Lecture 19: Anatomy of NN

CS109A Introduction to Data Science Pavlos Protopapas, Kevin Rader and Chris Tanner

Anatomy of a NN

Design choices

- Activation function
- Loss function
- Output units
- Architecture

Anatomy of a NN

Design choices

- Activation function
- Loss function
- Output units
- Architecture

We will talk later about the choice of activation function. So far we have only talked about sigmoid as an activation function but there are other choices.

We will talk later about the choice of the output layer and the loss function. So far we consider sigmoid as the output and log-bernouli.

We will talk later about the choice of the number of layers.

CS109A, PROTOPAPAS, RADER, TANNER

We will talk later about the choice of the number of nodes.

Number of inputs is specified by the data

CS109A, Protopapas, Rader, Tanner

Representation matters!

Learning Multiple Components

Depth = Repeated Compositions

Hand-written digit recognition: MNIST data

Depth = Repeated Compositions

Linear models:

- Can be fit efficiently (via convex optimization)
- Limited model capacity

Alternative:

$$f(x) = w^T \phi(x)$$

Where ϕ is a non-linear transform

Manually engineer ϕ

• Domain specific, enormous human effort

Generic transform

- Maps to a higher-dimensional space
- Kernel methods: e.g. RBF kernels
- Over fitting: does not generalize well to test set
- Cannot encode enough prior information

• Directly learn ϕ

 $f(x;\theta) = W^T \phi(x;\theta)$

- $\phi(x; \theta)$ is an automatically-learned **representation** of *x*
- For deep networks, ϕ is the function learned by the hidden layers of the network
- θ are the learned weights
- Non-convex optimization
- Can encode prior beliefs, generalizes well

Outline

Anatomy of a NN

Design choices

- Activation function
- Loss function
- Output units
- Architecture

Anatomy of a NN

Design choices

- Activation function
- Loss function
- Output units
- Architecture

$$h = f(W^T X + b)$$

The activation function should:

- Provide non-linearity
- Ensure gradients remain large through hidden unit

Common choices are

- Sigmoid
- Relu, leaky ReLU, Generalized ReLU, MaxOut
- softplus
- tanh
- swish

$$h = f(W^T X + b)$$

The activation function should:

- Provide **non-linearity**
- Ensure gradients remain large through hidden unit

Common choices are

- sigmoid
- tanh
- ReLU, leaky ReLU, Generalized ReLU, MaxOut
- softplus
- swish

$$h = f(W^T X + b)$$

The activation function should:

- Provide **non-linearity**
- Ensure gradients remain large through hidden unit

Common choices are

- sigmoid
- tanh
- ReLU, leaky ReLU, Generalized ReLU, MaxOut
- softplus
- swish

Sigmoid (aka Logistic)

Derivative is **zero** for much of the domain. This leads to "vanishing gradients" in backpropagation.

Hyperbolic Tangent (Tanh)

Same problem of "vanishing gradients" as sigmoid.

CS109A, PROTOPAPAS, RADER, TANNER

 $y = \max(0, x)$

Two major advantages:

- 1. No vanishing gradient when x > 0
- 2. Provides sparsity (regularization) since y = 0 when x < 0

$y = \max(0, x) + \alpha \min(0, 1)$

where α takes a small value

- Tries to fix "dying ReLU" problem: derivative is non-zero everywhere.
- Some people report success with this form of activation function, but the results are not always consistent

Generalization: For $\alpha_i > 0$

 $g(x_i, \alpha) = \max\{a, x_i\} + \alpha \min\{0, x_i\}$

$$y = \log(1 + e^x)$$

The logistic sigmoid function is a smooth approximation of the derivative of the rectifier

CS109A, PROTOPAPAS, RADER, TANNER

Max of k linear functions. Directly learn the activation function.

$$g(x) = \max_{i \in \{1, \dots, k\}} \alpha_i x_i + \beta$$

 $g(x) = x \, \sigma(x)$

Currently, the most successful and widely-used activation function is the ReLU. Swish tends to work better than ReLU on deeper models across a number of challenging datasets.

