTS
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Summary from last lecture

2
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Summary from last lecture

Model Fitness 

How does the model perform predicting? 

Comparison of Two Models   

How do we choose from two different models?

Evaluating Significance of Predictors 

Does the outcome depend on the predictors?

How well do we know 𝒇"

The confidence intervals of our 𝑓$	

3

This lecture
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Lecture Outline 

4

• Linear models 

• Estimate of the regression coefficients

• Brute Force

• Exact method

• Gradient Descent 

• Confidence intervals for the predictors estimates

• Bootstrap 

• Evaluating significance of predictors 

• How well we know the model 𝑓$
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Lecture Outline 
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Linear Models

Note that in building our kNN model for prediction, we did not 
compute a closed form for 𝑓$. 

What if we ask the question: 

“how much more sales do we expect if we double the TV advertising budget?”

Alternatively, we can build a model by first assuming a simple form of 𝑓: 

6

Y = f(X) + ✏ = �1X + �0 + ✏.
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Linear Regression

… then it follows that our estimate is:

where 𝛽$' and 𝛽$(	are estimates of 𝛽' and 𝛽( respectively, that 
we compute using observations.

7

bY = bf(X) = c�1X +c�0
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Lecture Outline 
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Estimate of the regression coefficients

9

For a given data set
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Estimate of the regression coefficients (cont)

10

Is this line good?
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Estimate of the regression coefficients (cont) 

11

Maybe this one?
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Estimate of the regression coefficients (cont) 

12

Or this one?
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Estimate of the regression coefficients (cont) 

13

Question: Which line is the best? 
First calculate the residuals 
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Estimate of the regression coefficients (cont) 

Again we use MSE as our loss function, 

We choose 𝛽$'and 𝛽$( in order to minimize the predictive errors made by 
our model, i.e. minimize our loss function.

Then the optimal values for 𝛽$( and	𝛽$' should be:

14

L(�0,�1) =
1

n

nX

i=1

(yi � byi)2 =
1

n

nX

i=1

[yi � (�1X + �0)]
2 .

b�0, b�1 = argmin
�0,�1

L(�0,�1).
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Estimate of the regression coefficients: brute force

A way to estimate argmin/0,/2 𝐿 is to calculate the loss function for every 
possible 𝛽( and 𝛽'. Then select the  𝛽( and 𝛽' where the loss function is 
minimum. 

E.g. the loss function for different 𝛽' when 𝛽(	is fixed to be 6:

15
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Take the partial derivatives of 𝐿 with respect to 𝛽( and 𝛽', set to zero, and 
find the solution to that equation. This procedure will give us explicit 
formulae for 𝛽$( and 𝛽$':

where 𝑦6 and �̅�	are sample means. 

The line: 

is called the regression line.

Estimate of the regression coefficients: exact method 

16

�̂0 = ȳ � �̂1x̄

�̂1 =

P
i(xi � x)(yi � y)P

i(xi � x)2

bY = b�1X + b�0
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Estimate of the regression coefficients:  gradient descent 
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A more flexible method is

• Start from a random point
1. Determine which direction to go to reduce the loss (left or right)

2. Compute the slope of the function at this point and step to the right if slope is 
negative or step to the left if slope is positive

3. Goto to #1 
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Estimate of the regression coefficients:  gradient descent 

Question: What is the mathematical function that describes the slope? 

Derivative

Question:  What do you think it is a good approach for telling the model 
how to change (what is the step size) to become better? 

If the step is proportional to the slope then you avoid 
overshooting the minimum

Question: How do we generalize this to more than one predictor?

Take the derivative with respect to each coefficient and do 
the same sequentially

19
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Estimate of the regression coefficients:  gradient descent 

We know that we want to go in the opposite direction of the derivative and 
we know we want to be making a step proportionally to the derivative. 

Making a step means:

20

𝑤:;< = 𝑤>?@ + 𝑠𝑡𝑒𝑝

Opposite direction of the derivative and proportional to the derivative 
means:   

𝑤:;< = 𝑤>?@ − 𝜆
𝑑ℒ
𝑑𝑤

Change to more conventional notation:

𝑤(KL') = 𝑤(K) − 𝜆
𝑑ℒ
𝑑𝑤

Learning	
Rate

Notation:																																					 𝑤 = 𝛽(, 𝛽'
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Estimate of the regression coefficients:  gradient descent 

Summary of Gradient Descent 
• Algorithm for optimization of first 

order to finding a minimum of a 
function. 

