
CS109A, PROTOPAPAS, RADER, TANNER 1

Credit: Toronto Zoo

CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader, and Chris Tanner

Lecture #3: Getting our hands dirty: pandas and
web scraping

2

CS109A, PROTOPAPAS, RADER, TANNER 3

• Standard Sections:
• Fridays (start 9/13) @ 10:30am (1 Story St Room 306)
• Mondays (start 9/16) @ 4:30pm (Science Center 110)

• Advanced Sections (A-Sections):
• Wednesday (start 9/18) @ 4:30pm (TBD)

• Homework 0 isn’t graded for accuracy; however,
• Homework 1 is, and it’ll be released today @ 3pm.
• Inclusion & Diversity Statements and Academic Honesty

documents are now on syllabus. Read them!

ANNOUNCEMENTS

CS109A, PROTOPAPAS, RADER, TANNER 4

• Ed is where the discussions and quizzes reside
• Quizzes are under the ‘Sway’ tab
• If you can’t connect to Ed, try logging out of Canvas, then

back into Canvas

• We are looking to change our lecture room, due to
current space limitations.

ANNOUNCEMENTS

CS109A, PROTOPAPAS, RADER, TANNER 5

ANNOUNCEMENTS

• Access GitHub for all content (“git clone” and “git pull” are your friends)

CS109A, PROTOPAPAS, RADER, TANNER 6

BACKGROUND

CS109A, PROTOPAPAS, RADER, TANNER

Background

So far, we’ve learned:

7

What is Data Science?

The Data Science Process

Data: types, formats, issues, etc.

Visualization (briefly)

How to quickly prepare data and scrape the web

How to model data

Lecture 1

Lectures 1 & 2

Lecture 2

Lecture 2

This lecture

Future lectures

CS109A, PROTOPAPAS, RADER, TANNER

Background

The Data Science Process:

8

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

CS109A, PROTOPAPAS, RADER, TANNER

Background

The Data Science Process:

9

Ask an interesting question

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

This

lecture

CS109A, PROTOPAPAS, RADER, TANNER

Lecture Outline

• Exploratory Data Analysis (EDA):

• Without Pandas (part 1) – These slides

• With Pandas (part 2) – Mostly Jupyter Notebook

• Data concerns (part 3) – These slides

• Web Scraping with Beautiful Soup (part 4) – Mix

10

CS109A, PROTOPAPAS, RADER, TANNER

Exploratory Data Analysis (EDA)

• EDA encompasses the “explore data” part of the data science

process

• EDA is crucial but often overlooked:

• If your data is bad, your results will be bad

• Conversely, understanding your data well can help you create

smart, appropriate models

11

Why?

CS109A, PROTOPAPAS, RADER, TANNER

Exploratory Data Analysis (EDA)

1. Store data in data structure(s) that will be convenient for

exploring/processing

(Memory is fast. Storage is slow)

2. Clean/format the data so that:

– Each row represents a single object/observation/entry

– Each column represents an attribute/property/feature of that entry

– Values are numeric whenever possible

– Columns contain atomic properties that cannot be further

decomposed*

12

* Unlike food waste, which can be composted.

Please consider composting food scraps.

What?

CS109A, PROTOPAPAS, RADER, TANNER

Exploratory Data Analysis (EDA)

3. Explore global properties: use histograms, scatter plots, and

aggregation functions to summarize the data

4. Explore group properties: group like-items together to compare

subsets of the data (are the comparison results reasonable/expected?)

13

What? (continued)

This process transforms your data into a format which is easier

to work with, gives you a basic overview of the data's properties,

and likely generates several questions for you to follow-up in

subsequent analysis.

CS109A, PROTOPAPAS, RADER, TANNER

EDA: without Pandas

14

Say we have a small dataset of the top 50 most-

streamed Spotify songs, globally, for 2019.

CS109A, PROTOPAPAS, RADER, TANNER

Say we have a small dataset of the top 50 most-
streamed Spotify songs, globally, for 2019.

15

NOTE: The following music data are used purely for illustrative,
educational purposes. The data, including song titles, may include
explicit language. Harvard, including myself and the rest of the
CS109 staff, does not endorse any of the entailed contents or the
songs themselves, and we apologize if it is offensive to anyone in
anyway.

