
CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Lecture 17: Boosting

CS109A, PROTOPAPAS, RADER, TANNER 2

• Homework	5	(209)	due	on	Wednesday	11:59	pm,	Nov	6

• Homework	4	grades.	They	should	out	soon	J

ANNOUNCEMENTS

CS109A, PROTOPAPAS, RADER, TANNER

Regression

Statistical	
Learning

Uncertainty	in	
model	and	
prediction	

Cross	
validation	

Overfitting:	
Variance	&	

Bias

Methods	of	
regularization:	
Lasso	and	
Ridge

Classification

PCA	&	
dimensionality	

reduction	

Pandas

Matplotlib

Scikit-
Learn

NumPy

Trees	
Neural	

Networks	

Computing	
Tools

Linear	

KNN	

Logistic	

3

Experimenta
l	Design	&	
Causal	

Inference

CS109A, PROTOPAPAS, RADER, TANNER

Outline

• Review of Ensemble Methods

• Finish Random Forest

• Boosting

• Gradient Boosting

• Set-up and intuition

• Connection to Gradient Descent

• The Algorithm

• AdaBoost

• Other boosting algorithms

4

CS109A, PROTOPAPAS, RADER, TANNER

Bags and Forests of Trees

• Last time we examined how the short-comings of single decision tree
models can be overcome by ensemble methods - making one model
out of many trees.

• We focused on the problem of training large trees, these models have
low bias but high variance.

• We compensated by training an ensemble of full decision trees and
then averaging their predictions - thereby reducing the variance of
our final model.

5

CS109A, PROTOPAPAS, RADER, TANNER

Bags and Forests of Trees (cont.)

Bagging:

• create an ensemble of trees, each trained on a bootstrap sample of the training
set

• average the predictions.

Random forest:

• create an ensemble of trees, each trained on a bootstrap sample of the training
set

• in each tree and each split, randomly select a subset of predictors, choose a
predictor from this subset for splitting

• average the predictions

Note that the ensemble building aspects of both methods are embarrassingly parallel!

6

CS109A, PROTOPAPAS, RADER, TANNER

Tuning Random Forests

Random forest models have multiple hyper-parameters to tune:

1. the number of predictors to randomly select at each split

2. the total number of trees in the ensemble

3. the minimum leaf node size

In theory, each tree in the random forest is full, but in practice this can
be computationally expensive (and added redundancies in the model),
thus, imposing a minimum node size is not unusual.

7

CS109A, PROTOPAPAS, RADER, TANNER

Tuning Random Forests

There are standard (default) values for each of random forest hyper-
parameters recommended by long time practitioners, but generally
these parameters should be tuned through OOB (making them data and
problem dependent).

e.g. number of predictors to randomly select at each split:

– √𝑁# for classification

– $
%

for regression

Using out-of-bag errors, training and cross validation can be done in a
single sequence - we cease training once the out-of-bag error stabilizes

8

CS109A, PROTOPAPAS, RADER, TANNER

Variable Importance for RF

Same as with Bagging:

Calculate the total amount that the RSS (for regression) or Gini index
(for classification) is decreased due to splits over a given predictor,
averaged over all 𝐵 trees.

9

CS109A, PROTOPAPAS, RADER, TANNER

Variable Importance for RF

10
100 trees, max_depth=10

CS109A, PROTOPAPAS, RADER, TANNER

Variable Importance for RF

11
100 trees, max_depth=10

CS109A, PROTOPAPAS, RADER, TANNER

Final Thoughts on Random Forests

When the number of predictors is large, but the number of relevant
predictors is small, random forests can perform poorly.

Question: Why?

In each split, the chances of selected a relevant predictor will be low and
hence most trees in the ensemble will be weak models.

12

CS109A, PROTOPAPAS, RADER, TANNER

Final Thoughts on Random Forests (cont.)

Increasing the number of trees in the ensemble generally does not increase
the risk of overfitting.

Again, by decomposing the generalization error in terms of bias and
variance, we see that increasing the number of trees produces a model that
is at least as robust as a single tree.