• It is an iterative method.

• L is decreasing in the direction of 
the negative derivative.

• The learning rate is controlled by 
the magnitude of 𝜆.

21

L

w

- +

𝑤(KL') = 𝑤(K) − 𝜆
𝑑ℒ
𝑑𝑤
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Gradient Descent: considerations

Gradient Descent Considerations (more in coming 
lectures)

• We still need to derive or compute the derivatives.

• We need to know what is the learning rate or how 
to set it.

• We need to avoid local minima.

• Finally, the full loss function includes summing up all individual ‘errors’.
This can be hundreds of thousands of examples. 

22
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Lecture Outline 
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• Linear models 

• Estimate of the regression coefficients

• Brute Force

• Exact method

• Gradient Descent 

• Confidence intervals for the predictors estimates

• Bootstrap 

• Evaluating Significance of Predictors 

• How well we know the model 𝑓$
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Interpretation of Predictors

Question: What do you think a predictor coefficient means?

𝑆𝑎𝑙𝑒𝑠 = 7.5 + 0.04	𝑇𝑉
What does 7.5 mean and what does 0.04 mean?

If we increase the TV by $1000, what would you expect the increase in 
sales to be? 

What if?                                    𝑆𝑎𝑙𝑒𝑠 = 7.5 + 1.01	𝑇𝑉

25

The interpretation of the predictors depends on the values but decisions 
depend on how much we trust these values.
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Confidence intervals for the predictors estimates 

We interpret the 𝜀	term in our observation

to be noise introduced by random variations in natural systems or 
imprecisions of our scientific instruments. 

If we knew the exact form of 𝑓 𝑥 ,	for example, 𝑓 𝑥 = 𝛽( + 𝛽'𝑥, and there 
was no 𝜀	, then estimating the 𝛽$Z𝑠 would have been exact (so is 1.01 worth 
it?). 

26

y = f(x) + ✏
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Confidence intervals for the predictors estimates (cont)

However, three things happen, which result in mistrust of the values of 𝛽$Z𝑠	: 

• 𝜺 is always there 

• we do not know the exact form of 𝑓 𝑥

• limited sample size

We will first address 𝛆

We call 𝜀	the measurement error or irreducible error. Since even predictions 
made with the actual function 𝑓 will not match observed values of y.

Because of 𝜀, every time we measure the response 𝑌 for a fix value of 𝑋,	we 
will obtain a different observation, and hence a different estimate of 𝛽$Z𝑠.

27
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Confidence intervals for the predictors estimates (cont)

Start with a model

28
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Confidence intervals for the predictors estimates (cont)

For a some values of 𝑋, 𝑌 = 𝑓(𝑋)

29
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Confidence intervals for the predictors estimates (cont)

But due to error, every time we measure the response Y for a fixed value 
of X we will obtain a different observation. 

30
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Confidence intervals for the predictors estimates (cont)

One set of observations, “one realization” we obtain one set of Ys (red 
crosses).  

31
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Confidence intervals for the predictors estimates (cont)

Another set of observations, “another realization” we obtain another set 
of Ys (green crosses).

32



CS109A, PROTOPAPAS, RADER, TANNER

Confidence intervals for the predictors estimates (cont)

Another set of observations, “another realization” we obtain another set 
of Ys (black crosses).

33
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Confidence intervals for the predictors estimates (cont)

For each one of those “realizations”, we could fit a model and estimate 
𝛽$( and 𝛽$'.

34
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Confidence intervals for the predictors estimates (cont)

For each one of those “realizations”, we could fit a model and estimate, 
𝛽$( and 𝛽$'.

35
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Confidence intervals for the predictors estimates (cont)

For each one of those “realizations”, we could fit a model and estimate, 
𝛽$( and 𝛽$'.

36
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Confidence intervals for the predictors estimates (cont)

So if we just have one set of measurements of {𝑋, 𝑌},	our estimates of 𝛽$(
and 𝛽$' are just for this particular realization.  

