{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# CS-109A Introduction to Data Science\n", "\n", "\n", "## Lab 12: Building and Regularizing your first Neural Network \n", "\n", "**Harvard University**
\n", "**Fall 2019**
\n", "**Instructors:** Pavlos Protopapas, Kevin Rader, Chris Tanner
\n", "**Lab Instructors:** Chris Tanner and Eleni Kaxiras.
\n", "**Authors:** Eleni Kaxiras, David Sondak, and Pavlos Protopapas. " ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## RUN THIS CELL TO PROPERLY HIGHLIGHT THE EXERCISES\n", "import requests\n", "from IPython.core.display import HTML\n", "styles = requests.get(\"https://raw.githubusercontent.com/Harvard-IACS/2018-CS109A/master/content/styles/cs109.css\").text\n", "HTML(styles)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import matplotlib.image as mpimg\n", "import numpy as np\n", "import pandas as pd\n", "%matplotlib inline\n", "\n", "from PIL import Image, ImageOps" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.0.0\n" ] } ], "source": [ "from __future__ import absolute_import, division, print_function, unicode_literals\n", "\n", "# TensorFlow and tf.keras\n", "import tensorflow as tf\n", "\n", "tf.keras.backend.clear_session() # For easy reset of notebook state.\n", "\n", "print(tf.__version__) # You should see a 2.0.0 here!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Picking up where we left off `tf.keras` with Tensorflow 2.0: \n", "\n", "``` \n", "tf.keras.models.Sequential\n", "tf.keras.layers.Dense, tf.keras.layers.Activation, \n", "tf.keras.layers.Dropout, tf.keras.layers.Flatten, tf.keras.layers.Reshape\n", "tf.keras.optimizers.SGD\n", "tf.keras.preprocessing.image.ImageDataGenerator\n", "tf.keras.regularizers\n", "tf.keras.datasets.mnist \n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Learning Goals\n", "In this lab we will continue with the basics of feedforward neural networks, we will create one and explore various ways to optimize and regularize it using `tf.keras`, a deep learning library inside the broader framework called [Tensorflow](https://www.tensorflow.org). By the end of this lab, you should:\n", "\n", "- Understand how a simple neural network works and code some of its functionality using `tf.keras`.\n", "- Think of vectors and arrays as tensors. Learn how to do basic image manipulations.\n", "- Implement a simple real world example using a neural network. Find ways to improve its performance." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Part 1: Motivation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
In class discussion : why do we care about Neural Nets?
\n", "\n", "**Buzzwords**: Linearity, Interpretability, Performance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Part 2: Data Preparation\n", "\n", "### Tensors\n", "\n", "We can think of tensors as multidimensional arrays of real numerical values; their job is to generalize matrices to multiple dimensions. \n", "\n", "- **scalar** = just a number = rank 0 tensor ($a$ ∈ $F$,)\n", "

\n", " \n", "- **vector** = 1D array = rank 1 tensor ( $x = (\\;x_1,...,x_i\\;)⊤$ ∈ $F^n$ )\n", "

\n", " \n", "- **matrix** = 2D array = rank 2 tensor ( $\\textbf{X} = [a_{ij}] ∈ F^{m×n}$ )\n", "

\n", " \n", "- **3D array** = rank 3 tensor ( $\\mathscr{X} =[t_{i,j,k}]∈F^{m×n×l}$ )\n", "

\n", " \n", "- **$\\mathscr{N}$D array** = rank $\\mathscr{N}$ tensor ( $\\mathscr{T} =[t_{i1},...,t_{i\\mathscr{N}}]∈F^{n_1×...×n_\\mathscr{N}}$ ) <-- **Things start to get complicated here...**\n", " \n", "#### Tensor indexing\n", "We can create subarrays by fixing some of the given tensor’s indices. We can create a vector by fixing all but one index. A 2D matrix is created when fixing all but two indices. For example, for a third order tensor the vectors are\n", "

\n", "$\\mathscr{X}[:,j,k]$ = $\\mathscr{X}[j,k]$ (column),
\n", "$\\mathscr{X}[i,:,k]$ = $\\mathscr{X}[i,k]$ (row), and
\n", "$\\mathscr{X}[i,j,:]$ = $\\mathscr{X}[i,j]$ (tube)
\n", " \n", "#### Tensor multiplication\n", "We can multiply one matrix with another as long as the sizes are compatible ((n × m) × (m × p) = n × p), and also multiply an entire matrix by a constant. Numpy `numpy.dot` performs a matrix multiplication which is straightforward when we have 2D or 1D arrays. But what about > 3D arrays? The function will choose according to the matching dimentions but if we want to choose we should use `tensordot`, but, again, we **do not need tensordot** for this class. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Reese Witherspoon as a Rank 3 Tensor\n", "\n", "A common kind of data input to a neural network is images. Images are nice to look at, but remember, the computer only sees a series of numbers arranged in `tensors`. In this part we will look at how images are displayed and altered in Python. \n", "\n", "`matplotlib` supports only .png images but uses a library called `Pillow` to handle any image. If you do not have `Pillow` installed you can do this in anaconda:\n", "```\n", "conda install -c anaconda pillow \n", "\n", "OR \n", "\n", "pip install pillow\n", "```\n", "\n", "This image is from the dataset [Labeled Faces in the Wild](http://vis-www.cs.umass.edu/lfw/person/Reese_Witherspoon.html) used for machine learning training. Images are 24-bit RGB images (height, width, channels) with 8 bits for each of R, G, B channel. Explore and print the array." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The image is a: of shape (150, 150, 3)\n" ] }, { "data": { "text/plain": [ "array([[[241, 241, 241],\n", " [242, 242, 242]],\n", "\n", " [[241, 241, 241],\n", " [242, 242, 242]]], dtype=uint8)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvWmMZUl23/eLu7/95VpZW1f1Mj3d07OIPc0hRYr0cIYyaUkwAUsiZBmCZAvmF9uwYRum5E8CLFsSYMuSZYAyJYsmYdokbQomQYnyQomkSILUbM1Zeq3urr0ql7fl2+4a4Q8RN+591VW9THXNZPa8AxTqZeZd4sa7ceIs//M/QinFWtaylrWU4ny7B7CWtazlZMlaKaxlLWtZkbVSWMta1rIia6WwlrWsZUXWSmEta1nLiqyVwlrWspYVeWRKQQjxo0KIV4UQV4QQf+VR3Wcta1nLByviUeAUhBAu8Brwx4GbwBeAf1sp9dIHfrO1rGUtH6g8KkvhM8AVpdSbSqkU+AXgxx7RvdaylrV8gOI9ouueB27Ufr4JfM+DDt7a2lKXLl1614uWVo0Q4iGHdzrknWw4ce9f39Xgu3fOitqfxH2PqhuRQjgoKe1nEPd8H8Kco1BCvv3u99xeKXXf71FJheM61bXsuARS1e//wcl3xtsEX/nKV46UUjvvdtyjUgr3m+eV11YI8RPATwBcvHiR3/qt33pEQzm9Utzz8jtUi00o+e4vs6rO14u1+jmMBNIs8qIoUMXbF/KKIVlAGDTs8VKC7wcA5ElBnucANBotUpHo42RGq9UCYDKZEHguAK7rkmaxVQpCCPtZKYXj+gAkSYIyYwiCACnKZ68ptPcoYo3mp9vtXnsvxz0q9+EmcLH28wXgdv0ApdRPK6VeUEq9sLW19YiGsZa1rOX9yqOyFL4AfEQI8ThwC/hzwJ9/pxPqAc/vFPfg3cRR72TaOu/PYxDCuhxKwHShaju1i+P45rPAqV24/F4yleGY4yWCXBY45c4duchEWxpLmaDMTh6GDSbDqR6t6+K6IQBFmuE7IY2GtjyWyyWFuY/jeHjGUsgdCKIIgDRN64/+9kd9n5bAg45X61fv0SgFpVQuhPgPgf8bcIF/pJT6xrucA+iX8jstdvAgcVTdpHcoV8O9L67iHqXqPEjBGp8c8MIWwpwjpaSQ2vzXvr65o+PgefoV6XVaLJexPt5VICXzpV7wrVaHVkcv8Ol0SmQUTLpY0ut0AO0KYFyUKIoYDAY4jmfuKcjTDICwERAv9H0KJclT4yooB9d1zfH5O09c+ezczyWyf3yArKE7j8pSQCn1T4F/+qiuv5a1rOXRyCNTCmt5eHFV3SqQyPouphz7N1kF/wGJsj9IyiyDs2IuS/I4sTuv67q4rtm1kUhjNbhKogr9eT5dWBO+2QgJOyGLxQKAOB5ZV6Db9XEyc63AZTmdABCGPvP5HAARRZzZ2STN9PXCho8y90zjOWGo3YxlKgkDPcbpbI6SZrz3vLVvcwXuk/24V/R8vP24e4O734lyYpRC3cz9TncbKpEIdR+XwSiEMhqPEgi3jN4LMD69UgrHuhWSegKo4TmUCkMVuY0DuEism+HUU58FrquPyZcTsmnBYHgEwLVr1+xC/uhHP8rkaAbAF77wBT772c8C4G9sIJR2C+7evkMQhVy5cgWAMAzxfH3+E088gQr0PfudiOOpvkczbOD7ei7i9F0WfZl1eQ/KYS1vl7VaXMta1rIiJ9JSWIsWbR3o3U5SuQsKYyWYXyhBZQQohZD2h1pOX+EaO1socIuZtQ6guk+axcwm2uQfjo44Ph4DcDwZkWU6GJgkMZ5wcJwKZNQ+exaAlijonu8B4PAs/+I3fgWAnZ0dxuOxPf7G9VvsnNkFYDQaWdfoX/xGzmc/90MAdLt9nnzySQBmiwFIjYtAdN/jBNb2vHusBm1lrffE+8kjqX14v/L888+rOnipDmSpy3daVqIePVc1pYBykOKelGQ5N7Kw7oNA4prPngNumUIUAk/lDPbvAHD9+nUODu4COktgU5eqQJpI/3I2Z7GY2Xs5jmMBS57n4Tva318sFjz5sacB+OpXv0oQ6IWcpil+qD/7fohSitdefx2Ay5ef4PZtDWNp97pkJuPw/AufZrlcAvC5z/0w/X5fX8vdfd9zuU41Qrfb/ZJS6oV3O26tKteylrWsyIlxH+ryIOulDos9CRbOo5ZMZkRRU3/OMtJcWw6tVsdG8kHn/VWud1c/9HGk1vUyTYjaGmZ8fLDPjWtXATg4OCCPhxanIIQgMkG80AtIE707p2mGKgpzrSWuwU0UWc7Z8+dJU2NFzBc20Li7uc3g4BagA4V372oLxPdDjg60ZdJut2k0WvQ6+tkWsxHT8QCAZsNnfnwMwMtf/QoXL140n7/EJz75SQDyMKLValWWo+dSmHGGQWMF6JRLE0B1XZttEcIlLwoL8xZCWFeIbwJC/WGTE6kU3k3qCuFe5XBvFuM0Kw8vDFimpo6gKOxLPRoN2N7eZmkUQzKf4RnfQBZQGLP+aP8ub772KgBpvKBl0oYN32eeVYVFnufh+xpw5AloNjWKUCll3ZJlr4fM8pV7xLFJSSYFY7Ooi+IAN9BjDhsRZ3d1rGEwGHBu9wwAh4MRMlec3dE/v/7GFRpGqbgKOlFbj9MLyJf6WvF0zr/6nd8DoHX+41y6dIldc72iyHHNnMk8xfX0XOR5blOlSZKQJDom4nra/dEV/jq+4JR5znytFNbuw1rWspYVORGWwjezm79Xa+E0iw7k6WfrdrvWLG5FIcvZmEaod/RFsqTX2wTgta/+IW+8/hoAkecTeFrv7124QG6yB/F8xvaZPTtPRVFoGDIwW87JEn2fNE2t1dFstEHo1yWTBW++dZ0ShX3+/Hl6fX2f8XhM1ND3EUIQhXqnDoMmx8Yt8J2Ara0d3nzjOgBb/V3eeustADrNPufOnQd09WwZzFzMlmxsbABwdPcWg/3bNntx/vx5zl14DNCZEeFWrlCW6efyPA/X1XOZF4qiKBCeto4csJkV/8Px6jyUnAilAO8vs/BOCuFBx51OcWgas3p0dEirqX1wxwlwZM5sPASgHYX86i/+rwBs9vps9XW9QTOMLFIwXs6tD719ZperR9etad0MI7otbbJvemeIAn1P3/dxDTrScRzGoxEAruPxzHPPEYV6PEmSMB3rOojj42Ne/OK/1Md5Hru7+pgL5y/z4uFXAfjos5/g7t0Dmk2dWpzNYo6OdLryk598nmee+bg+33VpRVW59sHBAQDLfI7v+1x9XbssL3/9RZ588iMAPPux59jY2gZgPpvQMM+FKCzS0xEKqYStLVGq5maulcLJUQqlPIh84/2cX8pptxhUmlOC9/qdLvFCxxByWdBwXV59VbPbpcslZ3d0+Xm33bRBt+PxyBY0KaVsTGI6n7G9s2uDg4Hv2XmTUiKNdRKnSzCYhzzP7XWnsxnxcmmrGUtrAmB4fMTGjt7BgyBg//AQgDeu3uD8hQsAvPyKTkV2uhrP8KUvfYmLj2mSnbyQLOY60Lm5tcEi0SjI0PPt9+nKmCJeWmxGO/B564qei+tXr3D+or7Wx577JJ2WVipZlqMoYd0ernCQNTxH4K4DjaWsYwprWctaVuTEWQrvRd6pvFopZf+mDMjmtMpmt2eLjmbjCV2TFZiOx3z5i3/A2R1tJoeRa7MH+3dv2TkJ/JBmW++UwvWJDDfBYrEgjEJrRbiua4ugKCR5of1rJaviKEdBlukdPI5nCGA00nUJt27dwjHowTRNWZqMQZ7nliehEDCe6phCs9fmjStv0jOZFTcMGE60+1C89QZBoJ9lEe/hGBRmu90maGjwU1Mp0iQnNmAqFYT4xgoQCK6/pWMq+3du8YlPfRqAc+cfY3NbM5HlQJZmuMbSwRE2veq6p9u6/CDkVCoFuL8yKH9fVwqnWfZv3rZ+/3Z/g7s3dGDuyusv8/iF80yPdUyh1WoSBfqr3Oz3rFvgRw1iU4mYFzlupBfV3tYGWVLBnJXMUYU+rshT8tTwGRQ5jnGyJ8fjWtoyZTqbMjzc18elM6al8prNmCVm3pVjg4OuD9duaTawPM/pbrQZT4bmsILQoB2b7QbKFF71+i3abR2TmM9mBOYZOY5pBB6q0OOZTqfEZlHjBbiegUMXki9/8fcBTeRSvjONVhtFhVuQClsNSqkovoPl9G6ja1nLWh6JnBhL4f0yLz3ob/e6D6dZdnd2KAxg6OrrVxgNdfR9u9/n6GCfNNaBx8P920TGCjh79iymDIFCZjRNxiJstZgttPl/NBwQuQUq125CURS2YEjlOZh6B99R+L5+RWTDZ2ECnQJohT5hWcrsFMwm2pWQUhIbQKHr+BwO9JizLMM35dHCE+wf7dPt6uzDcHhkrRbfd3nsskYxZjLhaKBdhK2tLe7c0fURDd9lNpsic/39hoFDEOjn3B8MUSZ12mwppEnjvvLS14lj7a48/ezH2djaociNdSShYSyV7HS/Mh+InAilsAIzfY/yTlDo0iz81khZtKTH/05cgZbxuBmuQHELKYmMvzybzQiM+S+Wh9x68017bj7XKcF/+bWv0mw2bYHRJz7xCaJGFWUveZ4jP8Ix41qMJmAWkS8E0l1Y2jahChyDbuxvdDjc127BZDqhY1J6yTLGNwjAt968hpSS2czEGJaKjQ2NXBwOx6SxThUmybHNZERhk9zAtOM4pUgLDu/o4/rdLR67oBXBxYsXaflaWSiZ0zLoxuUkxjPuwjhJkETkGISlyqxS6bSbzEz2YnR0m50zGvNQxMfceEtnPRyleO5T30Wvr2MycVrYLIsjPAqjFJUAykpQIZFS2iK1OpelUE6VyVSrtHmqZowL3huN3Ldb1u7DWtaylhU5EZbC6ZZVvarEg62Fir1Ym+FlQJA8tSXC3W6X2UybzHdu3rSFTy+/8orNRIzHY378x3+cuwd6R3dd11oe9ZLmwWBgLaooiiwC0nE8HM+39xdIDg2e4MaNa1x5TUfvr1x5jTu3tMl+cHDA0ZF2EVpRi16vR7vdtWPOMr1T3759m96ZHfN8kX3mPM/JTDDP9XyioEFhAopSSltivbu1zdm9PTtPR/u6oGo+m1nU5Xg5ptPpIMxE14vDut0uvhea64549dWXAfjoMx+3fBJXr15la2cPhG/mpoHvm3oPKVBKL4tC5TWLdNWlFUKsdsv5EMk3rRSEEBeBnwP20Db0Tyul/q4QYhP4ReAycBX4caXU6OGHenrkfrX7QkEc66i+7+sFOZvpFF2WZRZRmMzn7N/SVYbjq1d54403AAijiGeeeQaA7/3+72M8HtNu63NGoxFN03SlHpPxPM+mHaMoQppin/l8wmB0kzt3dNXi7Vs3Kz6DRsS583pRfvq7XmD2Ea2gGo0Gw+HQjv/4eMZsqpXUYrGw66PZ7tDo6HHlec7RcGTHZQoWSedLOp0erqgavSQm3vH6669zYNyXzV7XugV5nluYtBu5HBr+B9CKoFysk8nEkqtsb2+TZ9rcf+2113j2Y58AoFApr7z6Et3+hnmewGZclBvVXImKjE6qkr6u3ATqzDbvJKvu5WmQhxlpDvxnSqlnge8F/gMhxMeAvwL8hlLqI8BvmJ/Xspa1nBL5pi0FpdQd4I75PBVCvIzuIfljwGfNYT8L/Cbwkw81yhMspavwbsw+SkAQGZbixQylFA1TYxB5HvOZrh1468obHBwak/nWDYJIm7jPfuyjdjeMooCiZnk0m03rctQDra1Wk8jUDiiliHO9G0spEcLl/NlzADz5+BP2QQLXIzdR+TRJGBpy1sPDQ+sujMdjHOGxs6PdhMFgSNkZptff5MZt3UZ0sVjY4GIQRIQGlBT6EUJhrRghFb2ehjzvbG+TmCzHwcEBM8MGDZCa7EHMnFarZc8fD4Z4pvCr3e6CgSzPp1OLkxCezxtXdKBx7/xlZJZz7S0dxH3qIyFeX9+/KDKUeRbhOtZFEYCj3ArboZStC9G/qO+v97MOTg+J7AcSUxBCXAa+C/gD4IxRGCil7ggh3j931imUunKwEed7eAEtJ6IQuChbteg7LlfNC1ukGa98/esA7HVdnn/+eUCbz5FJLwohKPLUKgKphPXdG42GTUPWYw2L+dz63kmS8PRTH7UVhHEcM51oM38+X3B4qNOI9SKqMGxYt2S5SBDCITO1EEmaV/TtwiUzvn+a5mxv6wj/4eGAuclWbG1tMRyO6TRb5tohsYmpKKWotxFM4goUlRkTX4qc0dGhVQqdTgfPAJaWy7n93Gg0SMwct9tt8kIv4uV8ynBwZJ9tZ+cMG5tGKUhBlUsQyJIHk5Li7v1ltiyD3vs669srD+3oCCHawC8D/4lS6vh9nPcTQogvCiG+WAaw1rKWtXz75aEsBSGEj1YIP6+U+sfm1/tCiLPGSjgLHNzvXKXUTwM/DZq49WHG8e0URzlV/4V7RDMUV9aCpQbzBFmeEhlI7eBgn2ypd8Tf+e3f4ns/8xkAzu40rIvQajVZGp6D4+Njey2A3b0ztoy5bh2MRiO7G7aaTWuiO47DaHBEIfUummUZyjxEq9VC5pqbYRFGNpOxv79v2ZgbjQa5lBwd6sBj0GgSmT2xEbXYM4HKxWJhzwnDkCTW95sfz2k3misVnCVt22Qy4eyudkt2d7et+e95DsNhbsa7wBWOtc6SZWyDg0EQgGeAWEVmf4/KuXBOYymuvHGVqNlmPtPz//I3/pCLFzWewfUbFjNTCLCkEUqiangaV1Rdux8stb+/17jkCZCHyT4I4H8GXlZK/e3an34V+IvA3zT//8pDjfBDJJb9WEAUhExNQdGNa2/wxquvAPCjn/+8TVkul0vbyj1XkjjRiuN4NufcuXN2wSyT2KbrPM+zL2673bZmr4NgPtdxiziOkXnFUdhsNWmadOV8PrU9I2ezmXULHMexRCSNRhMhod3rm58bzE3/x3qWIMsyplN9fhRFBCbtt1wmhGG4glwtn7PTaeGa2MNgMLAumJQSz/zeK1y80FkhiUmz2I6zlDTNaXf1GKezJdOZjk+cv3CO2XzJ0DxPv9/n1Zd1q9Onnvk0yqA4hePVHAkX3WSzpL1TVIb26YkXvBd5GEvh+4G/AHxNCPGi+d1/iVYGvySE+MvAdeDPPtwQT4fUezLcV4S0FXiB5zE7nnD3jk497t+9w0ef0v0NVJGwt60X+zQZMV1UcYBysX3qjzxPURQMRnqn3trcsQqnqBGSOi6khi59GSd2EbXbbWSueOstne4cDfRiBPA9hz2DE3jqicet1TEcDtnd1eGh8XjCcDSxcYx4mdpiKXAIg6pi8oUXngDg5s2bTI/1s+zs7HBwcES/owOXQRCQm/hEmqZsbGiLJgg9q4i0QjOIyEWBUA5uuWt7TtUdO0+q5/d8Fibu0m61ORpopbCx1QBZWJj13Vs3LX18sozxTX8JL8SyOLkCFMJWfcoaZ+ZpDSg+SB4m+/A7PJin5vPf7HXXspa1fHvlVCIa78fO9KAGMo9aChSu41JYai9VK8mt2Io0mk6PLVnOSZZT7hqQ0t72Bu2m3p1EUXBs0oCZX2gTGp1qe/7Tmhvgxo1beIFPr6stitlsVjVKSVO7u+ZZNZYoiuyuP5/PcXD5pKFMX87npCay/6/+4Hf52h9qw++tt97iscc0W1Kj0WA8NnFkx6HT6+EIPeZCCZuSBIc0q9Kjd0yswHVdOqYtfZ7nbG5ukpkU42I54/x57dPv7GzZa0VRZBmjiyKn1TWgqLTDcrlcqR+x5eJhYEFSDsLGZFw/oGvOn0wmdLt9FiYN3Gi0LHJyMj7i7Hn9zI4ryAy3BJ6PorC8Eeo91+qYWgmlR3Qa5FQqhftVSH67KiKFUChVoMqAlMD4npqYRFlzUiHzsvpQuwz9njbZi3iBQC8wpTKk0i/7nTsHfOQjmnswTjIbjGu1WqR5ZqHRvV7PKh/f960pn6ap9bWFOQ90B+jh0Yjf/33NNTA43Gf/7m1zvmvv+dkf/AEbh/B9n5u3NQLy619/iVdeepnAkLJmUlnkYLPdotWuOB5jV98/Cho27hH4ETJPbfcpIQRXrmhotZRPWPdhMNynbfpWbO/ucPWqxhXIPF+JScxmM/s5CAKrCPO8wDPkrHme4xs+BqEK8jy3adBGo8GxSckODg/om/s33Y49fx4vcIOQhsF9LBaLb3Hh3bdOTofqWsta1vItkxNnKbxbd6h3O+5+xz5ScQRFLTXlUGd+KiwQxkHZdvH7t24xnYxpmI2m3++ymOqdSiYJxwbF9/Qzz3D9umZb2jtzrip0Gt3l3NkLNvAnpbLFUp4nLO/BfD63JvvmZs8GKl955TW+9tUXLchpc7PPs888BUCWxGSGLPXq1Te5fk1Tr7uuy3gytce0GhGpGY+Q2tQGWMynLOZ6/L7vW7dmOplZBGe6jOl2+/huSQcnLJ/BeDRAFtqiuHz5ks2ejEcDNvo6MDhNE+bzuU0Fl6lNgPlyQRjo3by3sWlp1ubL2KIrO50Oo8mEbUPPFscJzZ4+5/atazz99FPmq5VkubFuAg+FshmgB1sJ9TT06Qw6njilAO+fkfkkMDjXq+ekqQaslePr4p+S1CTPaEchvqNf+MHhHUtsIvOUy5e1T3v34IAzZ3QXpDiO7Qt+/vx5Nje2LBvxcDK2L2mRFDQaerH3ej0bX7h69So3b97Uxw+HPP3009ZMd4ViZGIX1956ndu3NEx5PBzaFN9yubRKqdkKaciQiSmIygpJaDAXcZziB3osm5ubdoE2Gw2OJzrWsLu1Tb/ftynVW7dv2NhJq9lgs4QcZ4mFXKuiYGTo2zylXaESjjyfz+3YHNdfyZjs7Z2zY3QcQxgjJf1u17pfruta10ZORgxHGlpzvt2wCj8IW6SZtPcJA/9dcQqnCJqwImv3YS1rWcuKnEhL4TSJEhIlJMLsqILKcnGEwi2zIlnKDWOKjwcHuCojl3pHC0IPYdyMeLHk4FAH9Hq7j9l6gX6/T2CCXN1OH8/zuW0i5jvbZ5hOp2Y8FdJuNpszHOod+HgysQVMzz77LEW+sLve8XjEkaFNOxockGXVuOK53t2jwEWYwOL4eEYcJzRMM5em65FkZSepDp4piQ4dj62ePmY5j9nsaleGIqffadNp6uv94Pf9MRt03N+/y40bmuB1qXIyQyibZZltiJskqe5/aQrMms0m5aatqArFkmzBobFA+v0NC7ACHZCcTPXftrd37TlBlPPySxrItLG9RdQqMx4xOJ7ts5kkKY54H8tHyHuKpk6unEil8H5dgG9n0xcp7tOxquQzcBwKY77PxiNGZoG2ohDPCTjc1+ZwM3KZzTQceG93x/Is7N89tAsZx7XZAyklk8nEvpQ3btywbobruuTGfF4ulzYTce7cOevKxHFMv9+0imSxmNm/ndvbY2YaqMwmY0Svba9VFBVPQ6EEYdQy9/SJU/2cizimY5SH7wcU5ve9bpulUXCdTot0sSTzTRzh6NBmT1phxEVTvTlbTEgS890GASPTocpxHGbLBaHJPTabTXyDdsyyDN+gM9thyJ39AzNGj5ap8iwKxWw2Y8cUXi2WyxXCmWPDkj082mfboBvDVpekkCudqutSgtfeiY7vtMjpUF1rWctavmVy4iyF97rrn6SWcFJoMlAAJRVl1NkRrmUQPtw/sGAd6cLdwV0akWnYmsc0ze48GA9scO3xJ56xQbN2u21BOUWRkuSZbe6imYd0cG8+n1lLwfd9m2EQKMsN0Gq1iOOxvc+ZvR0b8e+c3+WrL35F37PTJDQ7ZZ63bSv3KGoShA1NeAq4XoBj8vmz2YLYBBSTJCEwZcwyyegad0EmGV5LIE0zGBGFHBtWp063RdMwU6sisgVJvu9SGLcmTnJCcy3QtRTC0WNrNpsIk9UoCmWzH6PRiP6GtgzSdEkQeHbXT9PUBmpFGtPuagvo1q0btEwwtN3fIJWqwloEEbWatA+VnDil8F7kJCEaS/BS1ZawqIpoBJYDYDwe0zNY++nkEMfBLnjXkczipTk/44knLwO6GnJ7t+Q7DG3tgOO4LBYL2jv6enledXIKgohGyf2IrPovOtV8SZkThj5FYY6TOWf2dHrz2htX2N01nad811K4Oeh4BUCSZKSZIohMZiLOmE9NtyYUDaOsHCFwjF0dNBqWrj5oBIShT9/0kgTYtMVdCwuY6ve7lmI+zWI2zQI/GB+zXC5tNqHZbFrAmJSS3Iw5CCIck67MspxvfEPHCj796e9mMpnY+e+2m2TGNUqzxC78g4MDPmq+1+VyiZSOVcRZVrxvboXTImv3YS1rWcuKnEpL4VHCnOvEp+/l/kJ5+I5DbkzhKPStmTufHHHjqmYT7kY5cqGzBYGc4arEAmHmcUxv05ip3Q0Wpu1a1Nql2dK79s2rb7C9pXfK+XTC5b1dJjOTt/dDS0EmXEFqdrBcCqKGNoXTorDjns/nuDKkbXbeo4NDC+e9eOnj+Ob5J4NDi61QWcpgoGsypsNjMlnVWCziWlQ/ChFC37PX7liWZsepSp09zyMMfVKZmEmsBfBciJoG5JRnOCUFXVAxP3U3HfrOpsU2ZFk1lk6ng2PaK6R5bH/vBw5PfeRxAH7/D36H7/mjP8BkPDXHSXvtdiCYjUzGYmuPoztH5rq7RH6rnA68Qtao2mr9HIS0zFsFDoXJxCgcvFPS9+FUKoVHKe9FudTdl8KU0JY+aZZleAayMp1ObRciRxTMTIPVRiRI09RG07u9Xq0tfIRjrtVohLz8ja8B8OTjl5ke6+Mb7RbTxdI2SM2ygtDEJJKisDUJoetZgI4uLtKLd3tzA5HOSU2xUTPwafj6nNFyiTC+0NH+Ab/3u/9S3yNJEYZOrtFo0Ot1aZi6hEarbbMcURTR6WiXx3VdC36qd+7Sc1cH/jhkhR5nnuc2E6KUslF9rUj0HPWbTWbzY554QpdlD4dDbt/WxWWTSVXSXf8ufd+1FPXnzp3jjTde5/Klp+w5jmmrlaYJ7f6WHX+ZoXEchyxP8Fyt5HJVIERpaNdQjMpBnnL7+0QohUcZB3ivsOlv9rqyAN8ViNJ3XaYUZquajAdIE43KZWUZCOlw89Z1zp3TqTetBPSbJKUTty0eAAAgAElEQVS0jEzTyYhtY0GMJyNSE3fY3d1lcjxCOBUZiDKRDN8PK0WkFF2zcBfzKcKMJZtPEfGUKDQcCL7DG6+8BMA/+/VfR5nddavfo9XS2IKwH9jWdN1ul06vSxQZtifPsxZBGIZ4XhnTwD7/ve38siyzlZlZlq0oDNetFElqgptZmltrYl5Itja3GdkGuy3OmjTm8fGxxV9EUWSZn9rdHscGl9DpdDk+GnJ3XxeB7Z05ZyHg5XgAZoMBYVtbU2EUks4ScoOnOM3dzN9NPrxPtpa1rOWbkhNhKQD3mJYf/HXvvfYHdT8hXKSs6AQ832VuynCT5RzH+JGL5ZQs0zv9bDLFcRybLvSDgNFEFxFtbmwxn5emtMO2sSZu3rzOc889B8Crr79G1GjR6WsrIGo07e5W38FEkRNPTeepRoOlaUgbuor2Zo8v/LZ2Df75P//nFnC13e9bluUg8Oi0dIaj0WjYyHvU1PyKyqRBXdfFNVkCzw1QBqkppbSgpJU6AVmY2E1lRUiprYtCZrVMUtWhqSgK5MLwTW5ucOvWLc6e1ZyLk8lkhX+ypJAbjsdsbWlXZv/wgI5pUjOdHmuafMOVIFVuS8wD368smMKxxWWL6Qw/iMjNc3heQG7QlvUChwdR/Z+cBPq7y4lRCqXcL9140qSuaFzhkOcZvuESDDyX24YkRRapXSCL2ZiRCdS1WyHdbtsGqsbDCWfN4l8uE7Ky8OnsFlff1DwDm9u7vHlVw6R3z5xlkSR4BhG4MLBfMPTvJujpey5tY/IfDw7YM2nH4eCQv/03/p6tstzstK2/fu7cOfomPVgiGEF3firdhShqIhzHYiNK5QC6YlPlc3N+UaOJy6xikOjFW8ZEosixyiyOsQtUKWXRiUJVimU6ndNudxkMtPLd2OixNJWd2n3RczGrEcdeunSJ69dumusKtnZ27fk3blyzrtxyfIzf0Oe32k1mJqbwta++yCe/69MIs2RKWHYpysYXanBmgW1CK8XpqZhcuw9rWctaVuTEWQoftDzI6ni/yMkHB0MFSGUDUJ4qmJiUliqWpEsdwFocj0kTvYPKhsve7jmu39QR87N7F230fnq8tGi9u7ev23RXv9tmaliWb926xflLj5OXYW4hKEybeYqUljlfZSkLU2680W0wH+omsv/bP/oHkGUUsbZitje3rCne2+jrFCcQNpo0Wto6SJIMYXZ2IVykEhV7uhTWTchziefcb66qbkuO42j3oyRbzbDPX7cuZC2FJ1G2QW0uBVmS0jLuwJ07+5w9q2s/lIgst8SFC4/ZjMPh4aEt1XZdl9v7d+h2tMuxWCwskMmPfNskxw2b5IYF68aNa3zsE5/E9bVV5LseibEC6y6DfMA+e98pOaHy0EpBaBvyi8AtpdSfEkI8DvwCsAl8GfgLSqn0na7xKOVhXJF3Orfejdh1XaQxeY8nQ5YzU7hDwtjQuMfLiWU5bjUjjo+PrY/u+77tiZBlGW1H+/E3b1/h+Re+G4DZdMLI8BdsnzmLF0TMjL/r+6FdcEWRMjrU9z9/ZpsGRsHcvMbf/x//HgCbmxvsbO/a7k1bu2fYMa5Ep9fDNYQnwvVtrwm/2UGpKg2rCmUzHiBwnBKDIFG5OU5iOywB1l0ASaGUdQfKeIg+36vRyVXZhzpLddhqaXZrgzPY2tYdpwBanaYllhlPj6u2ca5jK05936fX69k0cqfbZjDQCvPi2XNkMz3PMs8IoxL1mVHkKYEhinFdAdWwVxKsK3GFuttwShTDB+E+/MfAy7Wf/xbw35sGsyPgL38A91jLWtbyLZKH7RB1AfiTwH8N/KemQczngD9vDvlZ4K8BP/Vu16pnAx5VJuK9yIMCnQ9COsq8IApcMvO3+XRCbrIMroxZGMBRnsV2B4uikPl8TtTQPzcaDfbv6hLfixcfr3LrrQbTif6MF9gdtL+xwWB0TGgYlhwHlsZqaPseUbvED7jsX9W5+H/493+KnW0Nygn9gJ2z5y2D8sbmNm3De+BFIXPjpiiZ4xkOhyyXVQjd83Bdx4KcikLZGgkhBMIEQCGtsg6ug+uUAUmBzCvcged5ZFmViSilKIqVrEppWU1ncxzHsfORLNMaeKwgz7UF0ev1ODjSFsD29jaNhp6j0XCC6wrrJiRJZntADIdDwoap3XAhMxZgPoXhYJ8NwwG3iFM7/3WXYTX7IE9lKfXDug9/B/gvAMOewRYwVsqGZm+iO1G/o4haO65vtziOswKyeTdxPQdZZDRMlP/uzWuEBnyzf/cWgV8yOwc0TVXk8OiAze0zSKVf5MmkAs4IIbhxTfMy/sAPfg8HxhVQbsHWrvb7r169ytnzl5ibVnOucHDKlnSOR98Alr7xpS/xK7/8SwBsbWzSNwv//PnzbO09Sa+sANzo45UmuypwTAu6TBbkRclSLVZcJoeirEHCcYTln9SHmopDEVrKNJnltmhLKZ2SLBd1HMcWzuy5LrlbpTrLoqeiKFgu9SJuNJoslwsLZz6Oj21lo1KK8Vind70wsHwU0+l0pSFtkiTWz3fRDX8B3BLQBeR5aqtXheNx6/p19s5e1GNOar4D7951/DTJN70ShRB/CjhQSn2p/uv7HHrflbVuMLuWtZxMedi2cf+mEOJPABHQRVsOfSGEZ6yFC8Dt+518UhvMvtfaB+viOII0icmlNk3j5YLQRM2zJCZdavP/3N6uBb6EYch0OmVrU+/80+mUc3vaoLpx7WrVI3K5tCb2Il2waXbTTqfD8XRsmZiW02MaJipOFnP3pjaZf/X/+se0DUCq3Wxx/sIlAC5cuEBz6xyRySy4YUhhdLeUAlVmCVyHkudMSmndBYGOppemsRASaXgPHNQKNVopQghrNQgpQFTuoecKClPEJaW0VqMQYoUQ14pURGHI1LSEm8dLC55qNEJ7/uHhgK4BNSlkFcDMc0JC+/N8PrcZizyXFrLdbHcQJoSY5wnLxcwWvvV6GySlFYVjsQnaYpB2nuzzUxVKnXR5mLZxfxX4qwBCiM8C/7lS6t8RQvwfwJ9BZyA+9A1mAw/iNGY61DGBwBcc3tJ6MI/ntMpIvpK2GYwThDQbXesve45r03DTyYjnnvsEAMPRhIUhZtnc3bPHBH5EkmYUiWlm4rso4/v2Nnr8nZ/6HwCdkvSNK3HxsctcelI3eWm3OgSb23YhKarmt4VitYu2U/IpSHDMIpAKl9pLX2j3Rh+3CnoqF7N0hO2uBAqlqhSl67orcSRRO7euFEqlgixI8wzPuBmtqMFkpJVvUbTobeh6hcPhgP39ff3M7baNmzQakDmJTaNGMrCKYDgc2sKxZrNlqfHanQ3ixYyl4XrwwiYYAhkl7jWHKyCTOIU0748Cp/CTwC8IIf468BV0Z+oPldRf1ixLaDQD3nhZYw48RzI+0grCUwUbfd3WfT6f4weROUYzIg0GJbR5x6bEwtC3qcsb+xMabROcbDaJzS7VDEJcR1GYAqtGw7ddo/+/X/9VYtMOLQpCnn1GQ6O3987R6upAYxA1UY5A2oVYFWQpxwVVUQrZhexgtYVwJAoskapylN79y0OsRVB91pZFWegk32ZFlLtr3QqrizEu9GcpaQQhx4ZUNjcdo0BbV6V/3+v1GBhGp6OjI4YmaNtsNuk0W3ihfv2TJKEwmIOWSXfq7yIgNkVojZ0zFEVqfw7SJaFRCiinInlBW0u1STPPL20Z9UmXD0QpKKV+E/hN8/lN4DMfxHXXspa1fOvlQ49ofL9STz3eW0x1P/82ns8IHWnNyuXkkND0LHSKDJWXxIqVTxuEIcfHs8oPVcryN25ubFha9gLB5lYZPZ8TmBSY5zgslgvaDYMwzFJu3dQuy+/99m+yvaktgvMXLtHd0JbKxcefYnRs2JS7W8RZap/DcQwYB1DKqajlkDquABQFtluTkkKTiZTl40pQGFdgJQrvCIT5hTnSfJam/2YZx6jSkys1ElLCfczvTqfD0FgApZQxAU25b6YcZdPABWrluo7jEJjUaSOq2soP4oqmbTqd4Bt0Z5IsEU7E0Fh0OyYLUc3Uh0fWSuEhxXUUb129QvnaH4+HBGYhuY5ru0W5rms5ClGCPEnxDLGJlAW5qdjb2OhbmLTnNyjdc9evI/1ilMwpErPIXMX/809/DYDQhV5HxxEuPfYYuzsa/psXgt62DmwucwfPE4gyJ1ejpVcyR8kyaCgQpSugsEpMqlw/g13kpvM02osue13UKyOVUva6yqAZy6KiPM9rhVOFTV3Wpa6IF/MprVaDmQk0jhZTyx+ZFwWzoQ76bu5sszTxAcevSFpKgpuySlUpZfkWPc9jmpbQ5hs88YQmYkmWc7obFfLR910LaPwwpSNhXRC1lrWs5R5ZWwr3yDv1pay7FfY4ITk4OADDdlRkKbnZ6cLQs92SpFAW1FNkmaYI5+07qhDKIu3C9pbNPmxtb9uo/mI+JfQcFjMdqHzr+pvcuXEVgMcvXuCxCzq9eebMGSLDjeBFTWJZcgcKfEdaFKIqqjGIXCFkZQGUJb+OELZ3pZDCpDBNjYNS1uXQ/1epy8KWSyub3lRSczJWLkNhuQ3unf8yvVgvKFKyIE2Sqnah1WbflKUXStpCqfF4TKvdNgOr7qeUWkmJlpYLQK/XIV4YC2Q8IDUZnjxq0IgCmzGSUt6zpVYpSWncLFdV4z5NxsRaKdwj98Kc6y9OnfCj/LyYzeh229w60K3Osiwj9PTfQj+0CzwIIwJjrubSJU1TAsNPEMexxRwMh0PLC7h3oW1f/Pl8WTWRLQqkUCijfH79n/waZ3d0HGFra5OzpltUFEWWr3CZFhCUMGMfWeR2kVPomDmAcMAt3QQpK1fC9WuQ3TKeUCOtEdWisAu7NmdSyipbcU92oR5fWFEKjqophWqMoe8Rx7ElU3F8z0KgZ4u5vcbx8TG+STW6KOt+ua5LmqQrEOrSlYiT2H7nYRhacliES3c6xTetwheLBWE74r5yyv2JtfuwlrWsZUU+9JaCEmXQyqkQeMqrmaMOshaxVqKwATDhCZt/14XCZtfCxTe79nT4Mn46QqamRsEpiDZ1xmAex7h+WVzj4frGUohjyDNCY5ov04Su6WsYxylNQxaauT7KmOItV0KqLYgu4GcFv/v7vw1A04Eo1GZyb+ciXluXQUuvSZyZHdhN8A0CzykUQinbyqRAoYShTRMgnTJXIFEmmJiRWqSjklJbF2UjXalwVvwHnQkoigLXAISEkihTn1HkOXmWIE3gVRXgisCMJbU0bUI5eJ4J2ipFblCTMs8QQtE0VtAsXhIYluVOy9U88cDemfPcMU14t7e3WRjG6CAI2N4+w3hsvrNCkiy1+5fnLqGvQU6+N7eBSqlShJMS+Nq6uHv3TZ54Slt3WVHguHoshQRMJqcQygZjhQD3dDC8f/iVwqrUKLNWPteOcJya7ynsiw9Y891xXatU4jjm6OAQqaoqwXihX77Qc20Rjud5NlpepsQsmcg9XIalye87LlmqF5jXbDMb6+tubG1y98ZVXnzxRQB2t7Zte7R2u21Nac/zLKjmXllhVxZYIFO9Ya4+xjy756CMUrm3W9q9mQVV1J6rZHMuKvdBKhNfKSfRce35OLXUr+PY+S9QyBJWXMY/jGuhC6fK+xcV92OheOopnT2I49gyNjcaDUajEV3TBdtB2JRmkuZW2YR+wMggVVutJ3VXLgMAu3X9Bk89/SkAAuHZlGyhKkQmQmD53tW9s3ZyZe0+rGUta1mR7zBLoZIS338/miwbaJTVbuogLI5dKEhMLjteLBkMBngmnx/4rg1gNcPAmr9CVJRlZdmwZRxyHJtZSNPUUqANB4fs7Wh2pMV0ZnfqxWzGlVdfsxaB64fWUmi12tY60XX+ZncuqgqmrChQ1IKANWtope6hhl9AVhaEo7R9VQ8olsBlhbJsS6owQCdWGZhKIPB9i52EwDXjd5SqCrWyiuW5UKvt4F3XxXH1XAopyEtLBWmtswsXLlimqcFggONU1oEQgtx8F40oZGbg0KrImJmy9vlkDFJxaJZMe2PPEuQ6gU8hy/ekRrZUs8C+o+jYTr68szEk77Gu742M2+yDVHZRF1nKyCDqsiRGKIljou9RFNlKunpKTSlli26klLiuS2w4EhutKopdSKUXMBA2fDqGb/GNm1e5eEbHKsZHh3z5y1+mZRCOzWaTpqmR8IMATNflullfwIqLUghBtabl2567NiHmnNVmLnW3SjnCUrNJqWy3pcKtFQpJZT9LAVI4Nl7iuL5VGo4j7XfiOg5u3cUxxxdJjERRFFW6U9UUTDnOvCjI5lpBXL9+nccuXwZge3uLmzdv6lQyWmGUFPH7129bINnh/gEdQ1gzHo5oNto0DT1bOwqZGVr+9kZUoUNxKkXgiMpDEm+rmjqxsnYf1rKWtazId4CloOW90mIpVe10UmY4lDiFAsfo0ExmzKd6l8jzlHarYXs2+q6DU+7UMkcIU59AtVNrZmNBagKNHS+wDEee51nzXylJYczaQLgsDX7h2rW3SNPUPtPGxhatpmnvFjbs/YXrocrWclJVQUfHpZD12oN756dyk+y8rHQ8MRgFZf9YiRAWMiyokAzCERVIS0gc4ZKXDVo9QJUkDB4elXtgXYW8CkDiCIosJzHzlxVV05i6KyJlwU3TYzIIAmKDGXn8sUt0Oh02N8sK1ik3bmicSb/R4e5dbQUGvsvgQIOibt+8yYULFxgberdme4NJGYTs9HE9Yym4AWnJrC2x74+o1U6edDnxSuF+Zu0Hw91YEWSoFZdWrACW6tH7spzfdxyyVCuBLE3xHIHMS6SbawuHsEk/LWW2wTddomUN7TefaSBOq9VBmA7Q5BkTA54JA8/6ty9/4xWiqMmWKXZy/YDQgG/qHagRro3Q17FGSqoVf/ded6AsYtJrdtV/N0foUua6j2+i7AKFBUKJ+vQJ62IpIZBOWmYOcZS0aVDlqtq8SXLTGEfmhUVgSjSKMi97YxaFVR7SXL8cc5nJmUwm3DU8F62oQafTYTzWi38+n9t4w9VXXmdgqPCn45HVjK5QjIdDLl1+Ug+tyDk2Kc1zF3NKzeg5gqwkqcGxNSEnvL/Ripx4pfCwItS7eUirFfBKippT5VTpJVVD5OUJy4VeoMlywXK5xC2PFJLCvMh+q2nTY3leofOUI5BFZTkopSyxR6e/YZXH5tYmd2/qrka+K1Dm94PBgCKJuXTxMUCTrpS9GoTn28IlM6DyAVbnpa78qJSvqOKRhjOhishaxSAEnhDW9xfCqTAEUuIXvplZafkYJHIl1SuKYgX6W86Nh28HoI83vRXyAplXnQLqirwOU5a1x3Qcx7JYHRwc2MDs4eEhSimbYg7DkJde0g12l+OxrVg9d+4cjajqph36PlOT1nSCJs2uthaLPEEY69LxfRtpFMJDWEuTUyPrmMJa1rKWFTnRlsKjbFFv72E59aosAYZlWShs6TAK6yJkyYKF2THyNGY5n1rsvCscMlX1NcxN6jJJY8KgYe+RJAl5mcYSri2WCsMQYxWTzJcWqON4Dldv3NC/Xy7Z2tik0dCIuo2NTTzDAuQIV3OToyP8jk3bOZX/Q1HVPdw7HzU/Q6hadYOsfhCuWG0ZL7DIz8Jx8A1yTwqJQ2E/F6VbJRUFri0c0tyFBi3qYNO7BQWZ9ckrC0YiDPip2tPKcEUhC2vROY7DdKxTkmV2ATTT0v7+PmFYcTSWFsXwzh0uXdJcCc0opGHo9JrNJkmW0myaTJHMSGKd0szypf3+nCCsrAJHUD2ywDklfO8nQik8KA1Y/9sKWep9CpbeS5yhOrZGB1bm1B8QuyihuJHvIk3Q73gywjMIujgv8JyKK6FA2h4Ci8XCmqgSrK8vC8lgOGBrew/Q2ISy1j/LMnxPf87TmMw0TnWVx2gwrMbqCPobGl3nhUFVDei41MlbrIsiXJs/9xzdp6LmHFkl4SJwRRUTqGjZK/dHSkngeVXqEWXbqZFluCUKUji2+hEpiQypyTTLaLU6JKYCUaqcNNVjSZcL5rnJ/6NRnQCNMKLUlpPZdKVwTSIs5kO4Dp7pRJVJ/d2AdoMWcUnOmtPr9SwZTrvVst9T1GispI5L6ff7jEYjC43eO99mudSB39u3b/H40x/Tc6Fyokgr60US02zod2G2XBCcksDC2n1Yy1rWsiInwlJ4EG/Bez3nna2EqsbBWh0rQTdleA1K8IxX65moaJpdI11OaZrS48HhHZt9qHMCgGbksXe+p7GMBT+ZJqqlaRqnWUWHlhcEkR5zGqe0jQUwGRzZMt7Aj2g1O/hm5213Nqz7oBwfaWnWqvSoENVumqQprh9aO6He11GgbMbCoQLf6ESMua4yzyOrGgeb8VCSyPRbHB9Pql23UEyMy+X7HvP5nNFI77q3b99kOtGfx+OhrRPY3OiztaXNet9xrWWR59J+V/p6kjyrgFmluAhrgQkh8I0F4bseeZoxMDUqFx87z927unDq7NmzFiQ1PDri6rG2Bq5cucJTTz1Fq6OvkRcpieFd2D+4xXPf/QIAx9PENsIVQpAYl1O7F6eDtO1h28b1gX8IfBwdrP73gFeBXwQuA1eBH1dKjR5qlNX9Vv5/f1Ix675N6dQi6b7vkS5rMYGkrKzzbHHS9HhCHusUYsmtUL6MQeCtuDkl358+roYoLAqbLpvPl3hmgZeZBzB8AEZZHBwcsTTjarTb9Hp9WqZrchAEjM3L2+x6NIz5WkhFbCLpgMU/tBpN0rRq6SbyHCw0uILkqlpBEtjiPwozm/ZPUtm5pZCMjInd6XQsAzVCpwUBrt64ztHRoWVNzrLEdnJ69tnniELjluSZ/S6Oj48tZHnhaiVe8iOwkkauKlsdx6Nh4jitqGH7ViipCDyPnuFv7DQ73Mk1nmHjzAa3b+nPrWbbumwOkuVySWDa6A2PBjR7OiU8nQyYm2dutHosUq0IXDciM9+n6wVQfNv6LL8veVj34e8C/0wp9QzwKXSj2b8C/IZpMPsb5ue1rGUtp0S+aUtBCNEFfhD4SwCm3XwqhPgx4LPmsJ9FU7//5MMM0tzvm8tGlDl7sYrvtwAj8XaAUdluPEuWtMoA4GKJb3bDNJkjqEhH6+XWZcAKtEVS7vyO49TqIIqV4+r3VDInjcueiQ1yk5s/ODrkptnB0iRhMY/pb2uGpaDRptvXQcc0zUEszTMK3LK82HNQBkuQLBONP6jRo9nSZYWlibsX2+DUcBVF7ftIksQ+f5IkFFNtUX3ta19j/1Cj/kbjMZTPLAT7+/uc2dO8D5/93OdtJsARitj0c0jihcUWdDot6/68dOM6ea1Brev4NvsgpawKpajKvYVyrFuolEQWyrJdHR4e0uttmPMrS7Lf32Rm+lKCti5KREueplU5tJS8+OIXAfjM9/8QnnHZClVQLjFxSno+wMO5D08Ah8DPCCE+BXwJ3Zb+jFLqDoBS6o4QYvfhh6nlQd2g39O56kH1KHVuBe37FoZwpNFo2c5PmxsN3nzpVQC6rSYTwxic5xLfr3gTXNe3mbK6EvJ93yqFoijwPM+6FlJKu2Bd12ex1ItiPJpZivLlcmnpxvf2ztHv97l7R4/taDDGMczQYbNFo6njEM1mi57pilSPtkspbXrUjtNCkIUdi5SrHcDTMj5SZDh5pQiX84WtOJzNZuwb5OCdO3cYjXUcwQsD25EqiCL+2A/9a/jm50LA1HTNjuczm+pzhbJkNkrmFEbB9robzGYzq3CVUhak5uDiWESkQ6ul5y/LMquIfd9Hypx4bjpK5xmXLl0C4JWXvmFdjjROaDUM3+NowFZvi4VpBoMHmHhBkacMDJnL7ZvXuXDpaQCO5zmeIX/J0wz/lOiFhxmmBzwP/JRS6ruAOe/DVVg3mF3LWk6mPIylcBO4qZT6A/Pz/4lWCvtCiLPGSjgLHNzv5PfaYHalDuE+v383WUHsW1ivrOCnGMZiVe3ikQkAxnFsg1mzyYSDQ92XME9j2wcxz3PD/FOWDlcNUvO8KtRxXXfFxBZCUZgCHaEKG9zzhEOcaQvCC3zbC7HIFRtbOrDV7XZ54YXPcPbcBQBeeuV1Xnv9DX0tN6x25CCkY5iNt7c22N3S+P5Wq4HIK2hxBWrSwUUbgBTCulmiVgCVp6nu/2hM8zxNyUzQMFkurUfW7nbYM8zSOC6+ccWCKCRsRNZSOhwc2flUMre9Mubx0gLG6j0ZldJzWWYh6rLStEfpHRp0qz6/5EOTmvmpvH+/32c2NYHjtEA5+jtXmbTl6elijiccxkMdUOxtblhgWjybcn7nHABXr7zJufNP2vv7xoLM4+zUAAAepsHsXSHEDSHER5VSrwKfB14y//4i8Df5ABvMfjBFUO9+Lc/zbB1CIwiYzzThhi8Krl/VlXRb/QpI47qu4U0o05gFgTHTdWOTKmVZKog4XhC4gTVn69mLOrfBbDazhTqvvfYaw4Eey5mdPYqi4NhkHD72sY9x8bEnABiOjxmOTbPVLCcy9f+B61mzPM8SRNuxLo/w3KrTs6tKQKemlSndByrFnGUZRZajTIwhS2IKo8jIc1sH0dvsMRxpn9yPQmam89XdwSG7u7uW/j2KIgoTOxGyIDBp3cARVkHILLXpjnnurMQxtFL2ap8rkFX5Xbfbbfs5TWOiKLLNcGbTqWXQ7rc7VcVr2MA33+thWpDMlhwPtFK4ePG8VThFmtn4wnI+485NHfvZ2btki7g0iOp0kDQ+LE7hPwJ+XggRAG8C/y5aH/6SEOIvA9eBP/uQ91jLWtbyLZSHUgpKqReBF+7zp88/zHUfldSr/Eop4bKld+I4zgq2oATfzEcDu4Ms/ZxmrXpO707V9coduC51ayDLMjxR502o/lbkubXm+71NRgbUM5vN7Pgnx8ccHA6YL7TJPppMEY4BQiUZgSm9doLQ1ifUyWFDz9X0Y6VroxSq5AMQrq34q1dPSqWQ5vw0TZFFRp7oeThhLe4AACAASURBVFrOF2Tl5+XS0qm98uqrHI10nv/Jp57m0OT8Dw8POTg85Iap5ZBS2srCViPijHGT+r0OkXHfPFcQliXlQRsppZ0/3w9rfTGdFTyCaywIx62yP2EY6vZwxjr4nd/9HbYMm/bZzW0Cr7I6+ibQ+4dHA6IoYmyssDzPyc31GsLh7u07AOxd+gjXr13Vn88/wcIEM8OoteZTeBTyoPjCO4lyluXZVXpSVa3XkULrCIs8TOi0DKJwMabb0+b3l37vy/gG1J8uUzqmGMkNOrhuLUqPQlGmpDQWH1bjC47jUKDIpKkLcGFh2sp3N/ocHWkze7Pb4/COjik4MmRybMzyjZBX3xrR29T3+forX8ML9IL56LPPcN2UWweeQ5poX7kdRVy6qGMQF8+fJZrfZmNTuybLRFrCkSwvaBggVVbkSFO7IBxVcUYUSyaTiS0Cms6mNjMyi2NefktH4hudXT73fX8CgF/45V9hf6hdifEyxQ+bxI4ejxIKWQJ7jhNumEyEeGvAhmm48tTli3Ta+n6teEGz2SRy9T1917dZijxPycw4fSEoypiEcvFtTYfPfLYg9HTs6PKlpymD3cP8mK6vFYFyHIyHQKt7hkRETIWe86vDI3Z3tSI5nu2zp4eCGN2gu6PjKPHoLYKSrt9JcBJsEZssFImh3/e8wKZLZY22L8sTKhTk/dCQjyZIcaqUwoOUwds7DtWL6vV/FYvgqgghjEIoU3KKWUl4ErlgoLyHBwd4BtK3XM6ZHZtcuKFxlxbyW6zkzMu4ges6K0FH/XujMDJpCV6zOLGt5ibzGTfu6PTe8HiCNCbEy6+/hhs2mRzrce6eu8jEtE370te+SrunX2qKHM8oMlEUVvEcz6Y8sdsiMi9oEEQcDfUOuLm5SWr84DAMUCbAkOWJtaCEq5mjyjSklNJClvM8x/P0OX/qT/4b/LW//jcA+LE/8+d48pnnAPiffuZ/4b/5W/8d3/NHvw+A7/3ezzAc6vF3WgHDu9qCiLOU2UTvtKNhA1dpLEG/2yeKIoszCH2/6hUhVgvnSmsiSRL7+0YzYJnEdvyDwaAijCkKS8owm83Yu6gz6o7jMF8s7BykaWrTqGe2+tbqaDa7Nib1yksv8ZHv+m49RwgCL6pwK8JdiSmVxWUoZcflB6sYmm+VnJJ46FrWspZvlZwIS+FBZdHf7LXu+7Nw75+eVICoUpSe69gaeE8pDvf1Tj0aHrDdNcy+szHt0LgYiUbG2U5GrmOLm1yn2sE0Uq6igAvDmh8MuAZwU9/RCD3mZdoyclmM9C518+AuWztnyY1Kn2cJP/QjfxyAb7z8Ek888TgAV6+9ydKgA89sbVrq89euvslzj38foWk+m2UZTQPyCaKGHVeSJESGadpTyhYXjcdDlFK2FsFRjk3d3r59mx/67OcA+Pmf+zn+/b/0lwD4+PMv8PVXXtOPJeC//Rv/Fds90zFrOeUTH9VpvG4rovvpjwPw//6TX8Ex3booCjY3dK1Hu9mk023ZYjHfqWj1i6K4h6exylAEJf+D0k18yziQ77sVf2aB5WOIoshSzLd7bW7evGmb1xaq6k1ZFIo419bBbDZDutrqCTqCsbHgzj/xFCrD1q+4TmCL2OI0wzMxnbL3JdRQt/eVR7efnwilUJd7G7y+X7mXi6H0e7WbUJtIS3BSnmgCfVlC5JUFOTFf+aKGYfS7TY4OdDBJJktSUxCVmwBfeV/Pcy2Zhuu65HlFLZamVWflVquDKtNVnmeDYFmWWery2WxCZtySWbxkOtfowP5Wn9lywef+9R8F4PM/8qMcmzz7S2+8SquvUYxHXxkyPCppzM/ZZ/23/vSf5td+9h/wwz/8wwA89thlXBMTOJ5VfIWO59kX0/E9vKx6XebzufV9J8OJNdN/5Ed+hJ/5uf8dgEuPP8lzz2p0X7ac8eQl7WvvbXVRwPf8Ee1O7O3tceWKVhibT17mykv689NPXrZKYXujz5ZBZ57pbdJqtaySqr8zpele/r7ea6M8poRIlxDqS5cuWTxII3JwTdygEUb2HnvnzvLVl75Gq6cVaZIk9l6+K+i3u/b7K4OuiRrzxmsaBYvrce7spRrVXeVahqFv+37YXiCwCrKpFfS9Xd7pb+9f1u7DWtaylhU5cZbCNyMPsiyEECtovSrDUPX7+//Ze+9oS6/zvO+3v3Z6uWXuNEwDMCiDQSVBEgRYLKiRpkSLdNQc07Ll0F52omXZSWQlsS0XObSdJUdm4ixZViTLRZRCUpYoyqwmIREkQaIQfTC9z+33nnvK1/fOH3t/+ztnOCgCBiQAnXetAc6995zz9Xe/5Xmfx0EihLJv64/6NGe01z9y5Fm2NnT4l4ZDMlOoy8MhI11XYu6a66jX63ZwiVxZXUHXLQd1QI6NF7gEflUPLzGpXwllyOv4bsGsRqtZZ+dOPQAVjlLqDZfdOzVz0+b6Gvv2a83EHQvbOX70GKAx/rffrvUO52Znudbg+6Mw5J773oEygzvSKVOrerPBwBTQOp0OJmhiY2MNYVa2NE3xKwGx6WwkecKBAzpleeKJJ7jpxoMA/NRf/mmefe6YOdEuvkGKvufPvJMHv/41ZFP/XBUp+3fqSr4rEw6bVEKlMb4J+VvNOhUDalqYm8f3/QkwVcFj4fuuTd+yLLcpQhxHdjzeC3yCimejw/n5WTY2dMen6rnUKzqCGG9JC8fQ2ZkbZXV9jXrLDGs1yjmSURRRqevoZGNlmdygI88eP063s81GJzJ3bEHRdX2UKGY8BI73UvhBLn999ew14xSuVk3h8s8XhCN6xr5gLM7H5gC1Q3Ao++TDnu6nnzl1zHIMbqwvUyuQfvUATDvRUeU/0P3wwoKgasNCKaWeqQe8TJGmZb6opJhQb7KV6CShZh5EkSbMt3To2ifBrzVYPH0KgJlWG8e09N791rfxRw9+BYBudS+iQBdWa9x1+DYAnn7qCSr1Bo2WGZbqztiWWJIkeOZGFkKQmhQnCAI2NrQnrFarDAYDG/62223LUXn48CH6Q70vD3/zIT0dCcwtbLf1jX5vk1tvvM5e89XVVfpV/V2tVsPQxMNoKJnr6jpClsYszG+z1wjGQm1VdpZcx5m4B4pqv/BcHFVeCyklyly0PMuJDWmOmwl2zGnnWw0qnL+oOyHPnThOkmfMtfU1WN64ZIedJA6xoeOrjAkJz85sY2V5yWxT8cg3HuKmmzRt2/z8gl08YAxyDhbnMc6t8Z20afowtalNbcJeM5HC1bJv7z4UIiWlCTEmFouEXCGNvkA1cPnGo08AkIQDNle1p29WA9KRBt90m03CvtF9iGOzSprRXT+gKPoEjkNqUoRUpjiiYArKGQyGdM0qmBJPzEgUVfUgisGM6jbccr6i0W1z6PAdYCKP1fPnOGpW9FwI7rjhoD3WTTNvMN+d4clvflMfVxRz3U3X2p77em/Lks26ro9vZjdGYUjDaFkqSkRg0SEpFrdms2mjhs3NTWbMStvvD9i3V2tTxElCzwi3Vj1BjiI2Bbluq878TMvsW2TPX9XFpnwLCwt0TWRTzEmU8yJj8vNjku/jfBZBrWr/luYZaRrjG/DTxYsXbXQx252hYaIeqXKbSl1cvES1VcczHYf2TNeG/7VqQNMMTnmBb+c1WvUaq2ZWwpO5RjqaAve11yfML+ghqmrgoww2JU5zy0hVpEHanr+QKBQTOhiv1F7TTuFyYpUXSjGeD9hUcg+KScdQdCqVBDJ7w2ysrXH+7EkAttZWLGApDmNmzEO8ungJx4Tlc76PG/iW6Vlvs9iIY9WePMclTYdmXwWDYciOHbomEIYRwjzUaRrbSn7guziGzbmiJJlxEHv2XYOXJdxww436ffUm5y/ozohbKacPB4MBB41gTBKNqJkWZHfXTi5urFtikW63y4ZBG7ZaLZvyBEHFPlRxFJWQZylJkoSOeUijKOHo0SMAvOUtbyPN9Q2+sbFpb/DBoE/FoC5938fzPPtQZVliX8fhiMykQvMzszYHbzQaFjUpDduza5ykK8qUYdzhI6QFAOV5ao+lUqvieR6xObfnzp3luut0HeP2Q7fRN2nOybNnuPEW3SF5/MjT1FpN1o2wcKfTYW1FK0k1Gw17ztY3N9i5oLssG5vr3P+u+/SxbN/BkfNrnDmj05FvPfoI1x3U98PO3XttS9j1AsS43MCLOINXw6bpw9SmNrUJe01GCs+36j9fEfJK0UTxOjGhnCccyzyUJJHFIiAzqjWfo88+C8ATjz5Mv18KjG4a5qBmpRyp9jwPZTD1/dGQWrNR7ptyrC5kp9MhMHQ7URThmHC/3a3jAKOwWPF8BpHejuu6dnX1ohEV30Cr5digk0xp1Sq4poefhyP27d4JQJzntqvRbdZQBufQqAS4TlHAG9BoNGxxMIwjCxn2PM9GVNEoLFTtdXRgjj/Pc6pBxRb6GtWaDZ9PnTpFs6NxDrV6ncwUUD0/IDPj1ZGNOgp6uNBet/nZWSvcovv3k2S3AL4jyHNli7sIVUZ+QkyMTmdFJ8dxqJgCZRiGRFHIOSM+2+12mZ+ftcdfYBZm5+c4fvI4AM1uGzcoORj2z+21x7yxsW4Zsnbv2MWqSdnazQ5Hn9MRVLvV5JabD3LXm+4A4Pix05w7r6O7LJUs7NKphF+t2YE93/ctQEoIYYrQ5piZhM3n6urhFF4zTuGlU7Zf+bPP50iKllKepPY9jWoNYQZ9VtZXuXTuDJcunQZgs7dKATnftXM7B67RIf5zTz1G1bSqZJqwWtCVRxGtVossNTUBJenO6vZatVoly3UoKhV4vv58Ekc4joPrlkQtjiFG8R23PBZHERo26TRPqFaL9pgOiwteQxH4RCYUTmVJva6QCLeYfqTkaxQObrVqbzjPccukVEqyoj6RZzbpypO0FJbJNedDcX8KR1kBFs/TIixgZjyM8616HqpaAr0cyofXdcvX3lj34HJafNu2VYAsfxZSoSZIWEpa/eL6x3Fsh9PiOKLaqNvUZH5+1qZsvV6P2W3aqdW7bR7+oq4v1VpNhlHIwsK83Z8bD2pg1vHjx+13XVpasg4iyxJqVf29D/7xH3HbO76XbQu63rJv3x4Wtpv0Mc4YFRwetRqxqZlkeQJC13SCSgXfc7XWKejuVQHAc65uwD9NH6Y2talN2GsmUviT2JXEY64kNSeEsOGrcJSVHk9GQ1bNTEMaDRkNeiwu6lBu39697NmtJ+O6zRoPf/2rANxw482cMKHgMExY2K7D9bVej3anQxzryKPX6xOYiCKKE8uMLNwyLHdzpVd9E/IlWY6glGArRpRbrQauWWm8rELdrEC1VpPWTJt6x2D/gxp18+2JVBMhd2Gu41BgYoQQRLgEZhV3HLfkIMhlCcRSOUIVZK+ZpV8riF6LOr8Wg9GvPc9D2gjALaORMSi3i8AZiw5cUc5OQAlVlmk8ETUU6Ypvtqnykri1iHQmim/KsQVA13UtH4bn+YSjAc2mDv/r9foYTN0jjPTxb/Z6OEaDIpYJrVaLvtGumG137PfddNNNnDepyHA0tGlZQsxzz+m09Ife+2f5/ANf4vBtOn2448132zSx223SMZ2pXn9gRX78SoBvokGZK8IwtNiIaiWYiBouIyV/Rfa6dAovxKdwucMougdCKRpGHHTbbIdd23UOWfVdhAe9RY38S9MBualuP/3kY7zt7Xq89/Of+UOd7wFdx7cV7nQwNO04o76UJtTNtkdxYi+i4yl6hjBlttOl1ayzZUBSuVJWtSpPEjt6jOfT7OoOQZSu4dV09b3aalBrN8s2lO9awJMvsVRxQpbUbs6YCpYSkrpXsVVuIQDTEstVVjov4VgtRtdxKHCPoiCFkQXdeWoBT1IIPANE8jzvik4BDBlKoQWZS6vKNJ5W4JapVJ7nYx0jhRgbokOqMSUrZYFYgK0BVOs1XONEMqW7J8X2+/2+FZh1PJfAzDucOHvSLir1Zh0vcIlDk84kKesr+vpt37aNa6/VdHjHTp6wqMegVkFF+r44fuIY73//n+XUKU3p9/GP/Rb3/8B7AGhVAqQhg6kkPs226XKtr6FM+qDH7R2LwkzT1C4knue8MWsKhb2UesKVhqaeF+ps7pYszqgbmO2gt0G3WShA5yyfO8+2OU2G8cwzJ1hd0SQh1+zdzyf/8+8DEPa3mO/q97Q6s8RGcqzVcsjz3FJ/y1wZrAJ4bkC1mETMtBIUwO7dexCuYmQm5oQQOKbPnyQS3wzkxEnOnEHx9Qch1Yp2N92ZWZqtDrkdAHVxzEMtHYGnSkYn26pDMj4nqnUQxouyxZSgxDUPqOc6FunpCads9UnzUI5dj/GopLhxhcBiKxzPsY6rcAiFwK1yFco4mFRlpW6D61qOQ6GkJXcVqqB1L2sHxfbHdRuUUqXAr5TUDfX9+UvnqVar9Pva+YdhaIfA+sMRc7t0pLjy2DeITO0pDwfMzHWpFJoOeU7dLBJPPvE032OmVN9yz9v47d/+mL5+0ZBdpoZw5swJRm6V73vv+wC45dbbeeCPHtTH41e50XBNtGfnGJjBt9nZrlXYSpKIil/FNdtP4wRpULW1auP59Atelk1rClOb2tQm7DUTKfxJOw6XA5meL6UITXuwXquQGK/bajcsPbfvKObn5/nsZz4NwLXX7mXfvv0AfPlL/5WGGYntNFs2fG00O4zCMiwVY/x/wnNJTO4bxgmeEWnxfR8/0OlLs9mk19sgNB2DaiUAZfQHE9eG0mmcMWPae4v+Gu22jlRmu3PUqw2UCR8DNyAdk5IvuSixSbajHBvu6/OmUCbNQDl2jFvm6UTunxtMv6BkRvZcB9dxJrisxlf3AtiFyMDkykJNUGOa95vUxMOqYuVpaiMIocr6hsxTPErwFFLZnHo8UsiyrOySKFEK7yItO9JwOKRWq9I013ZtbcUec61e5+FHHgEgShJmDXfjam+NTqfDyLSoVS7ZMvUFz/f59Kf1/XPvu+7j+3/wBwB48IEvs2pG1xdmZ1hbXeF3f0dHET/ygR/lzXe/CYBmd5Znj+jW55mL57nn3ncAGghVICiDICDPUnueK5WKBcnpLsXVKyq8UoHZnwX+Kjp4eRLN5rwT+BgwCzwK/EUjKfdC3/Mn3e4L/n3cQRT95/W1VWqmJZYkCblp9Z0+f4aTJ47yjne+E4BHH/46J0/pC1St1aiYltbNB69npwkFP/eZz5Ka2D0xN20x5ZamKYOBEaLt95EmGOt2Z6iYAhTCJQxjy/XgOA5pYtp4gW8LaDIVVpnaUy4zTZ331v0aIlN2cIZMUTVov1wI61QmzoVUWt8C3cLLScp6gyodhJSSwC3rCFFSaiW4JkXxPE06W0C4ZZZPOOkiZXOFsqmIcMZqABSvi0KAO1FHcI1TUbmy3BSecFCuwTUUA01jaULhCLIsm1COcsbIegvS1TRNSdPEIkodx2E41IvHbK3DQw9rOPiBm2/ANSjMa665hjSNrQ6EjBIwhVe/7rNnu3bep06dsvfED773vXz1v35B73McE9QhMmnmF7/4ee6+R6MdN9bWueEGPeUapjlPP/2k/n1vi71msnV2dhakU9K5eY6ltTeX56rZy04fhBC7gZ8B3qyUOox2+z8O/DPgXxqB2Q3gp6/Gjk5talP7ztgrTR88oCaESIE6cAn4HuAnzd//HfALwP/zCrczYVdqPz4fqrGQPw+CgIsXdRtya32N3prGre9amGPPnj088YQGqYxGI1uJvvP229lzjWYcHvS2eOShbwCafquQfsfJSZLErjRbgz4dw8akhLBAoEqlYlez4XBIGIZjgrPKtqeq1YDcrNp1v0LV6BrWgipzphNRC2p4uOWsPx6ZWbVz4VjegHFQl5DKjlFLKRHOeMU+n4gaiuKc4zj2M1CK5/q+T5IkxNKAbLIML0jtd/uMRQ3jMwnmeB3HRTiO1XwcHxF2XRdRjJsrZVulMk9tS7KIEsZnMSZATlb3VeIXal15eVxxHFOpBLalWKvV2DJgtOc2Blx/vV61Y5WB0pFC0wyGtdu6WCmDzEYKYRgyV9VRpPTg9OnTAJw7c4L77tbErY9/85sEwB136JbkyVNn+cLnPg/ALbffSWAikGqjye7denZiz779DMx9tbS0RDWo2ZRHK2QVCNuSwu1q2CtRiLoghPg/0IIvIfA5tMjsplIFsR7ngd2veC8vMyGEbTU5jjOh6hTHMdu26Yr92toaJ08+Yz930003AfqhqtZ0z184Lk0/YN8BzQtY9R1MxEh/bZFNI+J65uSzHHlM8xTccPBaqobl+OSK5NwlrXgEcPbiIk3HtI3yBCfTD8XW1gapIWlZWlzEEy7S0TdaGCYI31Cs4zJK9fv2b2uzZkLemV27qXT1ceW1Dmm1BaZekWS5rcw7wkE4Ra1A2odaIO2oqO+CdCrkZvBI5XYYkUwp68g8zyOo6u5JtJngCF0T8UVG4GTESj9UeZqC4SNQsctKT6M49+7fZ1GUMk1ozeobfzgaaWHeAiGqclvTEJSDTjguaV6wLHvloBAxuYRcFk4iQ6rCKaRkRiA49xyiQsPC9/nM17RTbzYb1OoV9jf1PbC0vML27frcNrs+vqdTsdlWh60tfSxB6hJU6tTr+qEcpFvU6oaKvbfB1rK+T97znvfQMboVn//il/jM5zTO5S33vI21zR5PGzj9ve94F46Z0jx7/hLqnKbl73S30WjplqRQLp2GTktmmh5pXsoE4JS8C1rF6+qNSb6S9GEGeD9wANgFNID3XOGtV8x2pgKzU5vaa9NeSfrwvcAppdQKgBDik8Dbga4QwjPRwjXAxSt9+KUKzD6fWeCLlBNCK+Mhs+/7NhQcjUal/HrbsZwFDoJoNLCjuxE5vVWNbty7e4E/+L3PATDorTJnCo1hGFmJ9YMHb8N3y0hlfn7Wph9nzpxhz249uryxuWbx9WE4xFElsEYpBQaXH8aRpTZb27hAo6H30/MaJZVXccxCf971PcqMqQQVaVapYlBrnH9AkSNIcxtnW81Iz/fxTHET10EawZJaq2E7BFJWGcUjQjPgVAl8WoZU1fM8MOfigQce4C33vA2A7swMA5NyBbUqrpRWvSqOYzshLKXmtwBgrICpxlKEInUofk6SxKZfaV7iHDzftxMRW1t9O/TV6/VQNK1ClecKOxKdyyof+tBPAfArv/Ir7DIivv3eAEfBaCyNKPQ5atXttoj51a9/nbfdcy8AP/pjP0Hf4Fk+/olPcP1NN9m5iEuXljhwrZ6duPut99Df0vffZm9g0bGKDNekKI7wJgrInudc9ZkH+92v4LNngbcJIero9OF+4GHgS8CfR3cg/hJXSWB23Mal2QpK72CcGnvMKVQC81C5wcRNFZhWj5SSIAis0IpMcotI+9wXv2C/s1qtW6q11bU1rjuoiUyq3W1EY+i49fV1qzZUr9fJ84K2TVj4cuB6xHHM4qL2l9dddx0DA2R69NGHueYaPTHXrNUpxo7a7aZ1IhW3huNoWjnAQJHNAy/zSVpK83uZ52XuLiWb0VbJ2xAEE63drAAsOR6u6dhkYYYsBrjIEJ7LnBkcEgJiM4QVxakN5ZXKOX1Cd3KuPXi9be+O+gOq9RqDTV3vcRDlxKOUyLzotY3R3ClsWpPkmf5nVKeTJLNOIcsyi850XdeSl2z2eramECYxtbRiF4L5uRnLraBUjU984hMAvOlNd3P8uN7/Xm+DmXbLOoLA861gb6s+RjfvVXjuuFYAv7i8xh7j4H/iJ/8il5aXOHNWpwn1uuDUmbP6M9UW0qAw5xd2kNk6ikAUUHTrFMqpz/Ga1Dh27JXay3Y1RoL+4+i245Pmu/4N8HPA3xZCHAfmgF+7Cvs5talN7Ttkr1Rg9h8A/+CyX58E3vJKvvfFLM9zi6nXtGCTodQ4139uooagWrXhs+f5NhTL8xzhugRmSVrvj6woquP6ehYYaFQ6dFu6UHbw4I3MzRhY9InzHLjuOs6ZQtG2uTkSsyL3+32GQx0yb5vdxqBvOiGVKqdOn+Dt9+q5iv/8qd9nxbD4tNptHn/qcQDuufkGEhNKdro1K1Zab84aglKzjOZxmSag7KDV+LlIkmQC1DMzMzMB+JHmM4Hv2zTFdV0wYjSVWtVqQKSVACcJcVQBIc7tdwdBwPr6iv2uxx57DNB9/uIatdttknBEQMm6XIxoC6nIC1LbLNf/MBqRiT7+JEsM1kCfmzTPyIrOCqoMs5WyAjhbW1uM167COLadhHHA0/z8PIuLumj4/d9/I+fP6hTjhhtuIBmFDAZbZj9z9l2z256npkmfRmFKvaa/N8okX/maBkLt2LVIq9vh9rt0N6JRb3L6jB6iOnnqLLsMQ5aTSfxAFyBTR+EYyDuOgCLdYxKboZPBcqDsldprBtH4J7HLgSuXY++Lm0UIQW7EWATYXM3zHRsi5XlKHI1IQh0Krq6uWBTZzt277Dz8roVtpdJ04POoQb0duO4mVhaXbWg+HA7sDRrFIXt26RtnZWXJhqhC5txzz1v5t//23+hjcARLK/pG9Ko+J05oWvQ2wlK0C9cnx5CveA4yTcvWoetSyFrpNuBYq8481FmSkpsQ1XEcBlt961gdx7EoQs8p5x1UXtYn8iwppwyFQzbGubiwsIBrOinnzp2zvA/PHHmaXYY8xHG14K3el4gkTPAL1W0pKbjshVRg0qw8TS2iMk0iMiOmkwtJmmfEpqYRZyl5US8RAmXrTdhaTZKlDMw1brfbeJ5jhV6SNMUz53JxacU6xZWVlXLiMYw4ePAgjz/8MAB7bt0+xqXo2od6Zb2Ha7oX+687yJveqlOs3mjE9u3bLe+G8GrsP6DrXY1Ol9Onz5t9m6dnULiVoEbuFICzb+8uCNtTFtPZh6lNbWqvnr0uIwXP8yYKY+ORg+NM0lQ5XinU4ZvVJKh4SINwqbp1XFdgFgru2nMXS4vaa/c3Nti+TeMP8iyiaqYfjx97jgPXacyDAFELkgAAIABJREFUEIJOp2Ojg/6wz3BDpwkzc7M2Ldi9awfPPPkUANcfPswnPvk7tEz4ury6aucCBsO+DQtPnj3LPW/XlexiVQQzukyGU3QZxBjBp1NOLxZdCjBphIHFep5HsxrY8zQYDGz3JK9UkGaaVIix4mgQIEwovryyxGCrJGI9dfwEy8t6snTHjh2cu6i7N8vLS9x55536vPS27FRhGCc4CEYDHXkIqUjHrmexKqpcXsYNYfAfMifOUkIzyxIniR0dFkJYhiXlCDtePi5z5/k+9Xp5X9RqNTtiv7y8yt0GcHTi+CnuvFPPJzz6zW9w+sRJ/tz73w/Atx55mN0mCnIdh8jMwtx5x12cX9Yj8qMoZb6uMQfXzO4wKtgFh4YkMExcw2HM3KyOKOIsp9OeMe8Z15KUE2Awc+IAXajNr2Kk8Lp0CuMPvhAC1y0FRi//WyG6kmVZUZQmzxSRmX2oBB6O71H3dLvq0tIikWm9pVlOYEaf15ZHnDSV9G53Dmn4A6JBj2MnTxAY/se5uXn2GYHXCxcuIAyHw5EjR9izR6cS58+fpRr49kGXKqNj5OOTNLbha5bnPPa4xsHfdsttNiePoohapWpHZ2WW4pubOlUlOjBXEmnzUGEr557nIXLJqnFYp06dsojMXTt2smuXngnwfd+e17WlRZuTZ1nCs888w7PPamDYtm3bLPjn3MnTzJrj/KEbbrAtuLmZWYv7b7dajPoDMvNQIzU/AWjnVVKzuWN1j5TMdjgikiSxXAcTY9tjrReJsh2b5bVVO5FVOMric+12m9B0IkBw5IjWf7zrjjtte9lzNRFN4aS2bdtm25i7r9lrW5KjOGGHSRlnd+4hMCC5OJe0Wx2OHNHgpWuvvd4Sw0RpZusIuZIMTBtznHhG39KlY1RK2VF2pZQFQl0Ne106hTy/bABnHM479lrLfhUSYEPbF/cCHzcznIhBQBSmJCY/DJOYSkWvIlmWcez4KQBuvvEmtm/XK8Py8jJrK/oByaMIhWPbbdu2b+dhk3fedvutXDqvC1Xdbpt3mqGr3/j1X8PzHUJD2OGiCIzsWa1esSt6lkk+9ek/AODNb36LfXCSJMJzRDmg5GgkIkAus5JbADE2KCOsBJ3jODhK2Sio4nv2BgfYNK/TdFKP4tJFHUGtrKzQ621aWvSFuXkahp/immuuQRh17mq1aqHAw3BAzfBBDAYDAs+b4HyMzAOfRFHpFDzfbj+OY/swh3FEmpacmzoyGKsxmePIpLSovyRJbA3GdV2E69jr3O10rFNoNtoEJgI6f/48f+kvfgiA//L7f0Cn1bAtymv37aVnHMH6+jpz5t64eGmJO+7WhCsbGz3CFR01rvX6zHVn2LHdAHyd0uEiXFtTSaPU8mbkeT6hPK3vdbOyXa5vwtWzaU1halOb2oS9LiOFy3OrPM+/DcwEk7x+rutadp/hcGhrChsbPUbDHqORxrjXqxVC06Votma4+bDOiVcvXmJpSefKp06dZacZu13aWGXHrr3MzekwM4xC7n6r7sj2NjfYsVuvIMeOHqE/6JX7opQWOQXqjaodvd62bRs9M/ffrbapGQq29fVVOk2dn47iiMDzcU3KEkVROWdfDayWYY7CNbTw9Vrbria1oEKcDO3K2e52qBY5tijrM6PB0FLIHXv2mNVw3L5zO3v27WH7do3wzNPEVumDICDzCgGWfIImLUl13aJRq7OxuUHHzB6EWWbRhkFQDipJoXBNx0fliQUlEWvKNsdsJ/Aq9Ez64/oe0qiCqawEbIVRRGQ6GfW67rYUx3/06FEOXqc7Ab1B36ZcSpXvabfbuE4JjOv3h+zdp9PEXq9vz3miXL71hK4diaDOnuu0YM9t+w5MAIzCUWxbp0K4dj89v0JWTHQJ+5+Co6qMjnj17HXpFK5kzzclGZu81XHGCVkmodCdbqk14DsuTYNHSKKYlUWtAVCvt5hd0J/Zs+9amyLs2L2Hw4cPc9EIkeZbiu07tCNYW1tj3gy33HzLIb70pS8Bej+2zc1z4tRJs82AelM/FK5w2LNrDwAyymxO/q3HH+X+d99vDtBjMBoiVcV8xvKmsrGxYQtwo9GIG2+6GYAwjHFMHWQ46qNcG9mjhEIFlpkRx9ysjZkWdZMKdOa6Ze4uFZVKxSo5xWHplFzXhTFC1fGbuHDQi/0l2s0WS6u6pjEzM2NrGmma0+q2zT6H9M3vd+7ayeLionlPSmemS2hajGES25Qjy3ML3w5qNZvmBUFAPvYo1Wo1W28oCn4A/hjx7GgwZM3IvmGwMIVWxyhK6A20877pxkOs9/TrQVI61VsOHUIZngulFDIX1pF5gct4oF7AzMcnPouF7jtt0/RhalOb2oS9YSKFwi6PGDyvmOEvmXCFdHGFbk+5nsDzXFu0E44iKpSb3IB6UyMXFxcXbavs0cceskNLh27YTzgaIQ2Hwt4D11OtmZC90bIrwL1vfwf/9B/9Q0CLzARBYFt09ZrLTpNmhGGMb0A1QpRsyGfPnsc3xcg8zchlRpKUYKSikj9eaLzhxhvZ2NAr3czMHLHhXPA8h8hRZBSiMWODU0g7ROQ6Dp4J3wOkLXrFYQS+oGJWWOE4tvrebrdRprMDkGclatL1C7p4yTAc2e5Lr79V6jxWKviFgI+UrK5ptSU/CGz3IM0zqtVSM1PK0J6nOIopZJTm5uZ44MGvmWMOqJtUKo4jpJTMzGiqtYW5WbYMirXTnWHNbFOIsqu1vrbJNbt3Wlas9c2eZfVaXd+gZboUdx26g8ef1VIAWZ5SK8BPUQiiMtEdKQFnrj023R4vz1NpV3G44UXsDecULu9EFCpKUkqkLFB7ru1lCyGQubKhcJZltiXY2+zZm00qh8BMD77nfe+zeW+Ow9LaBgs79TTd6tqSDSt37tnLyWO6BXXjzTdz3XV6iKpRqyLznJVFHT67foU01jfbrbfebkPpjdVLhKaXv2vHAutGjqzi16g2miWvosot/bwjU7oGZ9Dr9SzPw/r6Oq5RcYpkRlr3LYEJYJWkXOHY1F3lktQgImv1ip1ynJmZwXdc26IUQM2csziKcI0j8KsVwtTUBxQM+zrvjqKIldGQpkmNLl66ZPezOzPDaGTUkhp1e53WNtbta8/zJlCsAsfmT1JKvAKP4HkWdSiEQJmaQjG8lMYlJ0fhPOfnF7j11lsBeO6551he1scYZzlr65tsM6zPlVrF4ggSKbn+oK4dKHJuvFG/3lhbZd50eJTjEmcl7ZzCmVDNLti41WUs2y9sr06gP00fpja1qU3Y6zJSeDHdh8nOhJlNz6UVCdG0YIUIqSLPJcow/AR+nUFfF7Acr8qaUZXasWs3iRlv3uz17WrTHw3IXZ/UVLyb3Vl+73d/B4Afef/7GIxMMW4Y2gJgxQ9Yvrhow9csy5id0yvK/r37OG0EQ6KKR7+nP7N7116ee06Dau6++y24rkdacCC4vk2T8kjZQtns/DzLppjXqNUtoi+KIrJhZH92PVHqEgqJaxmOFKogqI1GVA1+QsUpvcEmTcOclCWpRfQ5joNTwOuSjNDwBFRqVaTp6mxsbHBx8RLHT+gR4/f+0PtomwGzSr1GnBWFwrIAGIahXVkrlcqEpoMGqRnEp1N2pk6fPm27Ap1Oh2XDjuQ4HuTSKl4Nels2fTp79qxNH245dMjOKuy5Zh+uJ6gboZatjXXSmj5/0tni61//OgDzO3Zy651vBmD77g5RqLef5hIRtEvWb+Ha1FLvrw3PLB1fcXzmYnzH7HXpFC63F2J3tnwGwrPgJXDG4LPg4OKaB2Rra8t+X7PZoNvVeeNw2Lc0WVleVp6lEswt7LSKziqWvO+HPwDAxuaKBaJsbvXZvqCl5prVCudPn8E3uWO1Wmf/Hs3au33bdtYMTHbtUoznFj29jEUjdddoNBj0I/vwKMdlZFBw7WbdKhzFaUqjobefxiWPpBACz/UxHU28rOwMZFlKXlC7IazgipNntlXnez4bFy5y6cKiOTdDagUizyhSg6Yor5hW5/nFS7gmlTt59gwbgy3+uw9/GICFnTsIqubzmbIowiiKbJrWajQZjfT+FxOCxQOW57mtL/h+YGsKR44ctQ/4NXv22RQhS1K8VtO2QaMosunLmdPn6JoHf2lphaCqz1+z3WLnzp184xuG0q1RY++B/YBh7Ta3YBiGHHlGtyT9Wp19BzSQaX5hO2HqWX4HpdSYDJ9jxXiEEPa+kKhJGTxzVTB/fbVsmj5MbWpTm7A3RKTwQoWZMsTEFnMYK/IIpRCOa4tw7dYMnl9IuJWra6PRYhQN7XcW49XCCVDkLJrR50sXz3Ddfl10XN/o2a7C4uIia2s6FVmNE7bNb+fcWc28s3vXXouTmGnP2EJntRbg9/USNBoN8EzlenFxEb/SoPDpSZpalt9hOLQraMX3SiBSFNpC4dLSEjNBi2K1EWDBXEIqzeSKZjsqVrA8y6yE29ryCjLP2Wkin9nuvO5IoAVuw6FOGeqVKpEpGlY9n/OXdGTRqNX5cx/8AO223udms2k7I6BscXdpaclepzRNbTQgFBN8ClLKCZxEAfne3NzUeglMSsjNzszSbrdsx2NzdZXOfj36vH/vNRw5ehSAt97zdntew1jD2f/Wz/4dAD732f/C8oqOQubnZvAMNLpaCwhDfZ/UGg1WlvQxR1FErbO7TNl8f0LSzsKZlYsQ5b35vOu2KrtpV9tel07hhdKFyx1EwS2Q59ISrriuXwqiemaaMC3Dt4LYpF5vMDBIx2E4snlrpVKxFzQXLnku6RqdyUsXz9E2r4e9DgVLYD/JbRvz5JHnSNPUPvzLy8u8853vBjTgqbeukY/zs7OsreqQV+W5nf9/6qmnuPX2N1FvtMyxqZLrwPfscTqeS2bSp/HztmvnTlaOnbccElJKGibMr9frBQWB7m6YmQQVxbTMcJjT6lLxfRIjnro52LC5e5qmJEbeOo5jQiOMUm3U2XuNBmXt3LdHtx7HHv5C4ajb7VqatEFvy56j4XBoKfQQDrmUpZMQwn5XmmXkomxDF78Pw5BarVTrSuOEjmk3u65rgVGHDh1ieVU7b8/zOHJEtxc3t3q8813v0vsK/ND7f9iCvJaWL9kp0+XlZao1M1x36ZJ1Fr1nnsFtLDA/r9OUnTt32vskCCq2s6If9HG1p+LBv4JzUGO/u4oQx2n6MLWpTW3CXpeRwgvZt0URRszDHQONaDZjE64KDAdBQW0FyhQNB+EmaqzsW7GgonJarSkipIDUfP/1ew/gpmYC02kgpGE+kjm79+sJuce/9TV8z+HCsu4yzM/txDOFtosXVpFGX8HzWszM688sr60TmFD27MVFDt2uCE0606rWLbeCSBKC4hwkKYEpWvnNhpXNqzbq+EGNiydOA5D3+sRrOjqpjRLWTBHVq1ZIi1TCceiZ97iZZDOJSY0YSb3bRDR01DC/bY441itdFEVEBU7A8+nO6gLibLNNFZ9kS0c3aZpYOrM8jMsx5NFojEVLEZtoznFbJJlkEJtpUOUSF2Snjse6IYQNk5ymKQ6vr28yM6Nf1xpVVlcWcWsmomo4rPf1No+fWuSmm7Vgyw0Hr+d3P/lxAO55+92cPf40ww09/zLf/V46Mzo12btvH66vo4PrpUsq9b3RHyZ2dPro0eOsrC2TG9q0HB/XcH24XjCGWcAqkKsXkJdXVzEyuNzecE7h+exKbcyXYi/2mThN0d0MfQFrtZoddq3U6vgG6dhodfBdA55pd1hfWbTotvX19ZIAJPCtEGqWLJHlBXdi1QrULiws8NRTz3D7rbcBel4gN1RvrWbdDt5IOab2pDQDMWg6tUajwTYz0HSp1y8fyjTlsAHvRHlKUgjXuq5lX666PipNqDUNrt8TrPY1yGcYR4QmlE7T1NKhNVpNuia/b3XaZGjqOtD6mYXziJOEvvl9kozpXY61GpMsJo5jHJOm9LeGeGZwTLiOTQUcz+WsYU8WrmsHuLa2tlhY2IFjFoZqs2Vp34bDIZcu6Qc/CFzmFzRPxFcefJBbb7uFlaO6xbu0vsr936vl568/eDPNOf3wZ71S+Wt+2za2TH3l8OFDVOtvsmleHJdj6VLKifqC1Yt8lSjcX8xe1CkIIf5f4H3AstGMRAgxC/w2sB84DfyoUmpD6Kv2y8B7gRHwU0qpR1+dXf+T20tFil3JETwfDkK4Dq7rW/5AL6gwMNyFSZbRaJs8tlKlVTecCY0mowspkcmJu60Wm1u6dnDLm+/k8Se1hF2/P7ADOEkGjbYpZtWb/N7vfZr77n0XoHPvQtVIKpfYPJSZzKmbtpvrumVLVipcx2f7dtMi9QKWDN34en+LulmpD950IwumDoDnsmJITLvNFlE4IjFEqs8ef4a+wSmMk6hWWw3b9mu0W3YSM1WSTObkhfuULgPTbsyyzNYnojSZoDEvpgeV4yGFZKuIaCoVXFM7WFxZZVTwTmSSVePIup0ZLi0ZqcAdC3ieT8HU2e9t0TERRRx6XHeD5ok4cuRZKqbofP31N7C8tGqd3M5Kg89+5osA/PFXH+Xe+/S1uOue+yAuqOcT+4B32jWiOJ4YxCscQYHQLI6zcBbfLafwUrb6G8APXva7vwt80YjIftH8DFoh6qD592Gusobk1KY2tVffXjRSUEr9kRBi/2W/fj/wbvP63wFfRus9vB/4TaXd3teFEF0hxE6l1KWrtcPfSfs2TrwrmHIEqZI2FfB8n4qp0lerVVodA945d4qHv6Wp1XbtOcDFixd55LwOooIDdQZmiGjl0nmW13R7c++27Tz1jJ6d8Kq1MhXwfBAOy6bFWfUDlKEC3xpGuMWqIyQIvZq7gWtl3XMkjVqDYV/TlTe6M7RN+N6c7bK6pLf/5HNHSJ8uKdcGAx0K79u3D5ml9Lb09s9eWkaaVd/zHboLej6g2WxangXhOla8JY9ChOfaAakkHWNVSmLCMWGXMqwWJKZtGWYRwnWskpVyXda3dHQziCKE4dK8uLRCxWhhKuERmm5JnilkDpEJ5bM0ozajr9PBgzdYpGWtVrPh/uq6bm/e+aa7AHjiiSc4cK3mYJjfsYuvPaTl6x969Al+5IM/pj9fb9nR9/5wMMH74fu+vbfGWaQcp2SZzi2V3nfWXm5NYXvxoCulLgkhFszvdwPnxt5XCMy+pp3C+BBV8fNLNc+vEKeJ5SYI4wRMcS/Nc1bNPP6zR08gDN38bKfD295+n4VKHz96ggsXdO576PAtSPTN2+q0LZ9AHRdhsBSr65t83w+8h/NmoOrG6w9arYQwymg19A0uUQyH+qYOpGeh0K7rkjmZdi5oXsDt+zS2IhoMqRnMhMxyfNO63RqOEKY9uLi5yer6SqmQtLDAbPGZPMVplQXZcWo0VUgYOP5E7hxnqR1citOE1Ayn5bIUShNCWBr3WKYMhyEdAxMfxQmLBq24trHF6bP6dgtTSW7adlXHI6hoByHcACEFMx3dEqxV5ti3Vx//ME65915Nlnv27FnOnddp1c6dO1FYGQr+xv/wt236srq+xcq6fv2+H/4Ry+tZqddsq9XJJPV6fUIp22JlhLiibsl3y6520nKlp+mKifxUYHZqU3tt2suNFJaKtEAIsRNYNr8/D+wZe9+rJjB7te3ldCZAr2wyVzaUzVJJ4OrXFT/AETp8vvb6G3GlDuWHvTW279jNJz/5nwE4fMstXDLIt3PnzrK6oZ3kE0/08Q1zT61RJzIDVYPhiG8+8gQf//gn9ff1hzz7tAbZ+EqRFO2tOEaYqMP3haGCB6kkGal14anKcUwoT73CnOlExIOI2BQQRRxbxuHME9Tm5mmY75trNagZRqFwa8BAmPBfybGimYvnmzXIESRJTmIq/kmS2GNL09QK+OR6JEtvH1FSmHoeXrXC0qpGFC5tbnJxUb8+de4i6z2DqKy38Mx+ZTgIr6C4DxiNBgVwk2QkYbem11te3bBpzb4D+3n/n9dzLJsbWyilqJpZiAf+6Ku8+37NhHXDbXdz82HdxlxaWWNn3TBzJxmOmV2p1SqMRqG9zxzHmUBhjgsmF5HCa7b78Dz2+2jx2I8wKSL7+8B/L4T4GPBWoPd6rSe8VNNc/i7ChNm5yBgaivjAdfBNreHA/oOcPPo0ALt27cFVKfv27gfgM5//Aj/+4z8OaAm5AoW40YtYNRwKy5sbtGd1e+xbjz9Ne2aB2DxUnbl5ThvZuj27djI03Q+VprQbZjIyzagVdM5SkKrUXn2vWmFgOgkCkJb+3keYvGh+YQex6SrEKseTmVWSSrIM16QvXlAhN1yMrutaRN94KpHLlDTPkQVlexJbdGKaK/swuGO3Z5ZK0kRvYzMegevwzAnNtH3m3EU2De9EmObUTCdhNEqpGvzHsDdkvmP0FJKEa3YskIU65PedjK5xhH/vr/8M58/rc9lotu1w1v4DB6nWmvYYbn/z2+j3dWr33NPPMWN4Fvbs3WfTx2yMLzRK4ok6glLKpk/jtRPXdW172goCf4ftpbQkfwtdVJwXQpxHa0d+BPgdIcRPo9Wn/xvz9j9EtyOPo1uSf/lV2OepTW1qr6K9lO7DTzzPn+6/wnsV8Ddf6U69nkwoQZ5JVKajA98NcEyYXK1WiQwQp9XssmuXHrq5cOYE2+fb/PRP/zUAjh07ZgE39913H//hP/wmAO1Wh+sN4OfC0pJdQeuNBkpIvvW0xjPce++7+OIDXwbggx/4AMqsOr5TxTegns3VRTyj9+hWfcilpgEDpJBUaoU+RoojCzyDa2cPkjS37xEu5HFEUHADxDFeXsyYhNQM9l+BHdpRSln+gDzXA2mFUE+appa3QAmdagAIxyM335vmIWFkCpO54KsPPmTTh1RBnJlcyK0SJ4Z3odG248n1RoOe6bbMdupsbPXYs6ALjWdOPsvKip5pePCrX+X++zUoqd5s22ggqDYI49Smc2km8UwqsWvvfru6J3lGblb4CT4EJge3gDFuBTGBxxjXqPxu2J8aROOrZUJp9SBFeVEt8i6K7fRlkmS0W/omfGpji7lOG2FC+5tuOswzT+sZ/D179nDrrVpU9tK5s5y/qEsyUZYRFQrMKmM06vNHX3kAgHvf9T184QHNFH3k2FH+yS9oLsiNlUvkhqSlOzNLlulcO0oTmpUqwjivTElywz1Yr1QtTVvaj2gYPgg8H2VybUflutUmS2i4a/bNU5KoQEF65TRqmmU4ogTlSIm9+bNUEht5OtfzrdrR+kaPohaeScWiGVT69Fe+Rpwm9nxIx8cJCrHcAGVqOvnYtcjSnE5LO8V2t8Vcu8aJ01rY5bZbD4FriE2CChuGmVm4FWqmk5DlCoQPnv7uNI4s7ZtApz3mQ2MPs5yUs7usDj/uIMb5GL9bzqCw6UDU1KY2tQmbRgqv0BzTB7d+XmBXBDXRjXWomFV3x/ZdrK5u0Grqn99y99st1dqli8sWPhxGCb7RokxGIVsDHf5u9taZ2baDT33qUwB87/f9IFWjG5FKxd/+OQ0w/b//1S8RGoBRmEUkhp1pbrbLYDgkMHiGWquOKjAMjkto+u+dZguZ6mOoVCrkhtw1lwKEsLzPynFwCuYpz6WGAd9QcjP4XqltMEpDwjAkM2CmMIlR5pwNhjFbo0JOzSM0PA2Xllb4whf+qz4XtSa59C1uw/N8MNGFxAFZ0MkJXJOKVGouvZ6GPL/5zW/mqcceolo3+otC0DI4i8O33mm1IKMwZmSKxvVaG6lyUrPPbqVqj0eJ8bV1fIjJQbzAUNNr1aZO4RWaUJffFJTkF2OjbArsHMOtb307x771CBcu6k7u4Vvv4J3v0iWaX//1X+PDH/6rAJy/eImDB28A4LHHv2VbVbnKCAKPwNCvN9otLi7qJk/1QNNSoP2dn/u7/OI//PsArKwuc/0B3S1eunSRg/v2ceHCBQCk59gJwnA4sqAqRzl2zt/xXERRq8i1mrN9KBwHYVpvMnXsQJbvlYzRqVKWPERKnU7FBR+C47K8bDgMajW8QO9/LgWPPqkRnU8+/SyJCdGzXO+XY5wCroMqnLMow18h3JLN2XOJhtrBPP3sc9RbTWL031rdGavK9czTzzHT1Z2ERqtNZFCUUghyiZ3r8CseckzqeUyy09q3U6m9PmyaPkxtalObMPHSOeZfPbvrrrvUAw888N3ejZdl3mVBgcS54qy7K8Ez4fdoq0fY79Fq6tRgY3OV9XUdNXzu858hMUCea/fv5fOf/ywAO3YscPSELoxtbvWo1tu0DKlsKn02Ng1Gf23Tro6NSpXA1Tv4P/+tn2HGTGwOtnp4KmXnTj0l6SCpmHmBZrVmadfIITddAT+o4ZpiXi5NsdDgKZIwJDcMS9FoSFzQsTVrtoAWpZEtuvX6W5xfvMSm6Qb0hzG+mZFY2+xTNZqZX/ryH3Nxec1sszypsVPFcRyUU6Rppeq2wLXSbL4bYLIikiik29Lne6ZZ5W/8tZ/ioa/q4mzNhx/8ge8FoNq+gUOHb9G/r9WIxzQecR0LZ8/zHOGMBdpXoEbTkcJkOvHdtHa7/YhS6s0v9r5p+nAVTIny0ishr+gUcschNvRnjh+wc98BFi9oXP32XXtYMe21H/vJD/H00xrkdOnCGQ4ZpNz6+qrtZMzPLTC7bYFtRrNyeW3A9l26pvDlB75Kx9DFb6yu0azrh/0j/+f/xY998IcBuOn660FFLJptXrNjp+UTcKquVXUCLIcDjodjVLUcJEIJMstA7NjuSz42R5IluU0/XNcnNc5uGIYMRhEDUy+IckloQnvpBfyWQWrGuYPpLuJ6finQ6jooIcr0RSmrsCQchVOIsqqc3NREGrUam+sa1LW5usQ73/U9PP6YHkhznAxl2rVvfevbSQyxi25B+vZcZKmcSKcKEhTJ8z3u5XkUfEdZ2l+RTZ3CKzZHX+2iHy9039+ayXUdIam3NfzVkYrNrT6ulV0LrFZAr7/OO979PQD0N9d59GFNKf7m2bdTAAAgAElEQVTEE9+iYnLtd3/Pn+Hxp57kx3/sJwGoNDocOa7n0B74yjcZGWiyX2sQGW6BKE/5t7/xnwD4Cz/xo9x1x0FUZvgE+kO2tzVyLx6mlgsxyyWy0HpQOtoBUKkEqchMGzPNcmJT74ikomYcSZyk+IHhDPADstxwL45CRlFomZRGScbmUEcNX334UbYivf9u0EAZaHIvTi03g0zTCZiwEAKvgAw7ruXllFJaPYs0yS0/Yq3icuToSW48pElqbjh4LadPHTP7nJGYc+ZXK/gGvh7GMbmSuG6hAi0mrrNlUlSTtYRXUx361bJpTWFqU5vahE0jhVdoxaJQpgxy8m9FxV05jCKd90ejmPluB8zKJ4RidU0j6jqdGRIzO9DuzPKWt91nft/hbW99CwCLixf52Z/9O2w3+pW1zgIf/huaejzLld2ZKEppm7ZnGio8Az76zY99nKeOHOC//eCPApCkktBQsc+1OpYXUTkufcOh4PsVhDTcgWmGk5cMQXmuCsZLnduPreCyoKGPI9YMC1Kv32c4ilha1x2HzdGIb35Lg7dS4RCY7sfGVkhrRncCqpUaodHb9ESOlo8cL/UXMwUSYaIzgbAUdEpKKxxM7vPlLz3Iz/8v/yMAj3zzIQ4dvtNcNI+KqZ0ooazyFY5GqBZ1kTiLXxrI6FViXH41beoUroKN1cCQonQU0pFl+gC2pTc3N8doOMIVRU6cMzOruQHCaERgwm83V3Q6+hLddNMhakbNenVlme3bCgoLGPX7HDVaBc3ZHSQmLK/U6gzNg1Dzq1bCrNVsc+LMWf7x//4RAP75//b3rZBqM6hbko9hnJSw3jQjMEQurnK0IpaBSbu4djgK10OZ4pzv+7YY2NvoWSj31taAzf4WZ43uxfFz58mN80ilYGgGlertuTItiXOr1uRkOn1QxTbzUjxYOcoOp7mUylfVSoWKmfJMk4gHv/p1HKHfd/i2O5jp6NQuGpa8lhIs/sINfNIsITYOu9qof9cGll5tm6YPU5va1CbsDR8pvBiA5MWosl/s77kz2Ypy5ZiflVf2uXEc4njCovjAITZAGMevkxX77Pm2kh+7ilbbsCH72/Dabfu33/3kJ2jUdRtP5ClVs9JleYhfoBCVRJhVf32Y06q6OGal//l//i/5yC/8AgAXohE1k+bMN+skBt1YdxTCdE9cVyBRJQV5kiBNJ6HhODiGwkz4Hn3THl1d67G4riOVI6cv8PSpU5y8qCOHereDVEZcB2X3WSYpnjlHLUfgJno4SUqFI6WNQsCFYizcdZAFNwHKCtukIiM0iM6FuVmOnT7OBUM7d/C6A5Z2jbpDRsmyXJzj3Ay8BQVBbpzjXg5au4K9mlTsr5a94Z3C69mSJCmlzma7FtHY6XTY2Niw/IdHjhyZGK4psSdle1CIcirPdQVxFmEY0unFA/7hP/5FAP7Bz/1PRKYlOQpKFassTW0oHUUxUZqUebwjcI0CtRJY1emVjU0urGjKuJPnzvHYs5oI5omjx9hKUquQFOeS3E5Tls07JXXrEdBK2PYYL8cEOOUxX4a7KTQU8jy3k4xra2vU63U++tGPAvCvfvmXbco0iGKuhN0Z73QU/38tYHxeDZumD1Ob2tQmbBopvEbsSnRw1ao/IRhSsBMNwxEzMzOERgBmbW2tnMenjBR0ZFFKlwsKsV2J6wUEBsXoypxTRjTllz76r/krf+EvAFrhqW46FrPdDq7Zx1DFONWaDd+Hw9DuZ5ylDIz8+zCOOHZez1f88Te+yXGjG5F5AZV6i5HBIyjXK4u1LyHevnyFHgcvOWryKwp0ZxElADQaDVwHPv3pTwPwL/7ZP2M41GlSQbp6pe280D68kexPrVN4qbleUZP4buSGYRhO0H0XQJqqqyf+WoZC7ML5S/YBFaJE2o2bksIejKMgkw7ZSD+UjszxDK/g0VPn+Hv/5J8C8Ofe+15uv+UQAGeWlq3AbBiGBEFQircmsUUX9no9BkbO7qGHHuKhhx8GYHMwxKvpViOuRyYVrq/BWFk+/oAJ22p0xl6DmKgP5ZTIRSgfUv3/kvJsHJFYdCKatSpxFNm/rW9u0jZtUK7gnC/fRvH65fJ6vtZtmj5MbWpTm7A/lZHCy1n1hfrORwtBEFiJ80araUPhNNWYfN8Ac9YNCAjMaqYKxuBSjkwwLmyjC3OuSR9UnpoCHwi/QmDAO5/8zOf45B/oEPud993H/r17zfc69h/oWYZNA0w6fvw4Tx7Xsxuu6yJNBOLiEZlpIqE0qCmLDdtSEEziep4nMh+P2PWxFCnTFdIJY4X4ShzH1I0Ufb/fx3NdgkD/7VOf+hQf+tCHAE2weiWJwD9NhcY3vFO4mg/yd3o+XpJTqRnuvySiZjgSkySj19+y6Lo77riDz37hi+ZTOUX2IBElok4o++CDQjmOJTnRQrTaEaQyZ8ug+FqdGQZGeemzf/wg1eojevthhOM49oHLspJ7MI5jQrPJPElI8gLg4yAK+jLh4TgORZafZ+WJvYyyhtw8eC7lw68cF3FZkDv+sDpj6YPlUxCiBCWlIMaO/7d++2N8+MMf1sefvzAg6Y3qCMbt5QrM/gvgh4AEOAH8ZaXUpvnbzwM/DeTAzyilPvsq7fsbyq6cn4qS4zBNbbHM8VyazSaDvsYNfOlLXyqpw2UpYa7ALq+aNLTcllAOikJfwCNJiz58qSR1cWWN+W0aaenECUlBSe4FOI6DGUDUzElmO7VK1aIQMxQYvkTPC6xTTdMMpMR1Cvr38TxWIkz/XyisJ9b+zByAyeetI3gJ59X3fYtFcBxNn15EDisra1rZi28Xe73S68u/+41mL1dg9vPAYaXUbcBR4OcBhBCHgB8HbjGf+deioAye2tSm9rqwlyUwq5T63NiPXwf+vHn9fuBjSqkYOCWEOA68BfjaVdnb16BdnlK83HTlSp+TWSlIWqlUKIr0vu/R6/X44Ac/qH+u1hBmFZe5IjPjwkLKgnBZ/zwWYkdxTMNwNIZhaGccFNKONNfaTTaNLPxgMLA0bUG1ojUqzXaCWt2Kv/bjFMfQxLnCsRTrUl6W5yvHrkhqnHdAOBRFBeGUHZOJRTl/aSd5nDo9z3Mcq8KU47keoanXOI7DH/7hHwLwAz/wfZd1Mr79O9/odjVqCn8F+G3zejfaSRRWCMy+bu3FbozixiuGY9KkDPOF69g2WBAE9rXv+ziOQ2JozQGkCbmTJLGfDyploTEIAnzjID760Y/yG7/+m6TmiXdd3xKjKKUsZ6TeNwNzHlNkEkJQ8VxSQ0rqCQdlCFP05/U+ZbmyPIitdtc+YFIIqvU644FmxfAuuFlGKgruxZLcddx5ugZpaX8nXCtpN/5mKcbai2OOwxU+qLHCoyhRkONU6cXxFP8vzp+UEumBMgxTzWaTrzz4IAD33/9n7Gd9v8SJVKtV4rgsQmZZ9l2TdXu17RUdlRDifwUy4D8Wv7rC265YmZkKzE5taq9Ne9mRghDiL6ELkPercjl93QrMXsleSmFJKcVoNKJmila1Ws2u7nmeT7bEzKxCFEVkWTahs2jVn+p1+3o0GtiKeaPe4h/9438EwP/3O59AOYLQjEX7nhpTGBIoUQqQFN2H8WPRv8+tB1dllM5YbW8iZr98tmI83RGKcjjJdXBkgS4UltNQqXGwkcIRomwlCjW2L5cDr0pGq8vtpaRqxXE7joMoVnbp6PNkhqj6o5BjJ08BOgKYNapcq6urWvQGfc2CIGA41MCscVDUG81ellMQQvwg8HPAu5RSo7E//T7wn4QQvwTsAg4C33jFe/kasMsdwnjlu9Vq2WGlfr9vH9AgCMAp8tgSpiylxPU9O2zU7/ft3zqdkuRkbnYbx45rmrBf+ZVf5fNf1ESjg3BEc0z8dDgY2TBXO4XxfTQOYjwmFBI1XmwYw2AIygdcMPbgKecKqVTxwJZfLoTAN7dVrpUf9DtVRiExq9WSsCrSE0hBlIU8C8SfwBmUDuf5zCo7K00QUzjcOI45ceIEAB/4wAf42Mc+BkC327VpYaVSIYoie55d17XX/I1mL1dg9ueBCvB5c6K/rpT660qpp4UQvwM8g04r/qYqktWpTW1qrwt7uQKzv/YC7/9F4BdfyU5dTbvSqvJSQUjfFh2Mf65Y3YRgMBjY99ZqJa15lmWW/TfLMptiuK5LlMR2FWo2m/bzzz33HP/+3/97AH73937PRhPDYWjD2nq9Sb/ftwCeSqVigThKKKtQNd7L17s82XOfOL6iO+AInPEZg7GR5G8bRLIfl+VC7Sg8wyPhOFgxGCkm6dDzy7/LvhinL1OWWm3iPWNDXi9qxUg2CinL7rhUyg54CcdhODJcESrjxhtvBODMmTM2/RuNRtTr9Wn34Y1q4zn05XZlXoLnf79Sim63y8C07uI4tkNMcRwjDVqvXq8zMjdet9sFR/DIIxoh+Ku/+qt85StfAcowFTSisJA663a7bG5qxmPXdakE1VIxKh97YL8tzZnwZEBZob/