Anatomy of a NN

Design choices

- Activation function
- Loss function
- Output units
- Architecture

Likelihood for a given point:

 $p(y_i|W;x_i)$

Assume independency, likelihood for all measurements:

$$L(W; X, Y) = p(Y|W; X) = \prod_{i} p(y_i|W; x_i)$$

Maximize the likelihood, or equivalently maximize the log-likelihood:

$$\log L(W; X, Y) = \sum_{i} \log p(y_i | W; x_i)$$

Turn this into a loss function:

$$\mathcal{L}(W; X, Y) = -\log L(W; X, Y)$$

Do not need to design separate loss functions if we follow this simple procedure

Examples:

• Distribution is **Normal** then likelihood is:

$$p(y_i|W;x_i) = \frac{1}{\sqrt{\{2\pi^2\sigma\}}} e^{-\frac{(y_i - \hat{y}_i)^2}{2\sigma^2}}$$
 MSE
$$\mathcal{L}(W;X,Y) = \sum_i (y_i - \hat{y}_i)^2$$

• Distribution is **Bernouli** then likelihood is:

L

$$p(y_i|W; x_i) = p_i^{y_i} (1 - p_i)^{1 - y_i}$$
 Cross-Entropy
$$C(W; X, Y) = -\sum_i [y_i \log p_i + (1 - y_i) \log(1 - p_i)]$$

Activation function Loss function Output units Architecture

Optimizer

Output Type	Output Distribution	Output layer	Loss Function
Binary			

Output Type	Output Distribution	Output layer	Loss Function
Binary	Bernoulli		

Output Type	Output Distribution	Output layer	Loss Function
Binary	Bernoulli		Binary Cross Entropy

Output Type	Output Distribution	Output layer	Loss Function
Binary	Bernoulli	?	Binary Cross Entropy

Output unit for binary classification

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete			

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinouli		

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinouli		Cross Entropy

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinouli	?	Cross Entropy

Output unit for multi-class classification

 $\hat{Y} = [P_1, P_2, P_3]$

SoftMax

SoftMax

SoftMax

CS109A, PROTOPAPAS, RADER, TANNER

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy
Continuous			

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy
Continuous	Gaussian		

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy
Continuous	Gaussian		MSE

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy
Continuous	Gaussian	?	MSE

Output unit for regression

CS109A, PROTOPAPAS, RADER, TANNER

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy
Continuous	Gaussian	Linear	MSE

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy
Continuous	Gaussian	Linear	MSE
Continuous	Arbitrary	-	

Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy
Continuous	Gaussian	Linear	MSE
Continuous	Arbitrary	-	GANS

Lectures 18-19 in CS109B

Loss Function

Example: sigmoid output + cross-entropy loss

$$L_{ce}(y, \hat{y}) = -\{y \log \hat{y} + (1 - y) \log(1 - \hat{y})\}\$$

CS109A, Protopapas, Rader, Tanner

Activation function Loss function Output units Architecture Optimizer

Think of a Neural Network as function approximation.

$$Y = f(x) + \epsilon$$
$$Y = \hat{f}(x) + \epsilon$$
$$NN: \Longrightarrow \hat{f}(x)$$

One hidden layer is enough to represent an approximation of any function to an arbitrary degree of accuracy

So why deeper?

- Shallow net may need (exponentially) more width
- Shallow net may overfit more

Better Generalization with Depth

Shallow Nets Overfit More

when controlling for number of parameters.

even with similar number of total parameters.

CS109A, PROTOPAPAS, RADER, TANNER

CS109A, PROTOPAPAS, RADER, TANNER

- 1. Install Keras or tensorboard 2
- 2. Build the same thing we did for exercise from Lecture 18 but now with Keras.