However, if the number of trees is too large, then the trees in the ensemble
may become more correlated, and therefore increase the variance.

13

CS109A, PROTOPAPAS, RADER, TANNER

Final Thoughts on Random Forests (cont.)

Probabilities:

• Random Forrest Classifier (and bagging) can return
probabilities.

• Question: How?

14

CS109A, PROTOPAPAS, RADER, TANNER

More

• Unbalance dataset

• Weighted samples

• Categorical data

• Missing data

• Why did we reject misclassification error?

15

CS109A, PROTOPAPAS, RADER, TANNER

Boosting

16

CS109A, PROTOPAPAS, RADER, TANNER

Motivation for Boosting

Question: Could we address the shortcomings of single decision trees
models in some other way?

For example, rather than performing variance reduction on complex
trees, can we decrease the bias of simple trees - make them more
expressive?

Can we learn from our mistakes?

A solution to this problem, making an expressive model from simple
trees, is another class of ensemble methods called boosting.

17

CS109A, PROTOPAPAS, RADER, TANNER

Boosting Algorithms

18

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting

The key intuition behind boosting is that one can take an ensemble of
simple models {Th}h∈H and additively combine them into a single, more
complex model.

Each model Th might be a poor fit for the data, but a linear combination
of the ensemble

can be expressive/flexible.

Question: But which models should we include in our ensemble? What
should the coefficients or weights in the linear combination be?

19

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting: the algorithm
Gradient boosting is a method for iteratively building a complex regression
model T by adding simple models. Each new simple model added to the
ensemble compensates for the weaknesses of the current ensemble.

1. Fit a simple model 𝑇(*) on the training data

{ 𝑥., 𝑦. , … , (𝑥$, 𝑦$)}

Set	𝑇 ← 𝑇(*) . Compute the residuals {r1 , . . . , rN } for T.

2. Fit a simple model, 𝑇(.) , to the current residuals, i.e. train using

{ 𝑥., 𝑟. , … , (𝑥$, 𝑟$)}

3. Set 𝑇 ← 𝑇 + 𝜆𝑇(.)

4. Compute residuals, set 𝑟8 ← 𝑟8 − 𝜆𝑇: 𝑥8 , 𝑛 = 1,… , 𝑁

5. Repeat steps 2-4 until stopping condition met.

where 𝜆 is a constant called the learning rate.
20

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting: illustration

21

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting: illustration

22

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting: illustration

23

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting: illustration

24

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting: illustration

25

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting: illustration

26

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting: illustration

27

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting: illustration

28

CS109A, PROTOPAPAS, RADER, TANNER

Why Does Gradient Boosting Work?

Intuitively, each simple model T(i) we add to our ensemble model T,
models the errors of T.

Thus, with each addition of T(i), the residual is reduced
𝑟8 − 𝜆𝑇 : (𝑥8)

Note that gradient boosting has a tuning parameter, 𝜆.

If we want to easily reason about how to choose 𝜆 and investigate the
effect of 𝜆 on the model T, we need a bit more mathematical formalism.

In particular, how can we effectively descend through this optimization
via an iterative algorithm?

We need to formulate gradient boosting as a type of gradient descent.

29

CS109A, PROTOPAPAS, RADER, TANNER

Review: A Brief Sketch of Gradient Descent

In optimization, when we wish to minimize a function, called the objective
function, over a set of variables, we compute the partial derivatives of this
function with respect to the variables.

If the partial derivatives are sufficiently simple, one can analytically find a
common root - i.e. a point at which all the partial derivatives vanish; this is
called a stationary point.

If the objective function has the property of being convex, then the stationary
point is precisely the min.

30

CS109A, PROTOPAPAS, RADER, TANNER

Review: A Brief Sketch of Gradient Descent the Algorithm

In practice, our objective functions are complicated and analytically find the
stationary point is intractable.

Instead, we use an iterative method called gradient descent (as discussed in
lecture 5):

1. Initialize the variables at any value:

2. Take the gradient of the objective function at the current variable values:

3. Adjust the variables values by some negative multiple of the gradient:

The factor 𝜆 is often called the learning rate.