37
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Confidence intervals for the predictors estimates (cont)

So if we just have one set of measurements of {𝑋, 𝑌},	our estimates of 𝛽$(
and 𝛽$' are just for this particular realization.  

Question: If this is just one realization of the reality how do we know the 
truth? How do we deal with this conundrum?  

Imagine (magic realism) we have parallel universes and we repeat this 
experiment on each of the other universes. 

38

Universe	A Universe	B Universe	C
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Confidence intervals for the predictors estimates (cont)

39

.In our magical realisms, we can now sample multiple times 



CS109A, PROTOPAPAS, RADER, TANNER

Confidence intervals for the predictors estimates (cont)

40

Another sample 
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Confidence intervals for the predictors estimates (cont)

41

Another sample 
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Confidence intervals for the predictors estimates (cont)
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And another sample 
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Confidence intervals for the predictors estimates (cont)

43

Repeat this for 100 times 
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Confidence intervals for the predictors estimates (cont)

44

We can now estimate the mean and standard deviation of all the estimates 
𝛽$'. 

The variance of 𝛽$( and 𝛽$' are also called their standard errors, 𝑆𝐸 𝛽$( , 𝑆𝐸 𝛽$' .

2
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Confidence intervals for the predictors estimates (cont)

45

68%
95%

Finally we can calculate the confidence intervals, which are the ranges 
of values such that the true value of 𝛽'is contained in this interval with 
n percent probability.
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And also we can answer the question, ’how significant are the predictors?’ 
Here we show the same analysis for all three predictors. 

Question: Which ones are important? 

Before we answer this question, we need to answer another question. 
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Lecture Outline 
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• Linear models 

• Estimate of the regression coefficients

• Brute Force

• Exact method

• Gradient Descent 

• Confidence intervals for the predictors estimates

• Bootstrap

• Evaluating Significance of Predictors 

• How well we know the model 𝑓$
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Bootstrap

In the lack of active imagination, parallel universes and the likes, we need 
an alternative way of producing fake data set that resemble the parallel 
universes. 

.Bootstrapping is the practice of sampling from the observed data (X,Y) in
estimating statistical properties.
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Bootstrap

Imagine we have 5 billiard balls in a bucket.
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Bootstrap

We first pick randomly a ball and replicate it. This is called sampling 
with replacement.  We move the replicated ball to another bucket. 
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Bootstrap
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Bootstrap

We then randomly pick another ball and again we replicate it.
As before, we move the replicated ball to the other bucket. 
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Bootstrap
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Bootstrap

We repeat this process. 
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Bootstrap

Again
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Bootstrap

And again
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Bootstrap

Until the “other” bucket has the same number of balls as the original one.

This new bucket represents a new parallel universe 
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Bootstrap

We repeat the same process and acquire another sample.
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Bootstrap

We repeat the same process and acquire another sample.

These new buckets represents the parallel universes 
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Bootstrapping for Estimating Sampling Error

Bootstrapping is the practice of estimating properties of an
estimator by measuring those properties by, for example,
sampling from the observed data.

For example, we can compute 𝛽$( and 𝛽$'	multiple times by
randomly sampling from our data set. We then use the
variance of our multiple estimates to approximate the true
variance of 𝛽$( and 𝛽$'.

Definition
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Confidence intervals for the predictors estimates: Standard Errors

We can empirically estimate the standard errors, 𝑆𝐸 𝛽$( , 𝑆𝐸 𝛽$' of 
𝛽( and 𝛽'	through bootstrapping.  

If for each bootstrapped sample the estimated betas are: 𝛽$(,K , 𝛽$',K , 
then

𝑆𝐸 𝛽$( = var(𝛽(f)
�

𝑆𝐸 𝛽$' = var(𝛽'f)
�
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Confidence intervals for the predictors estimates: Standard Errors

Alternatively: 

If we know the variance 𝜎ij of the noise 𝜖, we can compute 𝑆𝐸 𝛽$( , 𝑆𝐸 𝛽$'
analytically using the formulae below (no need to bootstrap):
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Standard Errors

In practice, we do not know the theoretical value of 𝜎 since we do not know the 
exact distribution of the noise 𝜖. 

