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• Homework	5	(209)	due	on	Wednesday	11:59	pm,	Nov	6

• Homework	4	grades.	They	should	out	soon	J

ANNOUNCEMENTS
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Outline

• Review of Ensemble Methods

• Finish Random Forest

• Boosting

• Gradient Boosting

• Set-up and intuition

• Connection to Gradient Descent

• The Algorithm

• AdaBoost

• Other boosting algorithms
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Bags and Forests of Trees 

• Last time we examined how the short-comings of single decision tree 
models can be overcome by ensemble methods - making one model 
out of many trees. 

• We focused on the problem of training large trees, these models have 
low bias but high variance. 

• We compensated by training an ensemble of full decision trees and 
then averaging their predictions - thereby reducing the variance of 
our final model. 
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Bags and Forests of Trees (cont.) 

Bagging: 

• create an ensemble of trees, each trained on a bootstrap sample of the training 
set

• average the predictions.

Random forest: 

• create an ensemble of trees, each trained on a bootstrap sample of the training 
set

• in each tree and each split, randomly select a subset of predictors, choose a 
predictor from this subset for splitting 

• average the predictions 

Note that the ensemble building aspects of both methods are embarrassingly parallel! 

6



CS109A, PROTOPAPAS, RADER, TANNER

Tuning Random Forests

Random forest models have multiple hyper-parameters to tune: 

1. the number of predictors to randomly select at each split 

2. the total number of trees in the ensemble 

3. the minimum leaf node size 

In theory, each tree in the random forest is full, but in practice this can 
be computationally expensive (and added redundancies in the model), 
thus, imposing a minimum node size is not unusual. 
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Tuning Random Forests

There are standard (default) values for each of random forest hyper-
parameters recommended by long time practitioners, but generally 
these parameters should be tuned through OOB (making them data and 
problem dependent). 

e.g. number of predictors to randomly select at each split: 

– √𝑁# for classification

– $
%

for regression 

Using out-of-bag errors, training and cross validation can be done in a 
single sequence - we cease training once the out-of-bag error stabilizes 
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Variable Importance for RF

Same as with Bagging: 

Calculate the total amount that the RSS (for regression) or Gini index 
(for classification) is decreased due to splits over a given predictor, 
averaged over all 𝐵 trees. 
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Variable Importance for RF

10
100 trees, max_depth=10
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Variable Importance for RF

11
100 trees, max_depth=10
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Final Thoughts on Random Forests

When the number of predictors is large, but the number of relevant 
predictors is small, random forests can perform poorly. 

Question: Why?

In each split, the chances of selected a relevant predictor will be low and 
hence most trees in the ensemble will be weak models. 
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Final Thoughts on Random Forests  (cont.)

Increasing the number of trees in the ensemble generally does not increase 
the risk of overfitting. 

Again, by decomposing the generalization error in terms of bias and 
variance, we see that increasing the number of trees produces a model that 
is at least as robust as a single tree. 

However, if the number of trees is too large, then the trees in the ensemble 
may become more correlated, and therefore increase the variance. 
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Final Thoughts on Random Forests  (cont.)

Probabilities: 

• Random Forrest Classifier (and bagging) can return 
probabilities. 

• Question: How?
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More

• Unbalance dataset

• Weighted samples 

• Categorical data

• Missing data

• Why did we reject misclassification error?
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Boosting

16
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Motivation for Boosting 

Question: Could we address the shortcomings of single decision trees 
models in some other way? 

For example, rather than performing variance reduction on complex 
trees, can we decrease the bias of simple trees - make them more 
expressive? 

Can we learn from our mistakes? 

A solution to this problem, making an expressive model from simple 
trees, is another class of ensemble methods called boosting. 
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Boosting Algorithms

18
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Gradient Boosting 

The key intuition behind boosting is that one can take an ensemble of 
simple models {Th}h∈H and additively combine them into a single, more 
complex model.

Each model Th might be a poor fit for the data, but a linear combination 
of the ensemble 

can be expressive/flexible.

Question: But which models should we include in our ensemble? What 
should the coefficients or weights in the linear combination be? 
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Gradient Boosting: the algorithm 
Gradient boosting is a method for iteratively building a complex regression 
model T by adding simple models. Each new simple model added to the 
ensemble compensates for the weaknesses of the current ensemble. 