EDA: without Pandas

CS109A, PROTOPAPAS, RADER, TANNER 16

Each row represents a distinct song. The columns are:

• ID: a unique ID (i.e., 1-50)

• TrackName: Name of the Track

• ArtistName: Name of the Artist

• Genre: the genre of the track

• BeatsPerMinute: The tempo of the song.

• Energy: The energy of a song - the higher the value, the more energetic.

• Danceability: The higher the value, the easier it is to dance to this song.

• Loudness: The higher the value, the louder the song.

• Liveness: The higher the value, the more likely the song is a live recording.

• Valence: The higher the value, the more positive mood for the song.

• Length: The duration of the song (in seconds).

• Acousticness: The higher the value, the more acoustic the song is.

• Speechiness: The higher the value, the more spoken words the song contains.

• Popularity: The higher the value, the more popular the song is.

top50.csv

EDA: without Pandas

CS109A, PROTOPAPAS, RADER, TANNER 17

Q1: What are some ways we can store this file into data

structure(s) using regular Python (not the Pandas library).

...

EDA: without Pandas

top50.csv

CS109A, PROTOPAPAS, RADER, TANNER 18

top50.csv

... Possible Solution #1: A 2D array (i.e., matrix)

Weaknesses:
• What are the row and column names? Need separate

lists for them – clumsy.

• Lists are O(N). We’d need 2 dictionaries just for column

names

data = [][]
col_name -> index
index -> col_name

EDA: without Pandas

CS109A, PROTOPAPAS, RADER, TANNER 19

... Possible Solution #2: A list of dictionaries

{“Track.Name”: “Senorita”, “Artist.Name”: “Shawn Mendes”, “Genre”: “Canadian pop”, …}

{“Track.Name”: “China”, “Artist.Name”: “Anuel AA”, “Genre”: “reggaetón flow”, … }

{“Track.Name”: “Ariana Grande”, “Artist.Name”: “boyfriend”, “Genre”: “dance pop”, … }

Item 2

Item 1

Item 3

=

=

=

list

EDA: without Pandas

top50.csv

CS109A, PROTOPAPAS, RADER, TANNER 20

Possible Solution #2: A list of dictionaries

From lecture3.ipynb

EDA: list of dictionaries

CS109A, PROTOPAPAS, RADER, TANNER 21

From lecture3.ipynb

EDA: list of dictionaries

Q2: Write code to print all songs (Artist and Track

name) that are longer than 4 minutes (240 seconds):

Possible Solution #2: A list of dictionaries

CS109A, PROTOPAPAS, RADER, TANNER 22

From lecture3.ipynb

EDA: list of dictionaries

Q3: Write code to print the most popular song (artist and

track) – if ties, show all ties.

Possible Solution #2: A list of dictionaries

CS109A, PROTOPAPAS, RADER, TANNER 23

EDA: list of dictionaries

Q4: Write code to print the songs (and their

attributes), if we sorted by their popularity (highest

scoring ones first).

Possible Solution #2: A list of dictionaries

CS109A, PROTOPAPAS, RADER, TANNER 24

EDA: list of dictionaries

Q4: Write code to print the songs (and their

attributes), if we sorted by their popularity (highest

scoring ones first).

{“Track.Name”: “Senorita”, “Artist.Name”: “Shawn Mendes”, “Genre”: “Canadian pop”, …}

{“Track.Name”: “China”, “Artist.Name”: “Anuel AA”, “Genre”: “reggaetón flow”, … }

{“Track.Name”: “Ariana Grande”, “Artist.Name”: “boyfriend”, “Genre”: “dance pop”, … }

Item 2

Item 1

Item 3

=

=

=

list

Cumbersome to move dictionaries around in a

list. Problematic even if we don’t move the

dictionaries.

Possible Solution #2: A list of dictionaries

CS109A, PROTOPAPAS, RADER, TANNER 25

EDA: list of dictionaries

Q5: How could you check for null/empty entries? This
is only 50 entries. Imagine if we had 500,000.

{“Track.Name”: “Senorita”, “Artist.Name”: “Shawn Mendes”, “Genre”: “Canadian pop”, …}

{“Track.Name”: “China”, “Artist.Name”: “Anuel AA”, “Genre”: “reggaetón flow”, … }

{“Track.Name”: “Ariana Grande”, “Artist.Name”: “boyfriend”, “Genre”: “dance pop”, … }

Item 2

Item 1

Item 3

=

=

=

list

Possible Solution #2: A list of dictionaries

CS109A, PROTOPAPAS, RADER, TANNER 26

EDA: list of dictionaries

Q6: Imagine we had another table* below (i.e., .csv file).
How could we combine its data with our already-
existing dataset?