63

SE
⇣
b�0

⌘
= �

s
1

n
+

x2

P
i (xi � x)2

SE
⇣
b�1

⌘
=

�qP
i (xi � x)2

More data:  𝑛 ↑ and ∑ (𝑥K − �̅�)j�
K ↑⟹ 𝑆𝐸 ↓

Larger coverage: 𝑣𝑎𝑟(𝑥) or ∑ (𝑥K − �̅�)j�
K ↑	⟹ 𝑆𝐸 ↓

Better data: 𝜎j ↓	⇒ 𝑆𝐸 ↓
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Standard Errors

However, if we make the following assumptions, 

• the errors 𝜖K = 𝑦K − 𝑦tK	and 𝜖u = 𝑦u − 𝑦tu	 are uncorrelated, for 𝑖 ≠ 𝑗 ,

• each 𝜖K has a mean 0 and variance 𝜎ij,

then, we can empirically estimate 𝜎j, from the data and our regression line: 

Remember:

𝑦K = 𝑓 𝑥K + 𝜖K ⟹ 𝜖K = 𝑦K − 𝑓(𝑥K)
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Standard Errors
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SE
⇣
b�0

⌘
= �

s
1

n
+

x2

P
i (xi � x)2

SE
⇣
b�1

⌘
=

�qP
i (xi � x)2

More data:  𝑛 ↑ and ∑ (𝑥K − �̅�)j�
K ↑⟹ 𝑆𝐸 ↓

Larger coverage: 𝑣𝑎𝑟(𝑥) or ∑ (𝑥K − �̅�)j�
K ↑	⟹ 𝑆𝐸 ↓

Better data: 𝜎j ↓	⇒ 𝑆𝐸 ↓

� ⇡

s
X (f̂(x)� yi)2

n� 2Better model:  (𝑓$ − 𝑦K) 	 ↓ ⟹ 𝜎 ↓	⟹ 𝑆𝐸 ↓

Question: What happens to the 𝛽(f, 𝛽'f under these scenarios?
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Standard Errors

The following results  are for the coefficients for TV advertising:

66

Method 𝑆𝐸 𝛽$𝟏
Analytic	Formula 0.0061

Bootstrap 0.0061

The coefficients for TV advertising but restricting the coverage of x are:

The coefficients for TV advertising but with added extra noise: 

Method 𝑆𝐸 𝛽$𝟏
Analytic	Formula 0.0068

Bootstrap 0.0068

Method 𝑆𝐸 𝛽$𝟏
Analytic	Formula 0.0028

Bootstrap 0.0023

This	makes	no	sense?
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Standard Errors

Exercise: Duplicate the following results for the coefficients for TV 
advertising.

Method 𝑆𝐸 𝛽$( 𝑆𝐸 𝛽$𝟏
Analytic	Formula 0.353 0.0028

Bootstrap 0.328 0.0023
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Lecture Outline 
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• Linear models 

• Estimate of the regression coefficients

• Brute Force

• Exact method

• Gradient Descent 

• Confidence intervals for the predictors estimates

• Bootstrap 

• Evaluating Significance of Predictors

• Hypothesis Testing 

• How well we know the model 𝑓$
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Interpretation of Predictors

Question: What do you think a predictor coefficient means?

𝑆𝑎𝑙𝑒𝑠 = 7.5 + 0.04	𝑇𝑉
What does 7.5 mean and what does 0.04 mean?

If we increase the TV by $1000, what would you expect the increase in 
sales to be? 

What if?                                    𝑆𝑎𝑙𝑒𝑠 = 7.5 + 1.01	𝑇𝑉

69

The interpretation of the predictors depends on the values but decisions 
depend on how much we trust these values.
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And also we can answer the question, ’how significant are the predictors?’ 
Here we show the same analysis for all three predictors. 

Question: Which ones are important? 

Before we answer this question, we need to answer another question. 
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And also we can answer the question, ’how significant are the predictors?’ 
Here we show the same analysis for all three predictors. 

Question: Which ones are important? 

