
CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Lecture 20: Back Propagation

1

CS109A, PROTOPAPAS, RADER, TANNER

Outline

1. Back Propagation

2. Optimizers

2

CS109A, PROTOPAPAS, RADER, TANNER

Outline

1. Back Propagation

2. Optimizers

3

CS109A, PROTOPAPAS, RADER, TANNER

Learning the coefficients

4

Start with Regression or Logistic Regression

𝑌 = 𝑓(𝛽& + 𝛽(𝑥(+ 𝛽*𝑥* + 𝛽+𝑥+ + 𝛽,𝑥,)

𝑥(

𝑥*

𝑥+

𝑥,

Coefficients or WeightsIntercept or Bias

f(X)= (
(./0123

Classification

f 𝑋 = 𝑊6𝑋

Regression

𝑊6 = 𝑊&,𝑊(, … ,𝑊,
= 	 [𝛽&, 𝛽(, … , 𝛽,]

CS109A, PROTOPAPAS, RADER, TANNER

But what is the idea?

5

Start with all randomly selected weights. Most likely it will perform horribly.
For example, in our heart data, the model will be giving us the wrong answer.

�̂� = 0.9 → 𝑌𝑒𝑠

𝑀𝑎𝑥𝐻𝑅 = 197

𝐴𝑔𝑒 = 53

𝑆𝑒𝑥 = 𝑀𝑎𝑙𝑒

𝐶ℎ𝑜𝑙 = 152
Bad	Computer

y=No

Correct

CS109A, PROTOPAPAS, RADER, TANNER

But what is the idea?

6

Start with all randomly selected weights. Most likely it will perform horribly.
For example, in our heart data, the model will be giving us the wrong answer.

�̂� = 0.4 → 𝑁𝑜

𝑀𝑎𝑥𝐻𝑅 = 170

𝐴𝑔𝑒 = 42

𝑆𝑒𝑥 = 𝑀𝑎𝑙𝑒

𝐶ℎ𝑜𝑙 = 342

y=Yes

Bad	Computer

Correct

CS109A, PROTOPAPAS, RADER, TANNER

But what is the idea?

7

• Loss	Function:	Takes	all	of	these	results	and	averages	them	and	tells	us	how	bad	or	
good	the	computer	or	those	weights		are.	

• Telling the computer how bad or good is, does not help.

• You want to tell it how to change those weights so it gets better.

Loss function: ℒ 𝑤&,𝑤(, 𝑤*, 𝑤+, 𝑤,

For now let’s only consider one weight, ℒ 𝑤(

CS109A, PROTOPAPAS, RADER, TANNER

Minimizing the Loss function

8

To find the optimal point of a function ℒ 𝑊

And find the 𝑊 that satisfies that equation. Sometimes there is no explicit
solution for that.

Ideally we want to know the value of 𝑤(that gives the minimul ℒ 𝑊

𝑑ℒ(𝑊)
𝑑𝑊

= 0

CS109A, PROTOPAPAS, RADER, TANNER

Estimate of the regression coefficients: gradient descent

9

A more flexible method is

• Start from a random point
1. Determine which direction to go to reduce the loss (left or right)

2. Compute the slope of the function at this point and step to the right if slope is
negative or step to the left if slope is positive

3. Goto to #1

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Descent (cont.)

If the step is proportional to the slope then you avoid overshooting the
minimum. How?

10

CS109A, PROTOPAPAS, RADER, TANNER

Minimization of the Loss Function

Question: What is the mathematical function that describes the slope?

Derivative

Question: How do we generalize this to more than one predictor?

Take the derivative with respect to each coefficient and do the same
sequentially

Question: What do you think it is a good approach for telling the model how to
change (what is the step size) to become better?

11

CS109A, PROTOPAPAS, RADER, TANNER

Let’s play the Pavlos game

We know that we want to go in the opposite direction of the derivative and
we know we want to be making a step proportionally to the derivative.

Making a step means:

12

𝑤Y/Z = 𝑤[\] + 𝑠𝑡𝑒𝑝

Opposite direction of the derivative means:

𝑤Y/Z = 𝑤[\] − 𝜆
𝑑ℒ
𝑑𝑤

Change to more conventional notation:

𝑤(a.() = 𝑤(a) − 𝜆
𝑑ℒ
𝑑𝑤

Learning	
Rate

Step	size	is	
proportion

al	to	
derivative

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Descent

• Algorithm for optimization of first
order to finding a minimum of a
function.

• It is an iterative method.

• L is decreasing much faster in the
direction of the negative derivative.

• The learning rate is controlled by
the magnitude of 𝜆.

13

L

w

- +

𝑤(a.() = 𝑤(a) − 𝜆
𝑑ℒ
𝑑𝑤

CS109A, PROTOPAPAS, RADER, TANNER

Considerations

• We still need to calculate the derivatives.

• We need to know what is the learning rate or how to set it.

• Local vs global minima.

• The full likelihood function includes summing up all
individual ‘errors’. Unless you are a statistician, sometimes
this includes hundreds of thousands of examples.

14

CS109A, PROTOPAPAS, RADER, TANNER

Considerations

• We still need to calculate the derivatives.

• We need to know what is the learning rate or how to set it.

• Local vs global minima.

• The full likelihood function includes summing up all
individual ‘errors’. Unless you are a statistician, sometimes
this includes hundreds of thousands of examples.

15

CS109A, PROTOPAPAS, RADER, TANNER

Calculate the Derivatives

16

Example: Logistic Regression Derivatives

Can we do it?

Wolfram Alpha can do it for us!

We need a formalism to deal with these derivatives.

CS109A, PROTOPAPAS, RADER, TANNER

Chain Rule

Chain rule for computing gradients:

• 𝑦 = 𝑔 𝑥 							𝑧 = 𝑓 𝑦 = 𝑓 𝑔 𝑥

• For longer chains

17

𝜕𝑧
𝜕𝑥

=
𝜕𝑧
𝜕𝑦
𝜕𝑦
𝜕𝑥

𝒚 = 𝑔 𝒙	 							𝑧 = 𝑓 𝒚 = 𝑓 𝑔 𝒙	

𝜕𝑧
𝜕𝑥a

=g
𝜕𝑧
𝜕𝑦h

𝜕𝑦h
𝜕𝑥a

�

h

∂z
∂xi

= … ∂z
∂yj1jm

∑
j1

∑ …
∂yjm
∂xi

CS109A, PROTOPAPAS, RADER, TANNER

Logistic Regression derivatives

18

ℒ =gℒa

�

a

= −glog 𝐿a

�

a

	 = −g[𝑦a log 𝑝a + 1 − 𝑦a log(1 − 𝑝a)]
�

a

nℒ
no

= ∑ nℒq
no
�
a = ∑ (�a

nℒq
r

no
+ nℒq

s

no
)

ℒa = −𝑦a log
1

1 + 𝑒to2u
− 1 − 𝑦a log(1 −

1
1 + 𝑒to2u

)

For logistic regression, the –ve log of the likelihood is:

ℒa = ℒav + ℒaw

To simplify the analysis let us split it into two parts,

So the derivative with respect to W is:

CS109A, PROTOPAPAS, RADER, TANNER 19

Variables Partial	derivatives Partial	derivatives

𝜉(= −𝑊6𝑋
𝜕𝜉(
𝜕𝑊

= −𝑋
𝜕𝜉(
𝜕𝑊

= −𝑋

𝜉* = 𝑒yz = 𝑒to2u
𝜕𝜉*
𝜕𝜉(

= 𝑒yz
𝜕𝜉*
𝜕𝜉(

= 𝑒to2u

𝜉+ = 1 + 𝜉* = 1 + 𝑒to2u
𝜕𝜉+
𝜕𝜉*

= 1 ny{
ny|

=1

𝜉, =
1
𝜉+
=

1
1 + 𝑒to2u

= 𝑝
𝜕𝜉,
𝜕𝜉+

= −
1
𝜉+*

𝜕𝜉,
𝜕𝜉+

= −
1

1 + 𝑒to2u *

𝜉} = log 𝜉, = log 𝑝	 = log
1

1 + 𝑒to2u

𝜕𝜉}
𝜕𝜉,

=
1
𝜉,

𝜕𝜉}
𝜕𝜉,

= 1 + 𝑒to2u

ℒav = −𝑦𝜉}
𝜕ℒ
𝜕𝜉}

= −𝑦
𝜕ℒ
𝜕𝜉}

= −𝑦

𝜕ℒav

𝜕𝑊
=
𝜕ℒa
𝜕𝜉}

𝜕𝜉}
𝜕𝜉,

𝜕𝜉,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝑊

𝜕ℒav

𝜕𝑊
= −𝑦𝑋𝑒to2u 1

1 + 𝑒to2u

ℒav = −𝑦a log
1

1 + 𝑒to2u

CS109A, PROTOPAPAS, RADER, TANNER 20

Variables derivatives Partial	derivatives	wrt to	X,W

𝜉(= −𝑊6𝑋 𝜕𝜉(
𝜕𝑊

= −𝑋
𝜕𝜉(
𝜕𝑊

= −𝑋

𝜉* = 𝑒yz = 𝑒to2u 𝜕𝜉*
𝜕𝜉(

= 𝑒yz
𝜕𝜉*
𝜕𝜉(

= 𝑒to2u

𝜉+ = 1 + 𝜉* = 1 + 𝑒to2u 𝜕𝜉+
𝜕𝜉*

= 1 ny{
n*

=1

𝜉, =
1
𝜉+
=

1
1 + 𝑒to2u

= 𝑝
𝜕𝜉,
𝜕𝜉+

= −
1
𝜉+*

𝜕𝜉,
𝜕𝜉+

= −
1

1 + 𝑒to2u *

𝜉} = 1 − 𝜉, = 1 −
1

1 + 𝑒to2u
𝜕𝜉}
𝜕𝜉,

= −1 ny~
ny�

=-1

𝜉� = log 𝜉} = log(1 − 𝑝) 	= log
1

1 + 𝑒to2u
𝜕𝜉�
𝜕𝜉}

=
1
𝜉}

𝜕𝜉�
𝜕𝜉}

=
1 + 𝑒to2u	
𝑒to2u

ℒaw = (1 − 𝑦)𝜉� 𝜕ℒ
𝜕𝜉�

= 1 − 𝑦
𝜕ℒ
𝜕𝜉�

= 1 − 𝑦

𝜕ℒaw

𝜕𝑊
=
𝜕ℒaw

𝜕𝜉�
𝜕𝜉�
𝜕𝜉}

𝜕𝜉}
𝜕𝜉,

𝜕𝜉,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝑊

𝜕ℒaw

𝜕𝑊
= (1 − 𝑦)𝑋

1

1 + 𝑒to2u

ℒaw = −(1 − 𝑦a) log[1 −
1

1 + 𝑒to2u
]

CS109A, PROTOPAPAS, RADER, TANNER

Considerations

• We still need to calculate the derivatives.

• We need to know what is the learning rate or how to set it.

• Local vs global minima.

• The full likelihood function includes summing up all
individual ‘errors’. Unless you are a statistician, sometimes
this includes hundreds of thousands of examples.

21

CS109A, PROTOPAPAS, RADER, TANNER

Learning Rate

Trial and Error.

There are many alternative methods which address how to set
or adjust the learning rate, using the derivative or second
derivatives and or the momentum. To be discussed in the next
lectures on NN.

22

∗ J. Nocedal y S. Wright, “Numerical optimization”, Springer, 1999 🔗
∗ TLDR: J. Bullinaria, “Learning with Momentum, Conjugate Gradient

Learning”, 2015 🔗

CS109A, PROTOPAPAS, RADER, TANNER

Considerations

• We still need to calculate the derivatives.

• We need to know what is the learning rate or how to set it.

• Local vs global minima.

• The full likelihood function includes summing up all
individual ‘errors’. Unless you are a statistician, sometimes
this includes hundreds of thousands of examples.

23

CS109A, PROTOPAPAS, RADER, TANNER

Local vs Global Minima

24

L

𝛉

CS109A, PROTOPAPAS, RADER, TANNER

Local vs Global Minima

25

L

𝛉

CS109A, PROTOPAPAS, RADER, TANNER

Local vs Global Minima

No guarantee that we get the global minimum.

Question: What would be a good strategy?

26

CS109A, PROTOPAPAS, RADER, TANNER

Considerations

• We still need to calculate the derivatives.

• We need to know what is the learning rate or how to set it.

• Local vs global minima.

• The full likelihood function includes summing up all
individual ‘errors’. Unless you are a statistician,
sometimes this includes hundreds of thousands of
examples.

27

CS109A, PROTOPAPAS, RADER, TANNER

Batch and Stochastic Gradient Descent

Instead of using all the examples for every step, use a subset
of them (batch).

For each iteration k, use the following loss function to derive
the derivatives:

which is an approximation to the full loss function.

28

ℒ = −g[𝑦a log 𝑝a + 1 − 𝑦a log(1 − 𝑝a)]
�

a

ℒ� = − g[𝑦a log 𝑝a + 1 − 𝑦a log(1 − 𝑝a)]
�

a∈��

CS109A, PROTOPAPAS, RADER, TANNER

Batch and Stochastic Gradient Descent

29

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER, TANNER

Batch and Stochastic Gradient Descent

30

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER, TANNER

Batch and Stochastic Gradient Descent

31

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER, TANNER

Batch and Stochastic Gradient Descent

32

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER, TANNER

Batch and Stochastic Gradient Descent

33

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER, TANNER

Batch and Stochastic Gradient Descent

34

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER, TANNER

Batch and Stochastic Gradient Descent

35

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER, TANNER

Batch and Stochastic Gradient Descent

36

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER, TANNER

Batch and Stochastic Gradient Descent

37

L

𝛉

Full Likelihood:

Batch Likelihood:

CS109A, PROTOPAPAS, RADER, TANNER

Backpropagation

38

CS109A, PROTOPAPAS, RADER, TANNER

Backpropagation: Logistic Regression Revisited

39

ℒ(𝛽) =gℒa 𝛽
Y

a
Affine𝑋 ℎ = 𝛽& + 𝛽(𝑋 Activation 𝑝 =

1
1 + 𝑒t� Loss	Fun

𝜕ℒ
𝜕𝑝

nℒ
n�
	n�
n�

nℒ
n�
	n�
n�
	n�
n�

𝜕𝑝
𝜕ℎ

= 𝜎(ℎ)(1 − 𝜎 ℎ)
𝜕ℒ
𝜕𝑝

= −𝑦
1
𝑝
− 1 − 𝑦

1
1 − 𝑝

𝜕ℎ
𝜕𝛽(

= 𝑋,
𝑑ℒ
𝑑𝛽&

= 1

𝜕ℒ
𝜕𝛽(

= −𝑋𝜎 ℎ 1 − 𝜎 ℎ [𝑦
1
𝑝
+ 1 − 𝑦

1
1 − 𝑝

]

𝜕ℒ
𝜕𝛽&	

= −𝜎 ℎ 1 − 𝜎 ℎ [𝑦
1
𝑝
+ 1 − 𝑦

1
1 − 𝑝

]

CS109A, PROTOPAPAS, RADER, TANNER

Backpropagation

40

1. Derivatives need to be evaluated at some values of X,y and W.
2. But since we have an expression, we can build a function that takes as

input X,y,W and returns the derivatives and then we can use gradient
descent to update.

3. This approach works well but it does not generalize. For example if the
network is changed, we need to write a new function to evaluate the
derivatives.

For example this network will need a different function for the derivatives

𝑋

W1

𝑊+

W2

𝑌

CS109A, PROTOPAPAS, RADER, TANNER

Backpropagation

41

1. Derivatives need to be evaluated at some values of X,y and W.
2. But since we have an expression, we can build a function that takes as

input X,y,W and returns the derivatives and then we can use gradient
descent to update.

3. This approach works well but it does not generalize. For example if the
network is changed, we need to write a new function to evaluate the
derivatives.

For example this network will need a different function for the derivatives

𝑋

W1 𝑊+

W2

𝑌

𝑊,

𝑊}

CS109A, PROTOPAPAS, RADER, TANNER

Backpropagation. Pavlos game #456

42

Need to find a formalism to calculate the derivatives of the loss wrt to
weights that is:

1. Flexible enough that adding a node or a layer or changing something
in the network won’t require to re-derive the functional form from
scratch.

2. It is exact.

3. It is computationally efficient.

Hints:

1. Remember we only need to evaluate the derivatives at 𝑋a, 𝑦a and 𝑊(�).

2. We should take advantage of the chain rule we learned before

CS109A, PROTOPAPAS, RADER, TANNER

Idea 1: Evaluate the derivative at: X={3},	y=1,	W=3		

43

Variables derivatives Value of the
variable

Value of the partial
derivative

𝑑𝝃𝒏
𝑑𝑾

𝜉(= −𝑊6𝑋
𝜕𝜉(
𝜕𝑊

= −𝑋 −9 -3 -3

𝜉* = 𝑒yz = 𝑒to2u
𝜕𝜉*
𝜕𝜉(

= 𝑒yz 𝑒t� 𝑒t� -3𝑒t�

𝜉+ = 1 + 𝜉* = 1 + 𝑒to2u
𝜕𝜉+
𝜕𝜉*

= 1 1+𝑒t� 1 -3𝑒t�

𝜉, =
1
𝜉+
=

1
1 + 𝑒to2u

= 𝑝
𝜕𝜉,
𝜕𝜉+

= −
1
𝜉+*

1
1 + 𝑒t�

1
1 + 𝑒t�

*
-3𝑒t� (

(./0�
*

𝜉}
= log 𝜉, = log 𝑝	 = log

1
1 + 𝑒to2u

𝜕𝜉}
𝜕𝜉,

=
1
𝜉, log

1
1 + 𝑒t�

1 + 𝑒t� -3𝑒t� (
(./0�

ℒav = −𝑦𝜉}
𝜕ℒ
𝜕𝜉}

= −𝑦 − log
1

1 + 𝑒t�
−1 3𝑒t� (

(./0�

𝜕ℒav

𝜕𝑊
=
𝜕ℒa
𝜕𝜉}

𝜕𝜉}
𝜕𝜉,

𝜕𝜉,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝑊 −3 0.00037018372

CS109A, PROTOPAPAS, RADER, TANNER

Basic functions

44

We still need to derive derivatives	L

Variables derivatives Value of the
variable

Value of the partial
derivative

𝑑𝝃𝒏
𝑑𝑾

𝜉(= −𝑊6𝑋
𝜕𝜉(
𝜕𝑊

= −𝑋 −9 -3 -3

𝜉* = 𝑒yz = 𝑒to2u
𝜕𝜉*
𝑑𝜕𝜉(

= 𝑒yz 𝑒t� 𝑒t� -3𝑒t�

𝜉+ = 1 + 𝜉* = 1 + 𝑒to2u
𝜕𝜉+
𝜕𝜉*

= 1 1+𝑒t� 1 -3𝑒t�

𝜉, =
1
𝜉+
=

1
1 + 𝑒to2u

= 𝑝
𝜕𝜉,
𝜕𝜉+

= −
1
𝜉+*

1
1 + 𝑒t�

1
1 + 𝑒t�

*
-3𝑒t� (

(./0�
*

𝜉} = log 𝜉, = log 𝑝	 = log
1

1 + 𝑒to2u

𝜕𝜉}
𝜕𝜉,

=
1
𝜉, log

1
1 + 𝑒t�

1 + 𝑒t� -3𝑒t� (
(./0�

ℒav = −𝑦𝜉}
𝜕ℒ
𝜕𝜉}

= −𝑦 − log
1

1 + 𝑒t�
−1 3𝑒t� (

(./0�

𝜕ℒav

𝜕𝑊
=
𝜕ℒa
𝜕𝜉}

𝜕𝜉}
𝜕𝜉,

𝜕𝜉,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝑊 −3 0.00037018372

CS109A, PROTOPAPAS, RADER, TANNER

Basic functions

45

Notice though those are basic functions that my grandparent can do

𝜉& = 𝑋
𝜕𝜉&
𝜕𝑋

= 1 def x0(x):
return X

def derx0():
return 1

𝜉(= −𝑊6𝜉&
𝜕𝜉(
𝜕𝑊

= −𝑋 def x1(a,x):
return –a*X

def derx1(a,x):
return -a

𝜉* = eyz
𝜕𝜉*
𝜕𝜉(

= 𝑒yz def x2(x):
return np.exp(x)

def derx2(x):
return np.exp(x)

𝜉+ = 1 + 𝜉*
𝜕𝜉+
𝜕𝜉*

= 1 def x3(x):
return 1+x

def derx3(x):
return 1

𝜉, =
1
𝜉+

𝜕𝜉,
𝜕𝜉+

= −
1
𝜉+*

def der1(x):
return 1/(x)

def derx4(x):
return -(1/x)**(2)

𝜉} = log 𝜉,
𝜕𝜉}
𝜕𝜉,

=
1
𝜉,

def der1(x):
return np.log(x)

def derx5(x)
return 1/x

ℒav = −𝑦𝜉}
𝜕ℒ
𝜕𝜉}

= −𝑦 def der1(y,x):
return –y*x

def derL(y):
return -y

CS109A, PROTOPAPAS, RADER, TANNER

Putting it altogether

1. We specify the network structure

46

𝑋

W1 𝑊+

W2

𝑌
𝑊,

𝑊}

2. We create the computational graph …

What is computational graph?

CS109A, PROTOPAPAS, RADER, TANNER 47

XW𝜉& = 𝑊

×
𝜉(= 𝑊6𝑋
𝜉(�=X

𝑒𝑥𝑝𝜉* = 𝑒tyz
𝜉*� = −𝑒tyz

+𝜉+ = 1 + 𝑒to2u

÷
𝜉, =

1
1 + 𝑒to2u Log

𝜉} = log
1

1 + 𝑒to2u

1

-

𝜉� = 1 −
1

1 + 𝑒to2u

log

𝜉� = log(1 −
1

1 + 𝑒to2u
)

1-y

×

𝜉� = 1 − y log(1 −
1

1 + 𝑒to2u
)

y ×

𝜉� = ylog(
1

1 + 𝑒to2u
)

+

−ℒ = 𝜉� = ylog(
1

1 + 𝑒to2u
) +	 1 − y log(1 −

1
1 + 𝑒to2u

)

−

Computational Graph

CS109A, PROTOPAPAS, RADER, TANNER

Putting it altogether

1. We specify the network structure

48

𝑋

W1 𝑊+

W2

𝑌
𝑊,

𝑊}

• We create the computational graph.

• At each node of the graph we build two functions: the evaluation of
the variable and its partial derivative with respect to the previous
variable (as shown in the table 3 slides back)

• Now we can either go forward or backward depending on the situation.
In general, forward is easier to implement and to understand. The
difference is clearer when there are multiple nodes per layer.