31

CS109A, PROTOPAPAS, RADER, TANNER

Why Does Gradient Descent Work?

Claim: If the function is convex, this iterative methods will eventually
move x close enough to the minimum, for an appropriate choice of 𝜆.

Why does this work? Recall, that as a vector, the gradient at at point
gives the direction for the greatest possible rate of increase.

32

CS109A, PROTOPAPAS, RADER, TANNER

Why Does Gradient Descent Work?

Subtracting a 𝜆 multiple of the gradient from x, moves x in the opposite
direction of the gradient (hence towards the steepest decline) by a step
of size 𝜆.

If f is convex, and we keep taking steps descending on the graph of f, we
will eventually reach the minimum.

33

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting as Gradient Descent

Often in regression, our objective is to minimize the MSE

Treating this as an optimization problem, we can try to directly
minimize the MSE with respect to the predictions

The update step for gradient descent would look like

34

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting as Gradient Descent (cont.)

There are two reasons why minimizing the MSE with respect to 𝑦>8’s is
not interesting:

• We know where the minimum MSE occurs: 𝑦>8 = 𝑦8, for every n.

• Learning sequences of predictions,𝑦>8., … , 𝑦>8: , …, does not produce a
model. The predictions in the sequences do not depend on the
predictors!

35

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting as Gradient Descent (cont.)

The solution is to change the update step in gradient descent. Instead of
using the gradient - the residuals - we use an approximation of the
gradient that depends on the predictors:

𝑦> ← 𝑦>8 + 𝜆	�̂�8 𝑥8 , 		𝑛 = 1,… ,𝑁

In gradient boosting, we use a simple model to approximate the
residuals, �̂�8(𝑥8), in each iteration.

Motto: gradient boosting is a form of gradient descent with the MSE as
the objective function.

Technical note: note that gradient boosting is descending in a space of
models or functions relating 𝑥8 to 𝑦8!

36

ŷn ŷn + �rn

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting as Gradient Descent (cont.)

But why do we care that gradient boosting is gradient descent?

By making this connection, we can import the massive amount of
techniques for studying gradient descent to analyze gradient boosting.

For example, we can easily reason about how to choose the learning rate
𝜆 in gradient boosting.

37

CS109A, PROTOPAPAS, RADER, TANNER

Choosing a Learning Rate

Under ideal conditions, gradient descent iteratively approximates and
converges to the optimum.

When do we terminate gradient descent?

• We can limit the number of iterations in the descent. But for an
arbitrary choice of maximum iterations, we cannot guarantee that we
are sufficiently close to the optimum in the end.

• If the descent is stopped when the updates are sufficiently small (e.g.
the residuals of T are small), we encounter a new problem: the
algorithm may never terminate!

Both problems have to do with the magnitude of the learning rate, 𝜆.

38

CS109A, PROTOPAPAS, RADER, TANNER

Choosing a Learning Rate

For a constant learning rate, 𝜆, if 𝜆 is too small, it takes too many
iterations to reach the optimum.

If 𝜆 is too large, the algorithm may ‘bounce’ around the optimum and
never get sufficiently close.

39

CS109A, PROTOPAPAS, RADER, TANNER

Choosing a Learning Rate

Choosing 𝜆:

• If 𝜆 is a constant, then it should be tuned through cross validation.

• For better results, use a variable 𝜆. That is, let the value of 𝜆 depend on
the gradient

where is the magnitude of the gradient, . So

• around the optimum, when the gradient is small, 𝜆 should be
small

• far from the optimum, when the gradient is large, 𝜆 should be
larger

40

CS109A, PROTOPAPAS, RADER, TANNER 41

CS109A, PROTOPAPAS, RADER, TANNER

AdaBoost

42

CS109A, PROTOPAPAS, RADER, TANNER

Motivation for AdaBoost

Using the language of gradient descent also allow us to connect
gradient boosting for regression to a boosting algorithm often used for
classification, AdaBoost.

In classification, we typically want to minimize the classification error:

Naively, we can try to minimize Error via gradient descent, just like we
did for MSE in gradient boosting.