Now we know how to generate these distributions we are ready to 
answer ’how significant are the predictors?’
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Hypothesis Testing

Hypothesis testing is a formal process through which 
we evaluate the validity of a statistical hypothesis by 
considering evidence for or against the hypothesis 
gathered by random sampling of the data.

72
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TV sales

88.3 22.1

102.7 10.4

204.1 9.3

39.5 18.5

68.4 12.9

59.6 7.2

70.6 11.8

265.2 13.2

292.9 4.8

76.4 10.6

80.2 8.6

182.6 17.4

112.9 9.2

199.1 9.7

147.3 19.0

89.7 22.4

225.8 12.5

193.2 24.4

TV sales

215.4 22.1

89.7 10.4

68.4 9.3

75.3 18.5

142.9 12.9

220.3 7.2

255.4 11.8

139.5 13.2

237.4 4.8

16.9 10.6

13.1 8.6

218.5 17.4

147.3 9.2

25.6 9.7

216.4 19.0

238.2 22.4

213.4 12.5

109.8 24.4

TV sales

216.4 22.1

276.7 10.4

23.8 9.3

13.2 18.5

26.8 12.9

170.2 7.2

0.7 11.8

87.2 13.2

120.5 4.8

293.6 10.6

78.2 8.6

43.0 17.4

139.2 9.2

276.9 9.7

239.3 19.0

191.1 22.4

25.1 12.5

25.6 24.4

TV sales

230.1 22.1

44.5 10.4

17.2 9.3

151.5 18.5

180.8 12.9

8.7 7.2

57.5 11.8

120.2 13.2

8.6 4.8

199.8 10.6

66.1 8.6

214.7 17.4

23.8 9.2

97.5 9.7

204.1 19.0

195.4 22.4

67.8 12.5

281.4 24.4

TV sales

68.4 22.1

202.5 10.4

248.8 9.3

191.1 18.5

23.8 12.9

296.4 7.2

26.8 11.8

164.5 13.2

209.6 4.8

147.3 10.6

139.2 8.6

109.8 17.4

43.0 9.2

73.4 9.7

262.7 19.0

28.6 22.4

135.2 12.5

240.1 24.4

TV sales

50.0 22.1

184.9 10.4

11.7 9.3

219.8 18.5

13.1 12.9

248.8 7.2

76.4 11.8

197.6 13.2

195.4 4.8

75.5 10.6

238.2 8.6

222.4 17.4

171.3 9.2

184.9 9.7

193.2 19.0

131.7 22.4

116.0 12.5

166.8 24.4

Random sampling of the data
Shuffle the values of the predictor variable
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𝜇{|?? = 0

𝜇/} = 𝜇~>>�

𝜎{|?? ≈ 𝜎/}

𝜎/} = 𝑆𝐸 𝛽$ = 𝜎~>>�

D =
	��}������

�����
� L��}	

��
=

	��}

�����
� L��}	

��
=	

	��}
j� ��}

Translate this to the significance. Let’s look at the distance of the estimated value of the coefficient 
in units of SE(𝛽$') = 𝜎/}2 .
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Importance of predictors

76

In practice, we do not need the distribution for Null.

Define a test statistic, which we we call t-test statistic

Which measures the distance from zero in units of 
standard deviation.

We evaluate how often a particular value of t can occur by accident. We expect that t will 
have a t-distribution with n-2 degrees of freedom. 

To compute the probability of observing any value equal to  |𝑡| or larger, assuming  𝛽$' = 0
is easy. We call this probability the p-value. 

a small p-value (<0.05) indicates that it is unlikely to observe such a substantial association 
between the predictor and the response due to chance. 

𝑡 =
𝜇/}2
𝜎/}2

𝜎/}2

𝜇/}2 − 0
2
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Hypothesis Testing

Hypothesis testing is a formal process through which we evaluate the
validity of a statistical hypothesis by considering evidence for or against
the hypothesis gathered by random sampling of the data.

1. State the hypotheses, typically a null hypothesis, 𝐻( and an
alternative hypothesis, 𝐻', that is the negation of the former.

2. Choose a type of analysis, i.e. how to use sample data to evaluate the
null hypothesis. Typically this involves choosing a single test statistic.