CS109A, PROTOPAPAS, RADER, TANNER

Forward mode: Evaluate the derivative at: X={3},	y=1,	W=3		

49

Variables derivatives Value of the
variable

Value of the partial
derivative

𝑑ℒ
𝑑𝝃𝒏

𝜉(= −𝑊6𝑋
𝜕𝜉(
𝜕𝑊

= −𝑋 −9 -3 -3

𝜉* = 𝑒yz = 𝑒to2u
𝜕𝜉*
𝜕𝜉(

= 𝑒yz 𝑒t� 𝑒t� -3𝑒t�

𝜉+ = 1 + 𝜉* = 1 + 𝑒to2u
𝜕𝜉+
𝜕𝜉*

= 1 1+𝑒t� 1 -3𝑒t�

𝜉, =
1
𝜉+
=

1
1 + 𝑒to2u

= 𝑝
𝜕𝜉,
𝜕𝜉+

= −
1
𝜉+*

1
1 + 𝑒t�

1
1 + 𝑒t�

*
-3𝑒t� (

(./0�
*

𝜉}
= log 𝜉, = log 𝑝	 = log

1
1 + 𝑒to2u

𝜕𝜉}
𝜕𝜉,

=
1
𝜉, log

1
1 + 𝑒t�

1 + 𝑒t� -3𝑒t� (
(./0�

ℒav = −𝑦𝜉}
𝜕ℒ
𝜕𝜉}

= −𝑦 − log
1

1 + 𝑒t�
−1 3𝑒t� (

(./0�

𝜕ℒav

𝜕𝑊
=
𝜕ℒa
𝜕𝜉}

𝜕𝜉}
𝜕𝜉,

𝜕𝜉,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝑊 −3 0.00037018372

CS109A, PROTOPAPAS, RADER, TANNER

Backward mode: Evaluate the derivative at: X={3},	y=1,	W=3		

50

Variables derivatives Value of the
variable

Value of the partial
derivative

𝜉(= −𝑊6𝑋
𝜕𝜉(
𝜕𝑊

= −𝑋 −9 -3

𝜉* = 𝑒yz = 𝑒to2u
𝜕𝜉*
𝜕𝜉(

= 𝑒yz 𝑒t� 𝑒t�

𝜉+ = 1 + 𝜉* = 1 + 𝑒to2u
𝜕𝜉+
𝜕𝜉*

= 1 1+𝑒t� 1

𝜉, =
1
𝜉+
=

1
1 + 𝑒to2u

= 𝑝
𝜕𝜉,
𝜕𝜉+

= −
1
𝜉+*

1
1 + 𝑒t�

1
1 + 𝑒t�

*

𝜉} = log 𝜉, = log 𝑝	 = log
1

1 + 𝑒to2u

𝜕𝜉}
𝜕𝜉,

=
1
𝜉,

log
1

1 + 𝑒t�
1 + 𝑒t�

ℒav = −𝑦𝜉}
𝜕ℒ
𝜕𝜉}

= −𝑦 − log
1

1 + 𝑒t�
−1

𝜕ℒav

𝜕𝑊
=
𝜕ℒa
𝜕𝜉}

𝜕𝜉}
𝜕𝜉,

𝜕𝜉,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝑊 Type	equation	here.

S
tore all th

ese valu
es

CS109A, PROTOPAPAS, RADER, TANNER

Optimizers

51

CS109A, PROTOPAPAS, RADER, TANNER

Learning vs. Optimization

Goal of learning: minimize generalization error, or the loss function

ℒ 𝑊 = 𝔼 ¥,¦ ~�¨©ª© 𝐿(𝑊; 𝑥, 𝑦)

In practice, empirical risk minimization:

ℒ 𝑊 =g 𝐿(𝑊; 𝑥a, 𝑦a)
�

a

52

Quantity	optimized	
different	from	the	quantity	

we	care	about

CS109A, PROTOPAPAS, RADER, TANNER

Critical Points

Points with zero gradient

2nd-derivate (Hessian) determines curvature

53Goodfellow et	al.	(2016)

CS109A, PROTOPAPAS, RADER, TANNER

Outline

Optimization
• Challenges in Optimization
• Momentum

• Adaptive Learning Rate

• Parameter Initialization

• Batch Normalization

54

CS109A, PROTOPAPAS, RADER, TANNER

Local Minima

55Goodfellow et	al.	(2016)

CS109A, PROTOPAPAS, RADER, TANNER

Local Minima

Old view: local minima is major problem in neural network training

Recent view:

• For sufficiently large neural networks, most local minima incur low cost

• Not important to find true global minimum

56

CS109A, PROTOPAPAS, RADER, TANNER

Saddle Points

Recent studies indicate that in
high dim, saddle points are more
likely than local min

Gradient can be very small near
saddle points

57

Both	local	min	
and	max

Goodfellow et	al.	(2016)

CS109A, PROTOPAPAS, RADER, TANNER

No Critical Points

Gradient norm increases, but validation error decreases

58

Convolution	Nets	for	Object	Detection

Goodfellow et	al.	(2016)

CS109A, PROTOPAPAS, RADER, TANNER

Saddle Points

SGD is seen to escape saddle points

– Moves down-hill, uses noisy gradients

Second-order methods get stuck

– solves for a point with zero gradient

59Goodfellow et	al.	(2016)

CS109A, PROTOPAPAS, RADER, TANNER

Poor Conditioning

Poorly conditioned Hessian matrix

– High curvature: small steps leads to huge increase

Learning is slow despite strong gradients

60

Oscillations slow down
progress

CS109A, PROTOPAPAS, RADER, TANNER

No Critical Points

Some cost functions do not have critical points. In particular
classification.