Unfortunately, Error is not differentiable L

43

CS109A, PROTOPAPAS, RADER, TANNER

Motivation for AdaBoost (cont.)

Our solution: we replace the Error function with a differentiable function
that is a good indicator of classification error.

The function we choose is called exponential loss

Exponential loss is differentiable with respect to 𝑦>8	and it is an upper
bound of Error.

44

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Descent with Exponential Loss

We first compute the gradient for ExpLoss:

It’s easier to decompose each 𝑦8exp −𝑦8𝑦>8 		as 𝑤8𝑦8, where
𝑤8 = exp −𝑦8𝑦>8 .

This way, we see that the gradient is just a re-weighting applied the
target values

Notice that when 𝑦8 = 𝑦>8, the weight 𝑤8 is small; when 𝑦8 ≠ 𝑦>8, the
weight is larger.

45

CS109A, PROTOPAPAS, RADER, TANNER

Gradient Descent with Exponential Loss

The update step in the gradient descent is

Just like in gradient boosting, we approximate the gradient, 𝜆𝑤8𝑦8with a
simple model, T(i), that depends on 𝑥8.

This means training T(i) on a re-weighted set of target values,

{ 𝑥., 𝑤.𝑦. , … , (𝑥$, 𝑤$𝑦$)}

That is, gradient descent with exponential loss means iteratively
training simple models that focuses on the points misclassified by the
previous model.

46

𝑦>8 ← 𝑦>8 + 𝜆𝑤8𝑦8, 𝑛 = 1,… ,𝑁

CS109A, PROTOPAPAS, RADER, TANNER

AdaBoost

With a minor adjustment to the exponential loss function, we have the
algorithm for gradient descent:

1. Choose an initial distribution over the training data, 𝑤8 = 1/𝑁.

2. At the ith step, fit a simple classifier T(i) on weighted training data

3. Update the weights:

where Z is the normalizing constant for the collection of updated
weights

4. Update 𝑇: 𝑇 ← 𝑇 + 𝜆(:)𝑇(:)

where 𝜆 is the learning rate.
47

{ 𝑥., 𝑤.𝑦. , … , (𝑥$, 𝑤$𝑦$)}

CS109A, PROTOPAPAS, RADER, TANNER

AdaBoost: start with equal weights

48

CS109A, PROTOPAPAS, RADER, TANNER

AdaBoost: fit a simple decision tree

49

CS109A, PROTOPAPAS, RADER, TANNER

AdaBoost: update the weights

50

CS109A, PROTOPAPAS, RADER, TANNER

AdaBoost: fit another simple decision tree on re-weighted data

51

CS109A, PROTOPAPAS, RADER, TANNER

AdaBoost: add the new model to the ensemble

52

𝑇 ← 𝑇 + 𝜆(:)𝑇(:)

CS109A, PROTOPAPAS, RADER, TANNER

AdaBoost: update the weights

53

CS109A, PROTOPAPAS, RADER, TANNER

AdaBoost: fit a third, simple decision tree on re-weighted data

54

CS109A, PROTOPAPAS, RADER, TANNER

AdaBoost: add the new model to the ensemble, repeat…

55

𝑇 ← 𝑇 + 𝜆(:)𝑇(:)

CS109A, PROTOPAPAS, RADER, TANNER

Choosing the Learning Rate

Unlike in the case of gradient boosting for regression, we can
analytically solve for the optimal learning rate for AdaBoost, by
optimizing:

Doing so, we get that

56

CS109A, PROTOPAPAS, RADER, TANNER

Final thoughts on Boosting

There are few implementations on boosting:

• XGBoost: An efficient Gradient Boosting Decision

• LGBM: Light Gradient Boosted Machines. It is a library for training
GBMs developed by Microsoft, and it competes with XGBoost

• CatBoost: A new library for Gradient Boosting Decision Trees, offering
appropriate handling of categorical features

57

ADVANCED	TOPICS

CS109A, PROTOPAPAS, RADER, TANNER

Final thoughts on Boosting

Increasing the number of trees can lead to overfitting.

Question: Why?

58