* 3rd column is made-up by me. Random values. Pretend they’re accurate.

spotify_aux.csv

Possible Solution #2: A list of dictionaries

CS109A, PROTOPAPAS, RADER, TANNER 27

EDA: with Pandas!

Kung Fu Panda is property of DreamWorks and Paramount Pictures

CS109A, PROTOPAPAS, RADER, TANNER

• Exploratory Data Analysis (EDA):

• Without Pandas (part 1) – These slides

• With Pandas (part 2) – Mostly Jupyter Notebook

• Data concerns (part 3) – These slides

• Web Scraping with Beautiful Soup (part 4) – Mix

Lecture Outline

28

CS109A, PROTOPAPAS, RADER, TANNER 29

EDA: with Pandas

• Pandas is an open-source Python library (anyone can

contribute)

• Allows for high-performance, easy-to-use data structures

and data analysis

• Unlike NumPy library which provides multi-dimensional

arrays, Pandas provides 2D table object called DataFrame
(akin to a spreadsheet with column names and row labels).

• Used by a lot of people

What / Why?

CS109A, PROTOPAPAS, RADER, TANNER 30

EDA: with Pandas

• import pandas library (convenient to rename it)

• Use read_csv() function

How

CS109A, PROTOPAPAS, RADER, TANNER 31

EDA: with Pandas

High-level viewing:

• head() – first N observations

• tail() – last N observations

• columns() – names of the columns

• describe() – statistics of the quantitative data

• dtypes() – the data types of the columns

Common Panda functions

CS109A, PROTOPAPAS, RADER, TANNER 32

EDA: with Pandas

Accessing/processing:
• df[“column_name”]

• Df.column_name

• .max(), .min(), .idxmax(), .idxmin()

• <dataframe> <conditional statement>

• .loc[] – label-based accessing

• .iloc[] – index-based accessing

• .sort_values()

• .isnull(), .notnull()

Common Panda functions

CS109A, PROTOPAPAS, RADER, TANNER 33

EDA: with Pandas

Grouping/Splitting/Aggregating:
• groupby(), .get_groups()

• .merge()

• .concat()

• .aggegate()

• .append()

Common Panda functions

CS109A, PROTOPAPAS, RADER, TANNER 34

EDA: with Pandas

Now, let’s open the

lecture3.ipynb notebook for

some real-time practice.

CS109A, PROTOPAPAS, RADER, TANNER

Lecture Outline

• Exploratory Data Analysis (EDA):

• Without Pandas (part 1) – These slides

• With Pandas (part 2) – Mostly Jupyter Notebook

• Data concerns (part 3) – These slides

• Web Scraping with Beautiful Soup (part 4) – Mix

35

CS109A, PROTOPAPAS, RADER, TANNER

Data Concerns

When determining if a dataset is sound to use, it can be

useful to think about these four questions:

• Did it come from a trustworthy, authoritative source?

• Is the data a complete sample?

• Does the data seem correct?

• (optional) Is the data stored efficiently or does it have

redundancies?

36

CS109A, PROTOPAPAS, RADER, TANNER

Data Concerns: the format

• Often times, there may not exist a single dataset that

contains all of the information we are interested in.

• May need to merge existing datasets

• Important to do so in a sound and efficient format

37

CS109A, PROTOPAPAS, RADER, TANNER

Data Concerns: the format

For example, say we have two datasets:

38

Dataset 1
Dataset 2

SpotifySongID, # of Streams, Date

2789179, 42003, 06-01

3819390, 89103, 06-01

Top 200 most-frequent streams per day (for June 2019)

200
..

4492014, 52923, 06-02

8593013, 189145, 06-02

200
..

SpotifySongID, Artist, Track, [10 acoustic features]

2789179, Billie Eilish, bad guy, 3.2, 5.9, …

3901829, Outkast, Elevators, 9.3, 5,1, …

Top 50 most streamed in 2019, so far

..50

6,000 x 3

50 x 13

CS109A, PROTOPAPAS, RADER, TANNER

Data Concerns: the format

For example, say we have two datasets:

39

Dataset 1
Dataset 2

SpotifySongID, # of Streams, Date

2789179, 42003, 06-01

3819390, 89103, 06-01

Top 200 most-frequent streams per day (for June 2019)

200
..