1. Fit a simple model 𝑇(*) on the training data 

{ 𝑥., 𝑦. , … , (𝑥$, 𝑦$)}

Set	𝑇 ← 𝑇(*) .   Compute the residuals {r1 , . . . , rN } for T. 

2. Fit a simple model, 𝑇(.) , to the current residuals, i.e. train using

{ 𝑥., 𝑟. , … , (𝑥$, 𝑟$)}

3. Set 𝑇 ← 𝑇 + 𝜆𝑇(.)

4. Compute residuals, set 𝑟8 ← 𝑟8 − 𝜆𝑇: 𝑥8 , 𝑛 = 1,… , 𝑁

5. Repeat steps 2-4 until stopping condition met.

where 𝜆 is a constant called the learning rate. 
20
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Gradient Boosting: illustration 
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Why Does Gradient Boosting Work? 

Intuitively, each simple model T(i) we add to our ensemble model T, 
models the errors of T. 

Thus, with each addition of T(i), the residual is reduced 
𝑟8 − 𝜆𝑇 : (𝑥8)

Note that gradient boosting has a tuning parameter, 𝜆. 

If we want to easily reason about how to choose 𝜆 and investigate the 
effect of 𝜆 on the model T, we need a bit more mathematical formalism. 

In particular, how can we effectively descend through this optimization 
via an iterative algorithm?

We need to formulate gradient boosting as a type of gradient descent. 
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Review: A Brief Sketch of Gradient Descent 

In optimization, when we wish to minimize a function, called the objective 
function, over a set of variables, we compute the partial derivatives of this 
function with respect to the variables. 

If the partial derivatives are sufficiently simple, one can analytically find a 
common root - i.e. a point at which all the partial derivatives vanish; this is 
called a stationary point.

If the objective function has the property of being convex, then the stationary 
point is precisely the min. 
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Review: A Brief Sketch of Gradient Descent the Algorithm

In practice, our objective functions are complicated and analytically find the 
stationary point is intractable. 

Instead, we use an iterative method called gradient descent  (as discussed in 
lecture 5): 

1. Initialize the variables at any value: 

2. Take the gradient of the objective function at the current variable values:

3. Adjust the variables values by some negative multiple of the gradient:

The factor 𝜆 is often called the learning rate. 
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Why Does Gradient Descent Work? 

Claim: If the function is convex, this iterative methods will eventually 
move x close enough to the minimum, for an appropriate choice of 𝜆. 

Why does this work? Recall, that as a vector, the gradient at at point 
gives the direction for the greatest possible rate of increase. 
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Why Does Gradient Descent Work? 

Subtracting a 𝜆 multiple of the gradient from x, moves x in the opposite 
direction of the gradient (hence towards the steepest decline) by a step 
of size 𝜆. 

If f is convex, and we keep taking steps descending on the graph of f, we 
will eventually reach the minimum. 
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Gradient Boosting as Gradient Descent 

Often in regression, our objective is to minimize the MSE 

Treating this as an optimization problem, we can try to directly 
minimize the MSE with respect to the predictions 

The update step for gradient descent would look like 
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Gradient Boosting as Gradient Descent (cont.) 

There are two reasons why minimizing the MSE with respect to  𝑦>8’s is 
not interesting: 

• We know where the minimum MSE occurs: 𝑦>8 = 𝑦8, for every n. 

• Learning sequences of predictions,𝑦>8., … , 𝑦>8: , …, does not produce a 
model. The predictions in the sequences do not depend on the 
predictors! 
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Gradient Boosting as Gradient Descent (cont.) 

The solution is to change the update step in gradient descent. Instead of 
using the gradient - the residuals - we use an approximation of the 
gradient that depends on the predictors: 

𝑦> ← 𝑦>8 + 𝜆	�̂�8 𝑥8 , 		𝑛 = 1,… ,𝑁

In gradient boosting, we use a simple model to  approximate the 
residuals, �̂�8(𝑥8), in each iteration. 

Motto: gradient boosting is a form of gradient descent with the MSE as 
the objective function. 

Technical note: note that gradient boosting is descending in a space of 
models or functions relating 𝑥8 to 𝑦8! 

36
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Gradient Boosting as Gradient Descent (cont.) 

But why do we care that gradient boosting is gradient descent? 

By making this connection, we can import the massive amount of 
techniques for studying gradient descent to analyze gradient boosting.

For example, we can easily reason about how to choose the learning rate 
𝜆 in gradient boosting. 
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Choosing a Learning Rate 

Under ideal conditions, gradient descent iteratively approximates and 
converges to the optimum. 