61

CS109A, PROTOPAPAS, RADER, TANNER

Exploding and Vanishing Gradients

62

Linear	
activation

deeplearning.ai

ℎa = 𝑊𝑥
ℎa = 𝑊ℎat(, 	𝑖 = 2,… , 𝑛

CS109A, PROTOPAPAS, RADER, TANNER

Exploding and Vanishing Gradients

63

h1
1

h1
2

!

"

#
#

$

%

&
&
= a 0

0 b

!

"
#

$

%
&

x1

x2

!

"
#
#

$

%
&
&
 !

hn1
hn2

!

"

#
#

$

%

&
&
= an 0

0 bn
!

"
#
#

$

%
&
&

x1

x2

!

"
#
#

$

%
&
&

Suppose W = a 0
0 b

!

"
#

$

%
& :

CS109A, PROTOPAPAS, RADER, TANNER

Exploding and Vanishing Gradients

64

Explodes!

Vanishes!

Suppose x = 1
1

!

"
#

$

%
&

Case 1: a =1, b = 2 :

 y→1, ∇y→ n
n2n−1

!

"
#
#

$

%
&
&

Case 2: a = 0.5, b = 0.9 :

 y→ 0, ∇y→ 0
0

!

"
#

$

%
&

CS109A, PROTOPAPAS, RADER, TANNER

Exploding and Vanishing Gradients

Exploding gradients lead to cliffs

Can be mitigated using gradient clipping

65Goodfellow et	al.	(2016)

if	 𝑔 > 𝑢

𝑔 ⟵
𝑔𝑢
𝑔

CS109A, PROTOPAPAS, RADER, TANNER

Outline

Optimization
• Challenges in Optimization

• Momentum
• Adaptive Learning Rate

• Parameter Initialization

• Batch Normalization

66

CS109A, PROTOPAPAS, RADER, TANNER

Stochastic Gradient Descent

67

Oscillations	because	
updates	do	not	exploit	
curvature	information

Goodfellow et	al.	(2016)

J(θ)

CS109A, PROTOPAPAS, RADER, TANNER

Momentum

SGD is slow when there is high curvature

Average gradient presents faster path to opt:

– vertical components cancel out

68

J(θ)

CS109A, PROTOPAPAS, RADER, TANNER

Momentum

Uses past gradients for update

Maintains a new quantity: ‘velocity’

Exponentially decaying average of gradients:

69

controls	how	quickly	
effect	of	past	gradients	decay

Current	gradient	update

v = αv + (−εg)
α ∈ [0,1)

g = 1
m

∇θL(f (x
(i);θ), y(i))

i
∑

CS109A, PROTOPAPAS, RADER, TANNER

Momentum

Compute gradient estimate:

Update velocity:

Update parameters:

70

g = 1
m

∇θL(f (x
(i);θ), y(i))

i
∑

v =αv−εg

θ =θ + v

CS109A, PROTOPAPAS, RADER, TANNER

Momentum

71

Damped	oscillations:
gradients	in	opposite	
directions	get	
cancelled	out

Goodfellow et	al.	(2016)

J(θ)

CS109A, PROTOPAPAS, RADER, TANNER

Nesterov Momentum

Apply an interim update:

Perform a correction based on gradient at the interim point:

72

Momentum	based	on	
look-ahead	slope

g = 1
m

∇θL(f (x
(i); !θ), y(i))

i
∑

v =αv−εg

θ =θ + v

!θ =θ + v

73

CS109A, PROTOPAPAS, RADER, TANNER

Outline

Optimization
• Challenges in Optimization

• Momentum

• Adaptive Learning Rate
• Parameter Initialization

• Batch Normalization

74

CS109A, PROTOPAPAS, RADER, TANNER

Adaptive Learning Rates

Oscillations along vertical direction
– Learning must be slower along parameter 2

Use a different learning rate for each parameter?
75

θ2

θ1

J(θ)

CS109A, PROTOPAPAS, RADER, TANNER

AdaGrad

• Accumulate squared gradients:

• Update each parameter:

• Greater progress along gently sloped directions

76

Inversely	
proportional	to	
cumulative	
squared	gradient

ri = ri + gi
2

θi =θi −
ε

δ + ri
gi

CS109A, PROTOPAPAS, RADER, TANNER

RMSProp

• For non-convex problems, AdaGrad can prematurely decrease learning
rate

• Use exponentially weighted average for gradient accumulation

77

ri = ρri + (1− ρ)gi
2

θi =θi −
ε

δ + ri
gi

CS109A, PROTOPAPAS, RADER, TANNER

Adam

• RMSProp + Momentum

• Estimate first moment:

• Estimate second moment:

• Update parameters:

78

Also	applies	
bias	correction	

to	v and	r

Works	well	in	practice,	
is	fairly	robust	to	
hyper-parameters

vi = ρ1vi + (1− ρ1)gi

θi =θi −
ε

δ + ri
vi

ri = ρ2ri + (1− ρ2)gi
2

CS109A, PROTOPAPAS, RADER, TANNER

Outline

Optimization
• Challenges in Optimization

• Momentum

• Adaptive Learning Rate

• Parameter Initialization
• Batch Normalization

79

CS109A, PROTOPAPAS, RADER, TANNER 80

CS109A, PROTOPAPAS, RADER, TANNER

Parameter Initialization

• Goal: break symmetry between units

• so that each unit computes a different function

• Initialize all weights (not biases) randomly

• Gaussian or uniform distribution

• Scale of initialization?

• Large -> grad explosion, Small -> grad vanishing

81

CS109A, PROTOPAPAS, RADER, TANNER

Xavier Initialization

• Heuristic for all outputs to have unit variance

• For a fully-connected layer with m inputs:

• For ReLU units, it is recommended:

82

Wij ~ N 0, 1
m

!

"
#

$

%
&

Wij ~ N 0, 2
m

!

"
#

$

%
&

CS109A, PROTOPAPAS, RADER, TANNER

Normalized Initialization

• Fully-connected layer with m inputs, n outputs:

• Heuristic trades off between initialize all layers have same
activation and gradient variance

• Sparse variant when m is large

– Initialize k nonzero weights in each unit

83

Wij ~U −
6

m+ n
, 6

m+ n

"

#
$

%

&
'

CS109A, PROTOPAPAS, RADER, TANNER

Bias Initialization

• Output unit bias

• Marginal statistics of the output in the training set

• Hidden unit bias

• Avoid saturation at initialization

• E.g. in ReLU, initialize bias to 0.1 instead of 0

• Units controlling participation of other units

• Set bias to allow participation at initialization

84

85

CS109A, PROTOPAPAS, RADER, TANNER

Outline

Challenges in Optimization

Momentum

Adaptive Learning Rate

Parameter Initialization

Batch Normalization

86

CS109A, PROTOPAPAS, RADER, TANNER

Feature Normalization

Good practice to normalize features before applying learning
algorithm:

Features in same scale: mean 0 and variance 1
– Speeds up learning

87

Vector	of	mean	feature	values

Vector	of	SD	of	feature	values

Feature	vector

!x = x −µ
σ

CS109A, PROTOPAPAS, RADER, TANNER

Feature Normalization

Before	normalization After	normalization

J(θ)

CS109A, PROTOPAPAS, RADER, TANNER

Internal Covariance Shift

Each hidden layer changes distribution of
inputs to next layer: slows down learning

89

Normalize	
inputs	to	layer	2

Normalize	
inputs	to	layer	n

…

CS109A, PROTOPAPAS, RADER, TANNER

Batch Normalization

Training time:
– Mini-batch of activations for layer to normalize

90

K hidden	layer	
activations

N data	points	in	
mini-batch

H =

H11 ! H1K

" # "
HN1 ! HNK

!

"

#
#
#
#

$

%

&
&
&
&

CS109A, PROTOPAPAS, RADER, TANNER

Batch Normalization

Training time:
– Mini-batch of activations for layer to normalize

where

91

Vector	of	mean	activations	
across	mini-batch

Vector	of	SD	of	each	unit	
across	mini-batch

H ' = H −µ
σ

µ =
1
m

Hi,:
i
∑ σ =

1
m

(H −µ)i
2 +δ

i
∑

CS109A, PROTOPAPAS, RADER, TANNER

Batch Normalization

Training time:
– Normalization can reduce expressive power

– Instead use:

– Allows network to control range of normalization

92

Learnable	parameters

γ !H +β

CS109A, PROTOPAPAS, RADER, TANNER

Batch Normalization

93

…
..

Batch	1

Batch	N
Add	normalization	
operations	for	layer	1

µ1 =
1
m

Hi,:
i
∑

σ 1 =
1
m

(H −µ)i
2 +δ

i
∑

CS109A, PROTOPAPAS, RADER, TANNER

µ 2 =
1
m

Hi,:
i
∑

σ 2 =
1
m

(H −µ)i
2 +δ

i
∑

Batch Normalization

94

Batch	1

Batch	N

…
..

Add	normalization	
operations	for	layer	2	
and	so	on	…	

CS109A, PROTOPAPAS, RADER, TANNER

Batch Normalization

Differentiate the joint loss for N mini-batches

Back-propagate through the norm operations

Test time:
– Model needs to be evaluated on a single example

– Replace μ and σ with running averages collected during training

95