4492014, 52923, 06-02

8593013, 189145, 06-02

200
..

SpotifySongID, Artist, Track, [10 acoustic features]

2789179, Billie Eilish, bad guy, 3.2, 5.9, …

3901829, Outkast, Elevators, 9.3, 5,1, …

Top 50 most streamed in 2019, so far

..50

6,000 x 3

50 x 13

We are interested in determining if songs with high
danceability are more popular during the weekends of
June than weekdays in June. What should our merged
table look like? Concerns?

CS109A, PROTOPAPAS, RADER, TANNER

Data Concerns: the format

This is wasteful, as it has 10 acoustic features, artist, and

track repeated many times for each unique song.

40

Datasets Merged (poorly)

SpotifySongID, # of Streams, Date,

2789179, 42003, 06-01

3819390, 89103, 06-01

200
..

4492014, 52923, 06-02

8593013, 189145, 06-02

200
..

Artist, Track, [10 acoustic features]

Billie Eilish, bad guy, 3.2, 5.9, …

Outkast, Elevators, 9.3, 5,1, …

6,000 x 15 è 90,000 cells

CS109A, PROTOPAPAS, RADER, TANNER

Data Concerns: the format

Some rows may have null values for # of Streams (if the song wasn’t popular in June)

41

Datasets Merged (better)

SpotifySongID, Artist, Track, [10 acoustic features], 06-01 Streams, 06-02 Streams

2789179, Billie Eilish, bad guy, 3.2, 5.9, …, 42003, 42831, 43919

3901829, Outkast, Elevators, 9.3, 5,1, … 29109, 27193, 25982

..50

50 x 70 è 3,500 cells

CS109A, PROTOPAPAS, RADER, TANNER

Data Concerns: the format

• Is the data correctly constructed (or are values wrong)?

• Is there redundant data in our merged table?

• Missing values?

42

CS109A, PROTOPAPAS, RADER, TANNER

Lecture Outline

• Exploratory Data Analysis (EDA):

• Without Pandas (part 1) – These slides

• With Pandas (part 2) – Mostly Jupyter Notebook

• Data concerns (part 3) – These slides

• Web Scraping with Beautiful Soup (part 4) – Mix

43

CS109A, PROTOPAPAS, RADER, TANNER

Sources of data

• Data can come from:

• You curate it

• Someone else provides it, all pre-packaged for you

• Someone else provides an API

• Someone else has available content, and you try to take it (web

scraping)

44

CS109A, PROTOPAPAS, RADER, TANNER

Web scraping

• Web servers

• A server is a long-running process (also called a daemon) which
listens on a pre-specified port(s)

• It responds to requests, which is sent using a protocol called
HTTP (HTTPS is secure)

• Our browser sends these requests and downloads the content,
then displays it

• 2– request was successful, 4– client error, often `page not
found`; 5– server error (often that your request was incorrectly
formed)

45

CS109A, PROTOPAPAS, RADER, TANNER

Web scraping

• Using programs to download or otherwise get data from

online

• Often much faster than manually copying data!

• Transfer the data into a form that is compatible with your

code

• Legal and moral issues (per Lecture 2)

46

CS109A, PROTOPAPAS, RADER, TANNER

Web scraping

• Requests (Python library): gets a webpage for you

• Requests.get(url)

• BeautifulSoup library parses webpages (.html content) for

you!

• Use BeautifulSoup to find all the text or all the links on a

page

• Documentation:

http://crummy.com/software/BeautifulSoup

47

http://crummy.com/software/BeautifulSoup

CS109A, PROTOPAPAS, RADER, TANNER

Web scraping

48

CS109A, PROTOPAPAS, RADER, TANNER

Web scraping

49

CS109A, PROTOPAPAS, RADER, TANNER

Web scraping

50

CS109A, PROTOPAPAS, RADER, TANNER

Web scraping

51

CS109A, PROTOPAPAS, RADER, TANNER

Web scraping

52

CS109A, PROTOPAPAS, RADER, TANNER

Web scraping

53

CS109A, PROTOPAPAS, RADER, TANNER

Web scraping

• Question: how can we get a list of all image URLs?

• Question: how can we navigate through subsequent pages

(i.e., crawler) recursively.

• Question: could we crawl the entire web?

54