When do we terminate gradient descent? 

• We can limit the number of iterations in the descent. But for an 
arbitrary choice of maximum iterations, we cannot guarantee that we 
are sufficiently close to the optimum in the end. 

• If the descent is stopped when the updates are sufficiently small (e.g. 
the residuals of T are small), we encounter a new problem: the 
algorithm may never terminate! 

Both problems have to do with the magnitude of the learning rate, 𝜆. 
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Choosing a Learning Rate 

For a constant learning rate, 𝜆, if 𝜆 is too small, it takes too many 
iterations to reach the optimum. 

If 𝜆 is too large, the algorithm may ‘bounce’ around the optimum and 
never get sufficiently close. 
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Choosing a Learning Rate 

Choosing 𝜆: 

• If 𝜆 is a constant, then it should be tuned through cross validation. 

• For better results, use a variable 𝜆. That is, let the value of 𝜆 depend on 
the gradient

where                 is the magnitude of the gradient,              . So 

• around the optimum, when the gradient is small, 𝜆 should be 
small 

• far from the optimum, when the gradient is large, 𝜆 should be 
larger 
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AdaBoost

42
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Motivation for AdaBoost 

Using the language of gradient descent also allow us to connect 
gradient boosting for regression to a boosting algorithm often used for 
classification, AdaBoost. 

In classification, we typically want to minimize the classification error: 

Naively, we can try to minimize Error via gradient  descent, just like we 
did for MSE in gradient boosting. 

Unfortunately, Error is not differentiable L
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Motivation for AdaBoost (cont.)

Our solution: we replace the Error function with a differentiable function 
that is a good indicator of classification error. 

The function we choose is called exponential loss 

Exponential loss is differentiable with respect to 𝑦>8	and it is an upper 
bound of Error. 
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Gradient Descent with Exponential Loss 

We first compute the gradient for ExpLoss:

It’s easier to decompose each  𝑦8exp −𝑦8𝑦>8 		as 𝑤8𝑦8, where 
𝑤8 = exp −𝑦8𝑦>8 .

This way, we see that the gradient is just a re-weighting applied the 
target values 

Notice that when 𝑦8 = 𝑦>8, the weight 𝑤8 is small; when 𝑦8 ≠ 𝑦>8, the 
weight is larger. 
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Gradient Descent with Exponential Loss 

The update step in the gradient descent is 

Just like in gradient boosting, we approximate the gradient, 𝜆𝑤8𝑦8with a 
simple model, T(i), that depends on  𝑥8. 

This means training T(i) on a re-weighted set of target values, 

{ 𝑥., 𝑤.𝑦. , … , (𝑥$, 𝑤$𝑦$)}

That is, gradient descent with exponential loss means iteratively 
training simple models that focuses on the points misclassified by the 
previous model. 

46
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AdaBoost 

With a minor adjustment to the exponential loss function, we have the 
algorithm for gradient descent: 

1. Choose an initial distribution over the training data, 𝑤8 = 1/𝑁.

2. At the ith step, fit a simple classifier T(i) on weighted training data 

3. Update the weights: 

where Z is the normalizing constant for the collection of updated 
weights 

4. Update 𝑇: 𝑇 ← 𝑇 + 𝜆(:)𝑇(:)

where 𝜆 is the learning rate. 
47
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AdaBoost: start with equal weights 
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AdaBoost: fit a simple decision tree
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AdaBoost: update the weights
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AdaBoost: fit another simple decision tree on re-weighted data
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AdaBoost: add the new model to the ensemble
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AdaBoost: update the weights
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AdaBoost: fit a third, simple decision tree on re-weighted data
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AdaBoost: add the new model to the ensemble, repeat…
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Choosing the Learning Rate 

Unlike in the case of gradient boosting for regression, we can 
analytically solve for the optimal learning rate for AdaBoost, by 
optimizing: 

Doing so, we get that 
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Final thoughts on Boosting

There are few implementations on boosting: 

• XGBoost:  An efficient Gradient Boosting Decision 

• LGBM: Light Gradient Boosted Machines. It is a library for training 
GBMs developed by Microsoft, and it competes with XGBoost

• CatBoost: A new library for Gradient Boosting Decision Trees, offering 
appropriate handling of categorical features
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Final thoughts on Boosting

Increasing the number of trees can lead to overfitting.

Question: Why? 
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