3. Sample data and compute the test statistic.

4. Use the value of the test statistic to either reject or not reject the null
hypothesis.
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Hypothesis testing

1. State Hypothesis:

Null hypothesis:  

𝐻(: There is no relation between X and Y

The alternative:

𝐻�: There is some relation between X and Y

2:  Choose test statistics

To test the null hypothesis, we need to determine whether, our 
estimate for 𝛽$', is sufficiently far from zero that we can be confident 
that 𝛽$' is non-zero. We use the following test statistic: 

𝑡 =
𝜇/}2
𝜎/}2
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Hypothesis testing

3. Sample: 

Using bootstrap we can estimate 𝛽$'Zs, and therefore 𝜇/}2and 𝜎/}2.

4. Reject or not reject the hypothesis:  

If there is really no relationship between X and Y , then we expect that 
will have a t-distribution with n-2 degrees of freedom. 

To compute the probability of observing any value equal to  |𝑡| or larger, 
assuming  𝛽$' = 0 is easy. We call this probability the p-value. 

a small p-value indicates that it is unlikely to observe such a substantial 
association between the predictor and the response due to chance
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Lecture Outline 

80

• Linear models 

• Estimate of the regression coefficients

• Brute Force

• Exact method

• Gradient Descent 

• Confidence intervals for the predictors estimates

• Bootstrap 

• Evaluating Significance of Predictors

• Hypothesis Testing 

• How well we know the model 𝒇"
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How well do we know 𝑓$? 

81

Our confidence in 𝑓 is directly connected with the confidence in 𝛽s. So for 
each bootstrap sample, we have one 𝛽 which we can use to determine the 
model.
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How well do we know 𝑓$? 

82

Here we show two difference set of models given the fitted coefficients. 
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How well do we know 𝑓$? 
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There is one such regression line for every bootstrapped sample. 
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How well do we know 𝑓$? 
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Below we show all regression lines for a thousand of such bootstrapped 
samples. 
For a given 𝑥, we examine the distribution of 𝑓$, and determine the mean 
and standard deviation.  
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How well do we know 𝑓$? 
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Below we show all regression lines for a thousand of such sub-samples.  
For a given 𝑥, we examine the distribution of 𝑓$, and determine the mean 
and standard deviation.  
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How well do we know 𝑓$? 
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Below we show all regression lines for a thousand of such sub-samples.  
For a given 𝑥, we examine the distribution of 𝑓$, and determine the mean 
and standard deviation.  
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How well do we know 𝑓$? 
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For every 𝑥, we calculate the mean of the models, 𝑓$ (shown with dotted 
line) and the 95% CI of those models (shaded area).

Estimated	𝑓$



CS109A, PROTOPAPAS, RADER, TANNER

Confidence in predicting 𝑦t

88
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Confidence in predicting 𝑦t
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• for a given x, we have a distribution of models 𝑓 𝑥
• for each of these 𝑓 𝑥 ,	the prediction for 𝑦~𝑁(𝑓, 𝜎i)
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Confidence in predicting 𝑦t
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• for a given x, we have a distribution of models 𝑓 𝑥
• for each of these 𝑓 𝑥 ,	the prediction for 𝑦~𝑁 𝑓, 𝜎i
• The prediction confidence intervals are then
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Summary 

91

• Linear models 

• Estimate of the regression coefficients

• Brute Force

• Exact method

• Gradient Descent 

• Confidence intervals for the predictors estimates

• Bootstrap 

• Evaluating Significance of Predictors

• Hypothesis Testing 

• How well we know the model 𝑓$
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Summary so far

Model Fitness 

How does the model perform predicting? 

Comparison of Two Models   

How do we choose from two different models?

Evaluating Significance of Predictors 

Does the outcome depend on the predictors?

How well do we know 𝒇"

The confidence intervals of our 𝑓$	

92
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What’s next?
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Multiple predictors 
Collinearity 

Categorical variables

Polynomial regression 
Interaction terms
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Afternoon Exercises

Quiz - to be completed in the next 10 min:

Sway: Lecture 5: Linear Regression

Programmatic – to be completed by lab time tomorrow: 

Lessons: Lecture 5: Linear Regression – three (3) exercises
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