isUpVYoSEU9YaNCpKb+8yh3K543WsHoLENcpRWsWpcEoOKGm7IZfXpwunJOSVH8BxvohiO5cfo/2uKzzEFtkoC8Fbt+ysSMleA+f+8Ic/zK/9ml7/qtUqYRhahGTh4N+I9sbsqUxtalN72fanMlKAscLai6QSL/b3JIrwXdeuOp7n2UJhmqZUja5jgU0A+MhHPsJ//K3/ZIuLjUbDahrgOCizGuV5bqOB4bAco1ayoAor+AwGdjuT62IpU6IHeIpipNSVeGc8UiiO17EwY5RCybH0oSgUjvEX6D9dlgpY5SZBcYsJVQILlMpQUqCeB+w6URO9wvm/fADqeU1I4Nu34bouSimbvglRDncJIdi2bRsAJ06csBHc93//9yOlZH5es0uPRqM37BzEn1qn8Hz2Qhf6StNz9Xp9ovU4/h0L27ezsqrpyP75/9/etcfKUZ333zezj7u7vvfahIsNLg0kSlAjRcV2lKYKkIqqEaDiNKqUEKBFImnoI2pDFLVIRiX8hZymragaEjUlCZQ01DSNsFADoai0Ig8n4RUTqHkFEjC2g7kP38fe3Zn5+sd5fefszO5eY9/doPlJq52dPTPzzZkz3/le5/s++1ns2bMHgGIccbViXZRJkjg7hMgLmCSZzewcRRG6OmpwcXERMzOb0e0qlWV600bLYCSNMpAninx2kbJbZejSs/j3RkTWJpBSBJLnQ2SLoZC4Z1V41lj5yW6nwu6QUQyiyBac9QKZIBiBeBbSzsFRaEso0PPFSsZYMG7jAk5Td31TOHZpacWqgs1mEw8++CAA4H3vex/iOLb9vLKyYu09bzSU6kOJEiU8lJJCgJ6ApZxZSFr1F+bnMTMzY1UGRBGeeUbFFvzzDTfAFM5dbq9YaSKuqpV4xqAYx67MO6epnYE6nY6lp9vt2tLnU1NTWFhYsOfr6jJqBi5mIVxTkH+fRTb8GLFdZlABkFitgvVsa0rKZcjgQqjBrp2JVGAmq66o+IfU0ZQ6KYIYVrcjaLUDvhpBIPgFXYslBSn1JIkL5a7X69bgmHBmz1Cv123fVCoVK93de++9uOeee6xqMTMzg2O6fP0bDWPBFJjZi8s3MEEuIWSCCyO6y4UvBmmaIq6odQTdbtdajLMs8cRtIjnIIltLUS2i0S8rk116OzExgUZDV14iwncfecQOnvvuuw+pfnlbGzZgUScSyThCNarp8+oXRhc1TRmwJZYodnkPKIF5wxhApNMvr3YTMMHmUzA6srq3TDAFCF25EjA857HwXJekUqMD6sXNIidiu/ggRpp1LTeJZA6DjLGarYjzuuvZAEYi9bKb/JNB+jizDiJlxyyi2NWO5CzzksYwu7UbgLxn51UgEEwQIjPb5w8AceQWZ7WzzDLb+ZUVtHTG6cV2G5fs/CCuvvpqAMA111wDXZMX9XrV5ZNoty0t9XodaSrWt2TwAtvkGJSRrxU9ZtdmsxjCPTskxoIpAPn6OuA0XW+RXJrazp2YmEC327UdLAuP1mo1m/+v2Wxazl6tVu0sEYsU4Op6bPMNdpMMRLqEGpONIDx06AiuueZPAAAP/eC7OOOMMzA3p5KRrK6u2oQlx44dw/T0tKYrxsLCgj4X609xGHEehrF3RJEfeVi04k8y1jBXQIV6WbEnWQjGY64p2xVlJwq3TT8Xef6LYgLC+Av120gtjjmE9+X3MWAZLrsSeBkn9ph2u23vLaIKFhYWcMcddwAA9u7di2/prFSNRhUvvaSi+d90yik2H8XCwgImJtwL3mw27BiUtFgpE2psmr+UzWP9NfzSplCiRAkPYyMpBI6onn/Z+5eQ6DX/hAxpwlbkksE/ndXEZkCenZ21EYFpmmJlZcmeT3oPpKRRqVSsJHHLLV/E3XffDQA4cvhVuyCmWq3a4iKASpVmpZhGA7Ozs5quiR4R37jkwhkxTyLIS2suZ3o5W8vgHCdihwuiOFeKICJbgIXhhFIZgZjpWd7mQwiCmfKWFBdJDPaaBVJLngTVb8kyUVR4rvA8Nl5L9FOSJnbp+sSEe2ZdvczdzPSHDh2ykY8333wzLrnkIkvb7Gtq1W+r1RJBUYmXnVvm3wTcM2NmKzmoY0+cWjAsaBx8rdu2bWNjkAOKxUYD6f7LskznCjDRab7PWcYCGPG9VqthakqlR//5z1/E9PS0XbEYRRFefFHVJ7jpppvwg30qRfnWrVvtoplKpWYfbjdTD3B1VTxI8SIa5tHtJp7dg1mIwIJmKcqSFGvFwDXtrGgb3LOEtBtIpOKFkapAHMc96oChWfZ5eIxkPvKa8hp5jM1+Z5m3L6RZnjdvhaLsP6NCSBqLzmX+czaV1Ntfqzq3YyWOLfP3RP4oxrQuUHvXXXehtUHbrpLUU0+jKLI0yepfrVbLjtN2u22T2chrnAhMTU09zMzvGtSuVB9KlCjhYYzUB4VhFpysrKx47jjpXup2u87VlCQwfC9JMjvDrK6u4pXDqrjphqlpTE5tRFtXW/rYx/4Izz//PAAgrlZtUMvTzz2LCV0KvdVqWU+EWXdgVY5q1Rktma3brZ/RrSiJpZQa8mbgMMuQ+U9KEEUqAuXsy7t+HvIMfcMcdzzt89SHUCUKaWE2fZ6feDU8Tt5PrV636xsAJ5VmWYYkSez6FbPmBQAOvXzQtrvwwgtx6aWXAgD++obrrYpQiVTwlGmnDIpaZUkSO2aqYvyMCmPDFNay+qxWq9kX34jOUn2QNgGTN3ZhYcGqDBumJq0qsX//ftx0002Y078XFxdtFOHcL45iaqPyHqx2EqsWzM7N2es3Gg3Mz89bdaLdbnsrJld0NeZqtWrDatWgDFdgunBis50FTKToZZKieVHeh342iRBpToWpDO76GftJVjJh8VGrEXufRRFdFoaR9WFEoS2hyGMjX/48xhmeTzIFZkZVV5aWOROSJFGuVz2eqjX3PONa1UZBxjHZ0OgdO3Zg165dAIDLL78cqyttV90ajuF0Oh07fqSaq8aYUIFy70Tf8wkU+kv1oUSJEh7GwtC4fft2z9A4CEtLS5bLTk5PeYtTms2mTZkFABt0haK5uTn81wOqYMr999+Pxx57DICeJSpOgF9eXkZUcV6BhXk1A9SbDTubyBoM7aVlLwVbrVazMfXLy8t2oVOSJMGsXTyL5s10ef7/PPFfGiBDA6Bsm0FEPpJv0c+LQZD7+nkIjOEXgBdUhkwYUAOaelSbgtgKr03gschyDJUAvOCh0DCb1/9Zlub2WbVaRaVSRdLp6vOmVh2dmp60Vbo2NJpG6FExKzrg7JxzzsFtX/mqlTABuEVwgJU0VP+5ZL89957bI8NJCsMaGsdGfRhGaDGPaPOWLZif11WCqzV04sQ+oOWlZdx+mwow+c53vmNDjqvVqnUndbtdbNmyBQBwdG4WddSt9ZcR2bTo7e4qmpPKEpymqdUnJycnsdxWYmCzqSzHkc73t7LStgyr1WpZ/dRfkONbEYZlzEVBQeG5pE6ap5ZFUaRUABs85IvhRVb7QhUvEi9o0aiNCHZIcw4jyLs3oUrJ6+epQtJLI9ubnzKvhFEd8tSPOI4975bxABBFnpdrYmLCbs/PLbjFbVkGk5jS7ANUEeBtO7bj5ptvBgBcfPHFNps3sbu3NE1zmYGlU2wPr3CvDaX6UKJECQ9joT6ce+423rdP5Xdtt9teIEcq8hQcOHAAgAogMYaZAwcO4KGHHsKTTz4JAFhedTP17OwsTt2kApaWlpbErF1FpW7qGpLKWxCIxwCQhNZ/48oWM0yFe70KeWKx389+TEFo6Cry7Ydiuty/Fou/CVCSodESWc4y6p77iiiXnizL7OIlGT8h2zCzNzvKGIyi2AYiQsWcS5e8C4PBQjoBeOHsYcxTHv1Ecn9OOHVON3tqmqxPEfvGzHrVhbpfcMEFuPHGGwGorFpmPC8vL9vtTNQFMSqroTNNUy/Dlwmtj+PYSjeVSsXL89FsNn951Ic4dp01OTlpU5CdtnkG7bYS66+//no8+uijAIDDhw/bxU3dLO1x15mOqNfrIoOyE9s58hdUpZk/kMzKPjkomV1qD6nfZ1mvFT/vBZWLc8I2/XTi14s8BgUom7ZkCrlqQtQrXpv/KXjh/ZPne0LkuRh+joTC60hmYUTsbhL0H6wsHXopfA9Db4CT+y2jJfPdoMwMCNWPRTFaF/zEgpFGHvNeShJMTqv1M/t++DAuv1JVut6y5TT8sS5wu2PHDnfNuGI9HJPTU5h7bdZOeM1m00bLbtq0yab7l4wgyzKPQQyLgeoDEX2ZiI4Q0RM5/32aiJiITtW/iYj+gYieJaIfE9H2oSkpUaLEWGAY9vFVAP8I4Ha5k4jOBPA7AH4mdl8MVevhbQB+A8AX9HdfZJkzrqRpaoNCDh48ZHPwP/DAA1Y6aE1NemGhKh5BcedOp4PVrquvYPheCrZehiiKbG6CNM2QciZmfuH/ZycOhjOYkRvSjCF5qzpP/gxpDIB51nMDOWv3MxiGKsOg4KNctcYEzwTiu5UgOLKp1aSIbA11cf56C2Ohl/cSek8AZzSLxHqFMIQ6715MwQg5i5vM1hSxJx3k9ZfqCxIU+CpDHkxYuieR2pL3GSIW/RfL49w1K7WqHZsMxvwxJx3/+Sc/BUAZMLdt+3UAwK5du3CGNojPzx9Do9W0Y2Jh8Rg2b94MADh69CgaDeXJkGUH2+22yAbuPHKDcFwFZjX+HsBfArhb7PsAgNtZ9cT3iWgjEZ3OzK/0uwZRBNaZe9OE0U1UxzWbG7Bnz78DAOr1Bo4tr4hjzGCtIk0z+5IyIpjV8RFFPbq3ahTGwbsXOcucrgpmuNpFBMj0YYaJBMJWlBNkZBCmA5MDxuQjiIgQRy5evtDiLyDdkBJSlTLtwuNg7lwwiky+yPq5ZEnq2VQk8wCcHSLLMsTU68aUv3vogGOAal1If5tGReeGyOsbQgz5sve370jmUcSIXBlcSY+PyNXCJFhmy+IaDMZyu2OPr1CEql5i/cxzz9r1Diln+N739gEArrjiD7C0pDxmV111FT7y4Q/bHJGNRsMyleaGFkwFHZknolqt2mAps+x/GBxvhaidAF5m5seDTtoK4Ofitykw25cpgNnONBRHSPSNXXnlldY4KAdBp9OxOhJFEbJgQZQMM64Io6V9KcFWX2Yy6cb1gM3kTJ/6r7wInzXjLgsGSW+sooOlWRjYAIC1tBLSWdxdvcp4Xtr2foiKqi+xKOEm9nsLonISp0qaMuGLz3MjhvQTkahOnQmGH3t+fXtcunY3bh69/n/u5c+jNc+YK//zjw/o1dvNZgsLC8peVmk08Nr8nP0/ZTWTb5qaxtyK2s/kYhX27NmDO++800rRO3fuxPnnnw8AOHTwIM5/73kAlNHSMAJtXARwgiWFEETUBLALwPvz/s7Zl/v0iOjjAD4OAGeeeWZekxIlSowAxyMpvBXA2QCMlPArAB4honfjuAvM7mAzi9Ymqti9ezcA4ODBg5bTLa4so6W3q9WqFZOSNEWS+NZos4ipUqnY9QOqfqBpk4LYlyCM+uLpjYiBnoKn6h9bozEnGtEldusPK3EGbjg7u5J/fikKh/sHzZxhGyUR9HocpPQg7fBUcencImZ/vUNgLxgk6eTSF6gm4bakMU1S77fc9o6hfFdn0TeAwG0ZoWBO67HRSInISao+/a/NuZwei4uL2KDX4nQ6HdR18N0vXjuKLVvOAACsrizZgLljx1JsaDZs5OStt95qC9WkaYpNk+pct9xyi51kOx2nrki1YhDWzBSYeT+A08xvInoBwLuY+VUi2gvgE0R0J5SBcX6QPQFQA8+IN5//wm249957zbWsS6bb7dpQUGZG1yxG0SKmfZErMbjj9NMwYak5XiY1VWqB06/9F90wj/yVa2YwDyPOhi+LZAoyNsO2594cCkXfRdcfZr93vxnnqhVp+KIzF967NUBm+dfuq+IEjDDPJhIyxZCRuAMiaygepFa5e5CqQA7Tz3qfR3geR6fvEp3euNELh7dRtMxY1a7DRqOBI0eOAFAudXn8/LFFNBoqNmGi5tztjUbDbn/oQx/CO9/5TgDA5z73OeuSXEs6+mFckl8H8D0A5xDRS0T00T7N/xPA8wCeBfAlAH86NCUlSpQYC4xNROO/7fkGAOCyyy6z4tfWrVvxs58pj2etMWGNjlmWIdIza6WiEmpajthqeuXCTRy6dBXK6krMDM7ys0b7CDMH6ciyHEnEoB/HZeZc9cELZCI/2jB0UeaqHEM+T06z/NlVnENKDMxsg4esS7VISoocLcMU8w2zShnvRdGipWQ18YKUQjXDuw/Ketr0SGyeq9F5HHKlC1HwNs1cYJBMuyaNvnHs7qVLkQgicmnl/chNoFYx2bq6qFTNknKX0wEAqtUYzQmdDTxNAa1Sbdy40bbpdDrWpb9161a0Wq2hIhrHgins2PEubk0pV8uhI4dR06JOBvbEH6NfVV5iTJgAAAZuSURBVOOKyzmQpF6SCiZ4gzfOEUXz7jnXvVWgt8ttU2y1n+6ah5BhDPMcQvdcUaq2YSCTeYThxMPey6BreueVocDUPwdEHiJp/ziOMRsykX7tirwPIfMpemZhPEfeeUM63DG+fcL934d5M2NChzwnSWLDnzudjs0mvnv3bvzWeb9ZpmMrUaLE2jEWax9++tMX8PZfU9bTmZkZHDUZkBsTVhRqt9suYWeBAQvQ3LRIlOyD45WYQq4eGv3yZt0Tde3Xg26366kfRTQb9MvQPGyA1VpVnDcSzP3njRNfYji+8+elcKvX63j1VZVZ+tprrx36XGPBFLrdjrXKLs+t2BJqgHOlhAVcrausTy8qnbI4eMVgGJFw0H+yzVpellEhDEE2KBJx+7kZCz0ZA7CWtr3BRuuDorExLC1h8FOeOsbsIlLVkBU2mSGvY9TsOI5t8FK9XreRkqZY0TAo1YcSJUp4GAtJQQZCxnGMig7t9NKuTbpkqzFFhRIAEXnhJsMY/frNlIPaF9EwDNYqRg8ybK0FsvSeRJHRcS005hnQGOJZFAQEjQOG9t4c5zjJG4++WpFvEO+nfhKRVa2JyKrcq6ur9hlPTk4OpNdgLJhCkriqyY1GA22tMsjKTYuLi764O8CCDOgBLvYPwxjWqvua9nl6eBGzYR79ayG9F/28LEVuy2GYRb+BfDztLLMa2PLkYa2qoReMFniJityoeWpKyGzDNi5tHHmJZQyDWEuUaak+lChRwsNYSApRFNvApJQzlfwSypduOOLy8rJLhNlHrArVB4Nh1YfXa8waNy9DEWR+BIki+sN9w/ZZP/WhX03IcUc/I2DRTF/UZ/0M3aFkUjSGZB0UIx0kiStVKOtNDMJYBC8R0S8ALAF4ddS0CJyKkp5BGDeaSnr6483MPDOo0VgwBQAgoh8NE221XijpGYxxo6mk58Tgl1d+K1GixElByRRKlCjhYZyYwj+NmoAAJT2DMW40lfScAIyNTaFEiRLjgXGSFEqUKDEGGDlTIKKLiOgAqQIy142IhjOJ6L+J6Cki+gkR/YXe/xkiepmIHtOfS9aRpheIaL++7o/0vlOI6H4iekZ/D5+3+/XRco7og8eIaIGIPrne/UM5hYmK+oQUTmphogJ6/oaI/k9f85tEtFHvP4uIVkRfffFE03PCYIIqRvGBSoD4HIC3AKgBeBzAO0ZAx+kAtuvtSQBPA3gHgM8A+PSI+uYFAKcG+z4L4Dq9fR2A3SN6ZocAvHm9+wfABQC2A3hiUJ8AuATAt6Ciot8DYN860fN+ABW9vVvQc5ZsN86fUUsK7wbwLDM/z8wdAHdCFZRZVzDzK8z8iN4+BuApqHoV44YPALhNb98G4PdGQMNvA3iOmV9c7wsz8/8CeC3YXdQntjARM38fwEYiOv1k08PM32ZmU2Ty+1AZzX+pMGqmUFQ8ZmQgorMAbAOwT+/6hBYFv7xe4roGA/g2ET1MqkYGAGxmnR1bf59WePTJw2UAvi5+j6p/DIr6ZBzG1tVQ0orB2UT0KBH9DxGdv860DI1RM4W84PGRuUOIaAOAbwD4JDMvQNXCfCuAc6GqXP3tOpLzXmbeDlWf88+I6IJ1vHYuiKgGYCeAu/SuUfbPIIx0bBHRLgAJgK/pXa8A+FVm3gbgUwD+lYim1ouetWDUTGHo4jEnG0RUhWIIX2Pm/wAAZj7MzCmrIhFfglJ31gXMfFB/HwHwTX3tw0YE1t9H1osejYsBPMLMhzVtI+sfgaI+GdnYIqKrAPwugCtYGxSYeZWZj+rth6FsaW9fD3rWilEzhR8CeBsRna1nocsA7F1vIkgtQbsVwFPM/Hdiv9RBPwjgifDYk0RPi4gmzTaU8eoJqL65Sje7Cn5x3/XARyBUh1H1T4CiPtkL4A+1F+I9GLIw0esFEV0E4K8A7GTmZbF/hkjVoyait0BVZn/+ZNNzXBi1pRPKSvw0FOfcNSIazoMSLX8M4DH9uQTAvwDYr/fvBXD6OtHzFihPzOMAfmL6BcCbADwA4Bn9fco69lETwFEA02LfuvYPFEN6BUAXShL4aFGfQKkPn9fjaj9UFbP1oOdZKFuGGUdf1G1/Xz/LxwE8AuDSUYz1YT5lRGOJEiU8jFp9KFGixJihZAolSpTwUDKFEiVKeCiZQokSJTyUTKFEiRIeSqZQokQJDyVTKFGihIeSKZQoUcLD/wMaTTlaxLKRlgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.image as mpimg\n", "\n", "# load and show the image\n", "FILE = '../fig/Reese_Witherspoon.jpg'\n", "img = mpimg.imread(FILE);\n", "imgplot = plt.imshow(img);\n", "\n", "print(f'The image is a: {type(img)} of shape {img.shape}')\n", "img[3:5, 3:5, :]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Slicing tensors: slice along each axis" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAADGCAYAAAAQXM51AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvelv3WmW3/chKVKkSK2lUpVq6eqp6r17Fs/iGS9jz+IkdhYEiIMgLxME+T8CJIgRIHkTB0gCB7FjII4RxEEc2B4jiT3xMo7HM9PT0z09vVRX175o30iRlLjkxXk+Puf38F6KqqKkK+oegCB572//ne9z9nNmdnd3mdKUpjSlKU1pSlOa0men2Sd9AVOa0pSmNKUpTWlKR4WmitWUpjSlKU1pSlOa0iHRVLGa0pSmNKUpTWlKUzokmipWU5rSlKY0pSlNaUqHRFPFakpTmtKUpjSlKU3pkGiqWE1pSlOa0pSmNKUpHRJNFaspTWlKU5rSlKY0pUOiqWI1pSlNaUpTmtKUpnRINFWspjSlKU1pSlOa0pQOiY496QsAuD0zszvzpC/ikGm7/K32OtN+9qPd9gNwHNgpxxvXI/94+95t54Gt9rME3GvfLwO3gAVgrm17r1zXTDvHLLDZ/l4oxz3IOzoq7/Hk7pNlyZnbM7tH5mFKo+5nv8EPu+W3+y4yBMV2v1P7bIG9oNgkQTHTvhMUx0hQ3GcvKOba/rRjez0HGVxxRIZb7J58wpiYub17dFYYqfo2drrf+22/y1CyVFDsjNgegvErYATJFgGETYL5BcUcCYoN9oJCUM22Y0mjQHk0aXf35EiGnAjFCnLtOSqwmeXh5Ygk294px5gpx6zQut/+3yHgUc+9A6y37Y4TUJkloCLrzxNwW2+fzRJMsUVA5d4DrvMg91LpiMiYx0NHDRQP+/JnRvy+y2hQVCWsKmLVKlgk5MAOCYrrpPyQ2WdJUCi/5trvRYag6H3+n0bROirv97HQUQPFKDpIIKlnep/HHLGq1+ejpFApqorPHAGIzfb5EiF55giA3G/bHWcIimPtPLAXFFOaCMWqQqWyyNNM+623u93vXn749zGG8kGvlfLkGHCaYPVqo6wRNscyARHZ/jRpdC+239fasXYJZeo4YZtox0DaLPvJjKPwziaKjiIoDqJQuM3smG2Ol212SCWpguIkAQplBu3/5fbdnbbt3fa/MmUUKO4R8uRu+V8P1qh7OggdhXf5ROgogkIGnWW8QjVOYrjvMkNQbDEE0rG2zUb73P3uEABQmZongCIodhiCQol0nzC7N0jJpPUBKTn2u98H0dOdpTQRitVRpDmGrC7tspe16tpc2WmLZFWNavf37zVirT9ByBwIGbBBwOUUKSPW2zZrJDRfaPsrr/zbbe+U6/Na4OBLWg+PZ8dJPKU9NEoW+tko66JuI22wFxSQCtY2wbQqRCfb9z0olA13SFAoQ55v3y+14260be61fVZJENcVtF7nfgCZeqymtId2yNVylFKxQ8YhtrvPNxmC4hipYPn7Lrm6V0lxg2D0eTIefqv9X0Fxru1voskamawy1/6vEmLcPR70+6li9Zmp99QcFarOWtirVPXO3J6Vlrp9q6FcZdEcweo6ba8B7xJs/2UCJr8D/ArpJP6kbbsA/Khtewx4vZ3nDHCbUNh0+G486IandHh0VEFRlauqVFXtfbf7qVRXrD7xsAJojrAO7rT/rzMExVUSFGfbcT5q2y6SoJgnQLFAerv8HMZHQI6KQ2Wi6CiCoipUdH9Xa8MQnqDQknAfla0tMs9KaaPFsU1IA7e9yhAUqwxBsQF83LY9ToLiOCkpFttxlsq1j1OgZvf57mjR060WTmlKU5rSlKY0pSlNEE2ExwqOjv0h1TBgtTHqd1IfBZlrf8+N2PYeYVdcJzxKtwlP1Sb5Mg39rRCRdcOBv0lEOW6W477fPrvRru83CXvlFPBGO9dnoWfDPnlEdNRAMcrh0KfLjAOL240qj71PGOI3CEDcIkHhcQXFxfbZy+3zf8BeULxHxMhvlG1+jQTF3XJ9Bwn59dsctff6WOkoPrzeawWjY+b+VM8VxCrdhwc3CCBcJZj7BgGKDYYhR0GxTWThfhX42+wFxYfAhXacWcIz9qtEbOMNIk5iZeCpfe51P6/W0fHzzOzuPvk6rTszM//yIvrwGTydXvVeTsDQedtvpyJllNvk9Wvt+/eAy6SsUPasE+s8JFtukTUbdwm2/zZZ5TdPRjJ2gR8CnyciISsE/H62HfvXCOjAweo+njw3HQ498XYLdxITRwYUlcblH/dRDmPkNWR4qX1XQeG2u4ScuVv2hQSFSetfYwiKGt7bBd4kQXG6bfPz7AXFg9JKvNcjQE++3cKdgoKjAoqavO7vUaVPhvL6HKsZgrkN2b1HJHpslv3MiVplNCjmCFB8iSEoFsh8LEHxOgGKU+3YP0eA4s+RoLjwMA/gqaZx7RYmTrEaR6NgNMm0RUSf7xMsukywNmQ64C6xlht5XiQM7vcJebHFUPE6RiaY25tqtZ1jmzTC75HJ5ycIu2ONgNs8YXOstG2XCLvmeDvvC+0azgOvAq8AP1nuyfoTI/7m9Pp9TaEU8qZdPk32yEQpVmM34ukChUx+n2SmHhSu9TskcC4TqSCXycImGIJikwSFHqv7DEFhvu2JdpwKipsMQbHatn2PMOh7UPxU2/Y4CYpjZA8tQWFuLyQolI+C4il5h5OlWI3diqfmgQLBuCcIZt0hEvl6UFh1t922XySsi3cIUFxnCIpariQobpLAExQmtQuKayQojjMEhTXmx4EPgBcJUFxgLyheJUFhcx87Kno/fQVKD4qno8zpqVespFGFNzMjvpsEUuGZI9bx8wSrW4yqV2mXcNj+mJQlxxhW77mtcsR7tdVCtWNutc9tm2BHEgjoLAJX2v/zhNP3zXbMs+36zrSfF8u5loHXCCh5rtqqYYF0HnhelcYdJijufAB6KhQr6WkBxTxDUKwToLC0FYYa+SXCnWo13zGGfawEhbLUn/VyHsF2q+1rw7YFsjpEUOgeFhRvkaC4z2hQvEyCoq+ct39JBYVeM2WITeOeAno6FCvpaQFF9UbZTE1QWI7kdW8RSs8PCGYWFJfYCwqPXUGxVY4DAYpNEhQqbbMkKIyHzxNM/iMSFDuMBsU3CFC8wLB8VmAvMXQzCwrKtps8DTTRitVBO6/vdr9nyk/9fBLITiLLpFNV+WDo7gwhN94iWHiBKGrdatvWBs+yvTJDO+RE+/4+oZjRzvsywao327Fn2u+7hJ1xtW37HGH3nAHeBl5qP6+SlYZn27Y32nGeb8d/iQxNKjPruxC+9R6E/KTTE1esDtp5/WkChQqQoFC5sq8HBEN+m9D0j7WfMwRzrRERiFGg0GPluq3H66227Q7BtLsEKOy+buO2CooLBBgOAortdpwX2vFfIavf9bzVjr5aJMe6/Z8CevKK1UE7rz9NoLhPXM9JgmFnCYZeJDNczwF/QEgLYxyCYpW0RiBBobUiKFZI81tQwFBSuILbCPQ24Q2DWPXf42CgUOJcaMf/HNnKeoFUpmDoJlA69N3jJ5cmXrGCg+WB9nbIpK5Jru83CTmySKzf90nn6t8nILNAKEgqIzvt83dIo/oEKWcWCRbUI3STYaK7DabvEND4Vvv+Qvv5FhHdgLB/rhPw+x6RPvJTbftlgsUvt22vt/MaanyDSHU8S8C4bw/hvXhttg56GmgiFCs4WqCYIRjgJsHQC4Smr6EM8BtETtM82SbnHgkKK7she4Qca8dyXZ4lc2x3yrab7dy3gd9t+1VQvNK23Q8UiwxBsUWCYpMAxdcIBdGmpL1iZYTEfLKnJEY+GYoVHC1QmFBxnQTFKpn4B/B3CYXG1V9FRlC8R4JikQSFiYOG126Q2j7tfFVS/BOGoPg2GTY05DgKFI7KERT3yX5Xm8AXga8TnrhNQgLWxkEml9RY+ZPXSw5CT4ViBePZfxRc3H4SIXOfXO/tLzhPrN9GPebJFMDbZJhPY1eDGlLPr4oKZNcSQ3+QqR4QrH6n7X+FgOzLpHcLgs1/j2D7nwC+QnrOjpNhQ2tEdFrfbb9fJmSJfRVh+J5qc+ynhSZGsYKjBwqrKlzzf59gYNr3K2RaSA+KFRIUxtFrBaH9ENX+Pa7N3iBAcYMhKF5hf1B8iVCWzAETFOYImxNsee6rhCx5gb0TRGbKNT9FKUGTo1jB0QGFDGOTTT05v0cy7yyhBJlAWEGxQCpRlO+MNaukVEnhcVV+IEBhZd8VAqCvEN4pqQfFl8nkkXkSFLcZeqE223FfI5SxGjasJVuS1z35NPGzAh9Eo4qIagQZJsvwO0ew5iqhPN0Bvkl4iqpcMDqu16qG7DTIYTidwzCjxq5FtD6bG0Rx7CwpX4SV8soQ4luEg2COsEdMP7nb9l8hvUwn2vHMH1Yuvtfu4ycJ57D3r11VBz4fpIhqSgekpw0UpwjGkgFvEp6j50mP1TzhMTK+rHErKDTIIUFRC6bU4gWFJCis/hAUPr87BBAg0kh0GNwiZIsW0ky7Jh0EJs7fZeiOfZso1Ppp0ug/334LhFmmoDh0etpAcZpgnlsEc98EfptgFhljnmBeTW07pY+TFMYK9GqpPK0zbKBzlaGkcEq5z+k2GV/5Makg3SQkxzypJFVJoSJnBYjWxA/b+X6OCA9CgB/Sy2Ue1iQqwQeniVCsDurN6KFSc1YnjS4R7H+ekBM/InT8O0R0AAIW50hv1gZZWfciGX2HvE/zca0TcfjAMYZNpp3ssUpC6Ww79rsk1E6RnihrQ3YJuK8QNlSVF0vt+zuk3BL+3yRtoZmyrfJvEt/TxNJRBMUHBFOcIUpQ3ySM4tskKBba98fJCkLn+D1HeogglSo9VBq5t8k1Wua/0rbR2vE4Z0m5JSjOkhPLj5PK3Zn29yoJitvt7zpKx0jMNqE4VlB4n7qda4HUlB5ARxEUHxGgOEuYqN8jNHFDg5BTYVWqzJtaaPvVPlaCQRNYJeUmGbNWUlwie5PUVgzmSlVJscLQ9Db8t9yuc5VUJzZI1/Sdcq0LBGj/OUNQCLA6a/BpycYdTROhWMGQ/cdBp/+8t0Mmiayce4cwls8T9sE90mG6SHiwLC513t9q23aRvDdhUx2s8wSbWijlmm0+riPNHK92haFdAAGtU2TB7jyZaniVkGV2SFkqxzxOwORS2+9E+/z7bdsNInpylnQoLJGhwikdgI4aKIwVv0kw3BmyhYK9qQSF2vgJgrHvtn1qSM/Eb43sWYKBa4VIdQ9riZi3ZfGToHA1vMpeUHy+7XeNISjmCVBU2XGNBOQ94I/athtEUqIhRYE0ie9qYukogmKLML0vE6C4RJi0zlhaILNi75OgWCeYbZtcWXXdbpHAUMmxjUNNRtwmGH6nfHe5He84eyXFVdIaeJWwUFYJpvZ658gps4YxrzNsGPSHbdtNoorweTJJ5mnJxB1Pk+QTndKUpjSlKU1pSlN6qmkiktcfpo/V46Rx9pAVf7XdmSkiRglOEY7U+4TH6lvkQGMbbhrpMK/KSLdphzXd0nyqk4Tn6U7721yot0mbY5WwZXYJO+Fjwi7YKecxjGdU/SThqXq1/ey2+zBSDmHv1JnpprJ4vudJZ66pil8nnNh6zfRe1RdeUy2tX+lTTfuU1EcdgX/iyesP08fqcdK4q9oik/AgXqh5SKZabBCpGlsEKL5DumkFhW7NHhRGNMxN8pyC4hIZZ9db9WPGg+IG2SrnOHtBYfnuKwQgXiIrR7bIaIpgMD4vKNba+V4gPWFLhOfrpwnHhPlV1QHjvY1KcH/cIOjoySevP0wfq0dNfcf0UWT5TwWF3hhBcYMhKL5NVgdWUAiACgqZZo1hbGOWAMIlwkW7QoLi3XLtNnbbJUKF18pxrUP32pUgK6SUeJms5qghRuMaZtkKCkusXi7P4RTwBeCPEXEdvWG1wVsdg+PPTPdd37G+LhKPjp765PUnQePWL7t8QEYa/P8UwVYfE+z+PTJf998j8q1qMrd9BK+18y2Sc8JN8fAarhCpKT9qPx8TTturBIzMvV1p13GfnMhhdL5PKLd6XMhfIJzO6+24a6T8uUnIMKHs/RqS/AFRJ0I7/juEg9jzWMRlasnTUrczpULjWgH1oNhiLyg+IBjn+wxBcZkHg0LlpxZAQYLihwQoPiRBsch4ULzAEBQ274QAgqHIBYKJX2z3Y1qKoFhnNCisav8BUWbrs3uHsECUkYJnXLRKUEyQSjElOFiwZ4lkChWsg4LiEg8GhZUc9iaBYKYrhAL1w/bzEaMlxSmyLv0jsopEUNRcJ3OqBMV5AhR2aq+gUFLsMgSFiuT3iPAfbZt32rGM49sHS+VqlEUx2aCYeqwekiwEdX13pIxjJ+8RULFu4jhhpJ4hC2PtZWsVoA0/7VLiDMBrZCrHR+Qsv5eItX6VYEP7S91u29ZRaTYl3SJgpSGsHaJMWCBgdbr9nCMLnrzeXnbU/1cIeNlj8avtOT0H/PF2THN8qxyBtEGqp2rqsXp6MPEvNWXXd0Fh0t99AhQ/Irvhfp5gDvOSZLJlRoNCRe0GCYoPydzfl8k83lGguMMQFCfbMa+ToK6g0GV7jmDeU+23+3u9tY9jBcVu+/9jYjGA6EmySyh1v0guCipxoywLP+vnJzJi20dMU4/Vw5Leo+MEI9YuhpsEKL7DEBR2NnT4GAxBYc8STeL1dhxB8QEBikVCWTnHXlDIsHdJT9ZGuzY9Z75qPT4qY1oagkLFrIICEngVFLPtf5sAQXjl5ghz/k+Ri4KSsG8UamJlr1iNmrGoMvroaKL7WE2SYjXOIK90jGBn2X+XZM+3CbYxbPa1dkzZrzZaXiWjG+rprttrxHrstoYaDc/dI2BypV3PTTLB/Tg5nWOWMOjvkvm1td5Cu2CO6G34PAF55xBCypsNctyODmCXifVyHRAO6BcJuFwknL2nGFa4S72iZXRkqlhNCB3koTtuZoFszCkofkQw6oftf0FxhlTKPLZznHpQ3G3f1RY5i2VbexH2oHBdFRRq7x+xFxT1PvVevUEY53fJyj8YtnIQFLYkssjJXl3uc5scWfAy0TfRZzDLMMwJexeh3qM1VawmnI6RySFq74LiLcIUdZhYBQXsDwrrrdfbd5dIBUTAGJ7bJMzdK2SrBB+jjUlleCWFSSNWfMCwu6KgWCN7a0F6rNZIUOhtO0U2eqvWyF1CoTS8+FXSDDc23ieOKOn6cGD/N+xVzA6XpqHAh6SqD49a3yDX83nCmQnxyr9PKBU/Sw5jFlZGnyEhcoKcEqX82CSq6qz12CDW5zUCIhsMi4rWSTa7Tw41qMb/+bbvGhmiu04Y6KbA7JbvrPfwGnbI3r0nSQXzGDn9SUVLB8P1tt/zZIVgjZjX53nQQuqnbHU9OtRrxKOq2iGnV/yo/W8R0CkSFLprTeLzpY4CxRoJii8wBMUtEhQOzhQUda7gdjnWDDkCR1BY2ARZ6X6cTEHxO8tttTZmCLk1DhTVSbHdzn+NBMU5hmv/lLmfYqqt/iGVI3OM5ghFivb/H7bPelDcI81ueDAovkwqNXqO7jI08VXGNskV2F4la+24ZtyeJ5h0nWR8Z4iMAoXtGrQ2tkjr5iShJNm4pwfFDCHZrEx8gVCsRsUuVKgmvz/JVLHqqIeGVD+z19R9cnara/0/BX6J8NLo4XHqksbzhfZ7kYTJjXYOI+AOIJCVTAFcJp0Bzql19JnHv0o6U5cIJc/ovZM9agjPIthPCDl1sV3j2fad06JcGpRLMGwJV+kVQq4ukrlmr5JGed9XtxrtT8eUqGeI9qtsl5yyLTguk+kk/5iIBz9PgmKTAIUv+8X2236CFRQnSFBcK/vY/3CZzBPuQeG2VxhO/XiZISicFwg527aCwikfo0Ch7FSxM+Zf494Qnqq3yLY/3yVAoWOgt+ZqJceDQDG1OB4zjcuxqhJExeoe2Q5aj9U/IkCxRDCflR+3ydXxhfa7KlSjQHGVlEAy5DKhtRtHHwUKLQi37yWFVRheQw+K5wkl7CzDsJslVZDmuj2slGRue5FwS6y0Z/QHBDiX2GuCGy/fDxSTIT2mitWnIMNgi4Su/T451vLPk0MDXO9ds18iWFB5Y+TADucqF2ukR6pOdTpBFhutklHr++RMWcjG0Gvt/Eb375DDnmuesWv4MmFfzJGhROUlZN/DmpIi699r5zXqcYeAxyrZsugHhMPB83m9fVhwSk8hWbRkvtS7xAsH+HWGoNBwXiVBoabeg0ISFFbhQRrQ+4HCbU+T/a1GgWKe/UFR+1PV4i5HvQkKvXUQoDBHGXJ0zlrb7gxhcXyFYdRF6g31KT1lVOPQVwkpYae/XycZt5rLayQoaplqBYUKm22a69DiE6Rk0r1aQWHTUQgGVLGroFgjk+Nr6WwFxTLBtFo6O2SSieazoNhgWKV3hgTbrXa/6yQovkt0Z1fiSDVJRGk5mRJjqliNoVEFOpITmlYJ3f0SWQ23S+j9d9qPhvlPEyxmf0HIYiQTt60ZmSFnkb/dtr1BrO8OEfgCmWd1gbAxNKKFimxuPcrPE6mNd8hBArakq7lbZ9v/1V6BnOhhj1wd3F7/XVIWXiX7955qz+lMex72YlRu1CbUVrRPaQJpnNdKpjhGMPvHxAv/Qvt+m5y/6tDl28DPtO9uEMY1DEGhkV5HyWyRoLhGht9eBF5nLyjMp7VqUVAsMATFbYagUJnSgjjLXiMeMiHeikWNcS2SVTKJX/DvEKD4kJQxhjDrbFpIYExB8ZSR3pVjhPLwIQGMN9r3mwRT3SBDereJsOA2wcQyZAUF7e9NEhS7pGkPOfn7RWLeRwXFLTInyqZBavVKodfJakWvwa65FRSn2/1podTrmy0/WlIqX6ukpLhFVhyeauc9Q4Be66VaHCpVgqL3ak0GPTXJ66PSOx7Vldtvaaf8L2urM0OsqX9E1kZ4XbY0uEawz5cIr5aDCUzPsJWNzlHvybY9s+R4sfX2+b8g6kjeJvpOLZEJ4yfb7z7Udo90JkBG1mHonH2ZgNFxctTNGimLbpEyAHIUj4pVLQSDnJN4lxza8HNkt/nahb3mW+1XFfi46KlIXn9coFDJ6SsM+sRzjd5vkSkhkOuwBu4KYYm8TzZ9GweK2bK/TCso1trnv01EEHpQzJLFTNXIhYyYmLRudbn3q7OgguIke0Fxlb2gOE7Klm0SmDMEGE61fZYIhfKXyNY+AleT12c+qqpmmrw+gh4XKLQmaqy3Sopdsv76BsGg5hhBKkea26cIUHxIMNdZxoOiHtvYu5aJrt3fIoD4NuEmXSLAWUFhgrjhNfO6Fst5alWd1/syYSEcJ1b8621fQfExe0Gh9LEPiRJT60llapkA+K+1666DogWrytp+sY6D9Bn77DStCjwgyWa1z1Kd9SpM54kcIiv9rOXQi/MBUfRjY0wN5HmGa32NGqgAWbV+nehCAgG9S+27MwRru75/QKRBOhVEb5PpkDptnWXrKE1IJXCGgMLrJKRt/fNO21YFapeA0RwJDxXBOjbUIt/b5JzCnyJstuqQNnXSSM1+VYGPi54KxepxUdX6q5uxgkIG+D7ZB7BWMtwjmPiLBAMKCuPq40ChLBEUV0lQXCE8Y/MEI14kQfERAQrnRx0nrYgVMqXD69CVWs/bg8J9KyjWGQ0Kn8kxhl4yPVi3CVlo7vKXSO8bpMHunF2BNVWsJoj6PB9BUfOIdgjze414kbUHyQbhHv0imcFq2+jjjAeFWr+DzW6QoLhEMP8cwVDGT+YJheePyKY4JrSbqKip7GpsBZ/nFRRrBChs/bxMMP2P27aGHntQ+HzmSQkkg59u13muff/L7bkYp4EAm8pcBQVMmmI1HWkzpSlNaUpTmtKUpnRINFEeq1FX8iCvxWGbUNUGGeVoNCVPu2CJDHe53W0iIvEeYS9skSl6F8qx7pLtf9YI3fxc2/9tcuIH7fMXyBZx77TjzxHRidtkmuE90pPmufR0mdPrszzV/jb86WefJ3tq+Rxs91BtA9vfGeI0/WSuXfsNwmm80bY5CfwKw4HMtY9VTWifeqyYXFCYN2oqyS4RxXifePnLZCXDZvv7KwTTvkCOhbEEdT9QnCVB4cQPCIa60I6/SYDi3Xb+W2QuLgyT3keBYoEhKIz765ETFDAEhRXt9Zkfa8fT9Wuers/lFkNQnAV+lQQjDEfbVJp6rJhcUOim1Au0TTD8u+37JTLpb5NgBEHxEtl75BWCsb0PQWGLhZME4wgKB6ZBMNF5grmcIfU2ORjZieEw7AdVE9DPkFUZXsMZEuxKlhVicJkJ6m5rU59KesHOkSVdtPOdJDN/N9u9vUQk+NcKlpq3NSrpcFRD0SfjsZq45PWD9DR6mL5Hn5aqYK9Fnr7ObTKacK3st0Osv58Q8mODWFtfJlvWmGTuur1EsJIK0wdtmy+RCeBzZLHVR2QKyToZ8jN6f4t0JpvEfq79f4KAoy0fzrRzfNjuwyJd87B2yaXgGFnUZcWh6Y7XCSVSOabcNTfXLine/8skrA2TWjE/Kg1xVIrJM0OTCApfnpaGOUqOMrtSrmmLAMVl9oLiLPHCzaeVUQ4CihmCad8mGPg6Q1BYbAWxbqssGWazyfUSqexAguKjdvwTpAJmCo3Xaw8Uy3lNeamgqM/K9JIKilsEyKxYgUyUt4HpZOXmTgBNIihqPpJZpK7E20Qozm3uEQpUBcUWmb+0S2bPKilssTAKFIYNdwmmfZOwcnpQmAQI2Qx0nhxceY7sm7VKJjQKivfb8QWoDeFMuJfsFi8oPMd1cvAmDHOuKihutGdTS3sFtMebXFBMnGL1pKl6TqowV6naJVjrJpmquFC2NWp+mmApK+4cH+ZEJoi1XtvGtgQWJzkSRhjeJiLjdixZaOey+ehN0gYwb3iT7D5ynIDrOpnmSLu+k8Cfaddxqd2fxa9G1SGLfufbcfU0bbTvrpC5ZtorC4Tc0IZaICrMz5LRe+/Ra57GpyeMan6rVEFyn9D4HWNmhZt0l2COCwSjnyFevjlFl8j1+w5pQAsKW+Z8lWGSuXNjbSRn64UFcoqIoLAVUO1NYh7vGumlol3XCeBPtvsRFCbrm0IDCYpFEhRhqG1AAAAgAElEQVS081rBIih0ay+0+xQUi0Tqy3kyBcdeJoLiQbrBo6zmmdII0jvSg0Jg3CPncNT5TL7IdULR+lz729YHZ4gVVtMchqCww2wFhT1EIBWSy+Wc5jmpLBnbUCptEUxvaesphnOfIJv4/On22ScE6E2grKDwvJry0ka71mukdSRA7WdygVQyv0tIrZWyrWDzHPtR/34eH02cYnUQ2+JR2h+1xqOuU/b7WyVY14b9V8h+fxAG6iqxFqtAqWffIkfMQMBG5cxK8JfaNhsExIym2HLtpXZ86zfWydmFdaSNhvldMv1vm5Ajzo2FhIQjcZaJnoUVfnqsrBsRLvNt33mC9T8mPXrL5Xk9367Ddj+3CXmpLLVpqZ5Bqa/7eGbpSYOiCu36W6PcXh96qy4xnFqhQvUJwQyzDEExw15QGEI7CCheJENsMrig8HprN94NMk+39po6WY47T1gxRkQukq0i6mxDnQH2bLRyRMdAnaVrCyK7vJuLC2k5macrgHpQTBWoRk8aFLA/KG4QioIVcdfJxA0IINwmJMjzZJxYUDhiBsaDArK5qKCoksjy2BWyW3pV7ixrMpF+iWRg91HTd4jbFYIxF9s1COAeFM6AqpLCaeqXSdXD+HcPCmMbl7pta/7B5NJEKVYHMcoeB9XqN8l1/QrZu+kTMldIvfwaoSj9BFlZZ7TdGovamqE6Su2BO0Ows3o7BLR2iLX/2+24Npr2uNZZWImoIqRHyYiC7AnpiFXh0Vj33lXIPK5ywH5bXrOVkULLAmHPqaN5pl37hyRkV8ipVtOoR0eTAgoF+k732Qax9sl018hmz75gZ/bZZ0oFQ5fsKFBYQnuifN6DwjDby0SaiRZEBYUMq4GrAX+L9Dbp2tWSWG7bLxJr+yly5q0Visa83ReyQlDvWA8Kc656UKjcfUga8qa0CIppk9BCkwIKGPYgsS/JJqE8yFCfEIym8gIBlHtEjpWggDR1KyjmyDlKgsLzLhMAszWDeUoXgN8nYxYrpKSqLR8clOlYGhlO166MPtO+s159meGwZBkZAoCeY7OcV0ungkJlSkkkKKw2fJ8ExVmyJ5bxjsmkiVKs9qPH2Z1klPww4nGTLAw1v0i2l14nlJTzBBu6rQ00a7uc2tlkhjRujabU9fQFwvl6gdTpa/s12drO6mvtO4cDzJJrtErYcTJSca7sp0P6Hhk6dEqJssPrNBxae1PZO/cWKTd0iLvs2FRVg99C48m2RSaIHjcoqgzx83sEKE6RLlnDWHr5d4keGyb3GaYTFM+zFxQqRDUE2YNih1Cu3mrHrS1vlAMy5CI5cNP/vS/lh0C0kRtkV/gKChtE0+69gsKIjaCwfyLsBYUKpsM9L5PPtwfFlA5IjwsUxoVhr9a7QYLCfh/3iBdqJcN9IvHQ5A/j2HNkszOlkNaHq36f12UvEv+/QDQDOs+wLEkpVisk7pPDOgXFDDkkTUlRGwWdbdd4hwwn6k6m3ZPKUgWFni7DjxCg+AUSFCqNVqRcLs9VoGnlTG7X3ImqCnzUtB/EKhRdF9WJNax/TOrc98laiHWS5UxoP0aw9wfkHPAXSSevx3XCkuezCEmI1U7msuM8w9zZawSM67Soms6ho1blZ6Zcw/Hyd62pUBHzHBA2xiyZ0nKfjMJrZ7n/OSKX6hfbtWrs6506Q2QHQHj36qSpumx4/rqE6dB+lDQxVYGP/EQ8GBQmXd8j12+Z7M22vxqz3qINUiM/RUZELhB5t88R67Kxc0NgvXVxgiEo/AxSEbEgSXexuU1OAPd6VfSUHw8CRS2WomxHeWaOsBkFCq/F/Z8jQPEnyNj7LunBeo5o9AaRj2w/xNqElfJ3//sRc8zkVAU+8jPxYFDIHH0DtNtEwpwt+vUC3SUYUO/LSUJ5eY2QEG8Rq6KDKe+QYNMkNsvXOLGgqJ6wK2RyyS4ZY7lHSJEbpAleQWF/qHGgUKrtdD99jhnkCBu9chUU/dyn54nmd79MZh3XBM4XifEIAF8j3eAm7VSLrEot/64FBYdPT01V4KOk/VDpq1QPNs8V4iFZVGR4zWEAN0i5AcmSS8Qa+kbbd6n9rsc1t0gDfZ00rM+TDgFIB+6N9vlV4J+RHh5rNCBrOubJHGFDg31bg0oWIdXtTEGEgP0q4ZG7TiTiO5Cghg5p1+fM2c8zdGaskMW/kHaTimN/bdPQ4COkTwsKiBfoC3PmnqA4TTJO7Tn4XUKTvk0wwt3uuMoMEwUrKM4x7I9oFEPvziWi4fQm6YmqFo8pJQ8DCq2q2uy5gsIBng8LitcYguIMe0FhhWF/babyTOkR0acFxS7xAq2Su02u4j0oTPo7TjTW+TyZvWseleakI1+cDl5BcZZsPkrbz/lNu4T18U/KNdkgiHYuXQGLZK7XKFBU68IKw/qselDcJkHxIXtBofUkKN4kZmDdIsOpz7EXFDU2rvL05JLUx9FEKFaHlaTcw+Fhj2kIcJ50mkJWV+vJso3NB2ReraT33qIfo99OaareGNM1ZBH7YXnuGYaR5LeAv9/2e47slWs03txbIavCVj1SfURHW6aO1XEt771Qa+28wv8iAR+9baZJQuZr3SYyDF5sf3tOk+AhZxkqv6bEZIFCGeKaDvGibpKGq9UHHxKg6Jsi21vqXPu9QYDCkGB98Yb0dHHqqdI4rwrb94HfIMNzy2TV4SlSsTIC8VlBYcxdUGyTzefGgUI5docAxVVCCXyBISgc9+P1GqGZgqLRJIHC/Y4xzC26RmbUWl1hn6p+tp1d050ZuE6A4gbDAcQz5Cqpx0pT36m0au+zhMdMUNg9UE9UHcBm3pOgEFi6UntQWOrqe1AB0ySvjeLOk7lYL7EXFALTcT5aJW7rOWtZra6IyZcUE6FYweFAprL7pz2mDl4LTyFHZJoSomJgWoXwgFhjTUg/TyhfXwd+QBrKKkvVIWoesN08jhNr7O+07/9h+32ehInOZOeQ1/Fi2lKGLo1w996fmj7jNvWzus8yITcvkgVYtu+5TihdjtWx5dtiOYZ5u8osbSyLsJwAUp23o2zHZyYHa9JAMcPewZGQvTn0wFgdZ7xao3qLWDcFxZtkhbmRjAoK5YZTxW2z84/b9/+QzIX1nMskKJQb3sMc6T1TIawMvlO2raDYYS8oZN5zjAfFTQIUptn0oFAmmcxYj3uHDBEeK9t7fc8sTQoo5kb87UBlu9+ukxm2PShM2rbW+z0CFD8kmHiZjHlXUBjmWyKzaE8TXikYgsLa9VOMBkWVEq7MPShqfpZMaJO1GdICqvvYGXEcKJ4nc6dWCEWqDmKz++JG2Q9C6pos7/VOJk222jelKU1pSlOa0pSm9BTRRCSv3y7J65/FFqkG58Mer9ow2+R4S4hc25ttm+vtx8j084Qe/WI5jk2l3yEM2vtkHcVJUs/W2WsRrQOLX2zn+Gtkh3S9WC+RAwcg7A89VjWt0vsx0mGqiHZFrTfRwWz6iv/bHsFtjfzfa/dju6Btwj7ZLM/hPTJkea3d50vlGLVv7leInF0jRtVBUO/B5+t2j5KeePL67ZK8/qRB4XFqLuubZLL4FcIANYfpecJQt9WOaSYXCcY4T4bQNhk25xQUFhXNkx3MrwH/NaNBcbYcY4UERXUJ13QRwTAKFE5Er6AwAmJIsD7XCgpDojba3izP4d227/MMQXGTTIz0Gr8O/LH2t2DpHSuPo/it0JNPXr9d7vBJg8Ly0Lo6fZdIfFglwlqfkA3TnicYSWawg+HrZK23cQ5BUZviOOdJD5PNNK8Af5nxoPDabKRzggSFHivva40EhffmNdQO64LCqpFabSIJCgc1W+71cfv7YtvuA+LZ1xCo4cATJJgBfoYoq/V51PP1eVY15Pro6JlIXu/v8EFQ2W8tMiwF4cx0jb1LOkxfJOTERVIJs5bjk3Z8+xl+SChbNcylHHBMzF0yavI3um3Ot/OcJtMEnT+uzKgRjapM9S/Z6DgMqxznyz71WHXc2v12vR+36/G6XyFSR4x6nCXg9hGZO6YC6Rx3n8X7RL2HkRpzjz1/T1M360PQYYGi5iJBrIHbxDruoMolshT2RRIUrpEftf+Nd39IJHHXfn8qOifI8KIpGP8jw0KmcwQTniUtk+V2LVoFvUZek9H7+34QKCrVlg+bhNwSFDPsD4pLbXtBYUuFOprtfeAnGYYu93t3T94+foroMEDhZzIshLIjIG6Std0vEcz+KgkKw3nvtWOsEIz9IVknXUOV98iSqevt7yvAXyGTAiFM2YuE5LGVs2CSmXqFUsui3qP5Uz0oYAiKmsRe67otUzKZcJFg+M8xGhQfE9KtSgqbxHlv7xImuMplDQVOllSYCMXqsFISH+YYo7at9Qo7ZAqdkXDHxliYeptgF1kAsmftB8DPkp3az5O9CWtl+Xb7/mUCKp8A/x0hM54nu5M/1/63mGmG9P6oRFUZApkn1kfAq7fHz2sFpLbGvW4/Uwdvt+sxNfFkezZnyee6RnY+mWvbXCOWFm2hOvXE3lp9znO9n2eKJhEUKjqQjdvMuV0gi4EEhQqQKSIfEZXT5tu+0PYzyc5r2CbWXSd6fAD8NwQozpOguNB+LLaymMhWOLpTKwkKrYe+SMl7HgeKTfYmHm4SADBf9ySZT6Xc8JlVUJwiQHGRnI2rcV57YfXVmD6n/u8jD5RJAoWemg1yRt4NghmukgmHiwxBUZvinCL6TdnH6S7BDIvECuoKqWKlJFkilIy/TDDYBRIUL5CgsGz2HsGQNU/Ke6tmeY15wDCuMA4UWiCjQHGHkBQ3CVBaznSWVISUYoJihQD/S2RGc+3xYs+XB73DJ1tLPhGKFSRkDgs6+52jUm+L1J58psxZ9exEJhPQ19rvJTJp+1WyOs4iUeeFO+CgspSOTg3Z/4FsF/c8oXBBsOIKOeN8l2HvQcj1u9ogfQSkbudn5sfW1nG124hrvWmYKpKu91sELC6T8LY1hNvo3L5enkH1hF0nw6V1EPNnrd95qmlSQKGA3yWZWu34NtmmRlAY1vqkbSsoHDvjmmwxlB1sIZUsmf0dwtI43z6/SILiHMF4iwwbatoC4hjDKMV2+W6+fF6Ltbzfg4LCKhbbPvSguMoQFNcZDYolhgrUHWLB2GHYpgj2vq8jr1BVmhRQWCq7S1ob68TLukHO2rPxp6VGJm3/BBkDvkkqQWdJF6+0RjbbNA7w3xJKywIBCEFxnmwA5JiCOsj4GMMOhVogMwwT2GcZercqKKpyNgoUayQobKFtJcppQnE6X7a1Xt6OvoLC42mhQUhJPWI1rClNRnOeiVCsHpcTr46pGbcW6a2qcsGRX/aoOkG89nNt21tl/xnCi//LZP/C5wj5cJF0Dns9c4TS9V3gb7dtz5AzzmsbHp2fKiV9J5GaTlIdySpXtcip2iy1/kJjXlljtAeyO8os2YZol1gWjpGpNbT/T5LVlHPlh3aOOq3kQyJ6VCH0TMmLniYJFK6li4T3COJFfkIarYukElFlDcQLfpeY9H2l7Wuj0JfJ+UiQa/oK8HvA3yJkzem27YsMJ1x4frXxWtZaSVBU68PP+lSZCgqrCf0ZBwqLmRx9dpO0jkaBol5fbZpt/0Or9C+S7nCv7ZmlSQKFjLNAMLeffUgqKccIKeCsv9tl/xniBf8iGVe/SIDiNbJVA+Tgy2UCFP8rIX1OEaB4g+EsJEN1dtcdVdZar0Omsq+W1X41zLkfKFwgZNQTZHmrfUhcFBYYDwrPs8uw6epS2fY9Mu4xuTQRitXjov0EtSynLuw6CVlceo9wUG6Ro2psIG1KopONNKDvEhDQCWr7N0h2+QT4PwlZskJA5RUyMR1S53f9r6l5VUZQ/ldG9TJjVA6s0HCf6iSuZI8uFUSdDVdImQJpq5i6aQs7nR8OOoAsINbIr3KkXne93mda6TpMOggo7Mu3QzIv7bN1QtkxtnuHYHi7qkPInQqKe8RLNFxmWx7IaMkHwP9Bpoi80n5s4AapkAiC2kahd3lWRwcMDVvBU3OaPZ7bjgOF9+1QTnO9BMXpsm0duTMKFCtl2y0y3eQ0Kd8epaNmSo0OKik2GDbnVGrcJCyHCoqL7beepXfYKykEhe5dFTFDjleA/50AxDKhgL1CSB/NVBP1ZHYZu8+hksZ9N4rZKzD2A4WWzipZhWKc4hrB0IJNUPSSwpYKJ8u2m2Qn+7PlGsYlqvcJ7Y+PJivjawJogWzzZks1hwQsM1RYHGupl8fuJZ8jPFo6Pl03DdEZKdlt3/8NUkd/lYDLaYYDBmqaZHXEylajDGvlRa9UzXY/M90+/U8lZ9ka1Vkl5wBeIiChreWs9NrsepdUWFfbj5Om1kmlquZJV5rKlCdAukovkyWdl8mEQ5lzlmAMIwOC4hax/tvmR1CYwrFZjmt1xF8n820/Rxjl59qPFoidfJUjMryu1+oqrf/3oOgBMQoUMASFx1VRnCOY/AZ7QbFGRnOWyPE+SwxBsUOCwtwDm+jV809pQmiDAIIv5iPihdmATFDIDJbsbBGM8hK5igoKTVzjyipVS8BfJRO7P0/MPXqBDP8ZAjQGbsz9WPlsFLNLfe5Vv90u+4PC7awc1PS+yV5QWFUoELw+lSkHxplvYBf7VUKyVvNbqvfyZEOCU8WqUY0KGAmXHW+2780Bct12msUyoYiZQ3W87eNaW52nJmkvtOP9P6R8+iph16hQjQrd9XUb/hjtH2egz3T7jLJF3K/POat/G63Xxlhn2Ef3avt5r30+SzqXt8mKfL2APm9h1MNlWhX4BKmC4gSxHspAV4mXdoZMRjROPgoUC2QfQAt9PL4Je+au/gaZ6P0Vwto41Y7p+t4DQaru3F5RqoxfP3tYUPQeqypHDwKKGRIUOwxB4exZm4ja/8TrGEdTF+5josq0C0Toz1X6MvHSThEgMHxWQXGl/cy349wq2xgj3iUkjWb0IhHTuENInq8T5reJIzXMVyWCVD/rGb66QHtzehwo+hLhnvTUHRQUt0mv1gxpXalorZMVMvfK/6OucT8P1uOjZyoUWBWNUXURkEpOfXU6MWuYSznhsYz4niO8VbbpsYGyXUhWyrk+JOb9nSccxKcIGXKD0Nk3GLJL30JH26BncbfZZq886O9/t2zvPjWSUukkWf9Cu58atdfOoBxjlrRJ5sixnHUIgy0jrhPRd8oxpvSI6SCgMBfVPFPIcV26UVUMbpNMoWvyLMk4xs4Nl1l1LoA+IDqrnyO8XGfJ2YIavKNA4bVrvcCw0KlGcOr+o2TDZwVFPcfJ8l0FhW5cHRKjQGHk5CJTeqx0EFCsEi/zDtk6wGoHGUZQWOGwS5qOZ4mXO0OsemtkMrYVHGrUHwH/LwGe1whwfIEAz3OklVKvvyoXNVdLxch76xMr6j1WpleamMRe+1z1wBgFinpO3bT1HEoKiwJutfu6Rcb8nZF4hZCUk0tT47+jOeDt9rcOSCcpWUDkuq3jVr18i+wRqEPX3kz2G6yK0P/VjnuagIst4k6TjuBR0esqH/zZLT81ZLjF3mWi2huydU1V7NNPpLvkkAQrE63ou0d6qAwD6vB2qtUMGVV6vxxX2+8aKVemBvgE0SyREgLxknXHmiNrNZtyQ1DIhKaSmGhu2M8CJIuB7gN/j+zP8TlC5mwT1oeAq5GJysSVsfvvRsnJ/UAhcz8IFDoiZkhL42FAAaNBoYFeQTENA04Q7RKtEnbJttFq+lvl9wyZQGEFnYMta0sFw3ZW8m2S4bK/07ZZJkDxQjvuRYaep14KOG5GEjRVasBeSeL99aDYYgiK2tytMqeWk3+77UFBUftUVVAYT7cCZnJpqlhNaUpTmtKUpjSlKR0SPVOhwHFpElXPh+w0Uj1TpgQaXTBXqneEGiE+Thiwz5GzVf1Mj9jHRJRDG8RByhtkdKU6UGsFoP/PMrwmqY9ezDA0vHtHbJ8UX9NP6nMyJfEkkXJj3pR1LNKoSsQdcsDBDYYz4Y0G9U5l96stKqaG+yHSQUAxQ4DC1vuQaRTV2LX63O/rce2cu0GOtNEAXSVSLSAM1FeJMOALZGlsjX9rKMvQdVSA1zIqQtEDvV7nzoi/x4Gi398cMfPKjHbY0K4et3cYCIq7bXsjRY7kERQViDW8WX9P6ZDoIKAwp8pWyjB0qe6SrlwHju10x9okJMQm2afEboG3gB+3bd8hAPEyAQoHNM+W49bVX0arjFfzqUa5bet91/1HgeI+e0FRydYLJk1ebfuuMB4U9Xp2CACtkt3sIcuheklRQ52TQc+cYtVHomuO0C6xvp0i8p+UISakKzesHLzX/t4glQqrAV8k2Mq2BLVVwm+0bS+SAwhsNFqr2UfJBpPgPVZVNPr1tZcjVTl70LajFCtbzplys0iw/i4RMnVgAuXve2SR2Akyb+w4ARnpVNtHBXRKj4kOAgoLei6zt/GyVsQJskLOio0eFK+wFxTKhb/btn2eAIWWhlM8VNiqdeA6qhwTMOZdwV5GHxU7H5eL24OihiAlozeOGnByh6BY6La1O3wFhUmGFRQzZETF5Mz+2qb0iOigoFgheoncL/tZgbBINvS0meUoUKy0bUz+qLlMhgCfI/KqKihqokkN+VUtXLPbfC+/r6s8ZfuDgKLP6lUK1fPqHtBysnNwBYX7P4ykmGvPzJJZmxFJk2NyHynFqo8Y1/S9yi51m92y7TyZP1rZT7awpsLoOWSi+6n2/wY5mWmXhJGKw2+RHUcWydl/O+RIS+tFVKIg2blPJ/E8Pfv3SpEw9J6rN85jVVibD1XvVaXsBLGsWBgLoUh+TPbTvdu+P08OsN5k2LFkvTvuAtHT63USYl5nvd76XKb0AOqTt/dLq+jnmkI8aFMj7E4Lsc7bt8n13fQQ00qea9tukPLDY2rk3wf+eTmuTTXtiGuVeu89qvc3ymjuDfkePHTH1PPlNZmD3D+/Ywyfo/e71O5Tz9UMIQcvkaDQzS0orKq39YTyyPO5KH1C5CoLYpXHXvb38wynNIbqsEhFoMoBDPOHKkhc/eeA7xF+d5t7Qg5aNvaggqCHRQ8VBABs5ikD2sxtm6jgkFYIN+4Fcl6TjeX61b+u7pXp73X/w3BR0K0gKASPz2Gz/G113jZDa8PjKpV0FTiXaY7wun1CgsLvX2jP0mudI6srBYWL0H3Cm7dMNjCC4WLWL2SPl56pHKtamFnZ0aJOC3R0XLpt7Upu5MKiHRWTyo5OhdIxbBeSq8C3CDj540ibY+zVtysM+r/96RWoft9auOXveqze0Q1DmbvDXnmkYlPhtE2s/UYwtL+scDxDyoQTZK3MKgEP21h8SNaHzJbz9TU5UzokOigoHCPgtrXviKBQ8RoHCr+zRPYwQVH/H7eqVUO8JqVXI7xaWn2bhvqselDUavZqvRwUFEukZWfTVJ/xe+X4vTJVoydTekiqylQfWhplefSguEJq3zPkXIqHAYVWxjGyRPawQVHvqae6fS176kHRz86oFo3H3Q8UlOM+DCgWiLDoLYageL8866pY1ut6cm7dI+Wx6mnUGtsrEhVC1mFcIx6MXnzb+MjSQqmO1NRGsAH/dcKLY1TgLlFDIpQgWMgqux7evSdqFPz7+6h2iNv2Tt1+/yorpTq5oypf3mNVrDSUd4hl5JW2zXniOVo87HZLZPjQOb62QbpCLB/aQf6u17af3JzSAWhUHLiui73xe494gb5MIwqGAMeBorob75H5R06z2CYY4AekJQJDUEgeuxri9XfvVRpnyI8y7Pt7lioodN+6XW35UK+hNg31Wh8EClNwbrV9bGdxiwTrWTIc2qfNjLq3KR0C9Q+35kjZS8l2Ca7oJou4ao0CxW45xglybp7tG1aBHxJMYVKEilXN3+pDkz0oKP8/6Lt6j957HybsP6+gMHZSFxK3mSvf7ScptNYEhd0g75ONjYx9HCOkq52FRzH/kwXEkZdRVZEYJU9kzfuEziwLmEOkIlR14OrYrPm6kGv1cUL/vkqm7H2TdBD7U9sL1NTAatuMMqzr/Y1TmHoDvsKrt2l6o1zF0nCgaSv1eoSiDoA1wrh+r+13noDKW2R2wU3S1jtJ5vjutuexQipe9ZlXO+TIM+2jplFuyvqdL3qTWPPsWzjDpwOFzCvzq0FfJ0AxRwJipRyrKkmV6Spz64qtxraDNHsFq/dCVWPae6+yo/ZTtH+hSZa2jKjyrR5jFCgMA1ZQnGzPY50IG9pV/nrb3+d9i0yl6ZXHKhOndAB60AqyHyiMadgVfJd8Sb23pILCOHA9xy45A8mXf4MAhZ10TxBM4mpcV+++DwiMlhx6o3qm8d4qw1eTuTKVQDBmLYAqIPTUVXDW1XscKJ5jCIoVAhR3CVe5z8Gwq1nPgqJWsfT39mToyHms9nuUKhCQCoef3Sde9xbxWm27A3uFe11D7xFsb/S5spZQWidSHG3j5rjMZbL5qGxXr7+mlPRhu95g3o/6UFrv9DZNROqdEP01mXtbr3eH6O3o0rFBVDyeJNJx1gjn7Rkiwm6LHoj2d68QCtYJ0ukrxE3H8XpHOV2mtA/t97B6UNTtTftwnpNee0jPzCh3Zp3MAUNQaLncIUGxS4LCOHFd4z2Pf/cu2XH3Oc5j1S8S9Rx+3xvkfq5sqAa9ilyVI17fRwxd359jLyic+O6oIAgwvUJaZtfbfjXxcRr+e0Rk6AuSYfWf3yebV9ax9JDDzZQc1efuYLOdsq2xChMJ7xA146545mOdJMe+VDDpERqVfAhDBqlm9SgpWT1v/l/DerUiZKdc+0z5XQFUe17Vc24TCR+CYpPo4igoXBhsMjpHgAASFFeIBeMy2Xm+JsR7DU/OBJ9YxWpctOKzHKu++np89XBzVmWZXs5IFTpuZzjLvFXInrGrRKrjIgEV2ddIilQVhsrC/TX0LEy3ba/89ftUh/Q4meV91udQHQS1v7CwWSIjGZ8Qz0KP1BphrL9DKFSmaUI8j5sEvCAcvw61Nn+5RumfWeP8MHWDcvQAACAASURBVEExijH6aIBabZ8mMooExVzZxlivob06hPMW8F0CFGdJQJ0ox+ldljJrBcmov0dZIO630303DiDKEf+WnNBeE8V7A70er4LiQ3JoZgXF9wkZ4rgb978OfL4d9ybZbLqPjz/THqvDAEWfYDAOFLTt1kkzWaUIsrpAslSnrq5KipOk1DH55DbBDCcIJUPl40Q5Tu9m7SXGKCD0VkO9z97FUL+rjKayV71egr26i+t1Va+Zx+xB8RE5NPM6CYo3CQXqRndv14nBoTYVrYpbvYcnC4iJVaw+DT3IWzUOgr4ShwBXwxyCNfT6W0/Sr6XWLei9OkcaobsEdLYJ5UG4jEpD7K+vwrt3qvZQ8WUKI+WgVY7CuypQvTypx/C84+yePk1RGwJy8IDwOw78EfFs7xOK01LZ1hnws8QyogLVw2TqrXpIetDDGpW0JrNtEd74Ot+prrPLDEFhXlUPijNtm+cIo1OPi2HGV0nFyojCuOvuXah9ZMO1dabbtgKn5kCN8n5V+VAZUGbvFasK0j5f+CCgMD7+EllBbt6Z1emnyOfs8On+OUzpgDTKk1GB0CtSfr9LMOxtEhg9Y7h6VUaEvaA4S0qKD8gV+1rb5nMkM1hHXa9vnKkNe5mhSox+2yoVRkmK3iXtPrWa0QrBGluo19LHSA4Kik0CFPNlW0FhbMN+WV67EmyqWO2hw1wjxkUKKnvpjL1LsPY62YEEMpXOQQPHSYi51nksR9/Y52+W8NJYaLtERj2MVHsNvXE8LlG9v/7+f41tPVc9XCpE+vxdlStTVfrn1HvIqgJ0hxyxSbvnS8QzWSNHxr1GPF8VK1v5nCj71Vy3nh+eyQT2wwTFKMXEv33gMvttYr10lFlVIo6THi098VaBV8Y5TjDKGrn2vU8A7Sx7QVGNZSMUfbiy0ig3r/tVUFQDvYbzKoOPolGJfeOiDn3iYp07C6NB8TEBipqvbM8W+4PVVhY+6+rGfSa9VoetTVbvTR8Wg5QSt4kXcods1Ak5afYeWQsuKDxmjVdAgMDzCopzhNVyrm1Tc7X6bNhxYcCeIcaZ0n5WGbjP6oUMOc52+42KIfSghaGyucpoUMwzBMWrZGIj5PR2O+eq3KqQee56HU/G4njm5NOUpjSlKU1pSlOa0qOiiVCsHuTU7CvYHqSD9sfoz+E2Vu/NEjaIuVV6bDTGT5Gt02q+0TXCprjHsDu7BrE5rTVKfIZMP6wjYIxIu1013KuN0HcTqeknfj7f/fZvaZF8jsukoez9r7V7sl7Fe9ND5/lqE+6Z8nuGsCOs2YDIv7UxdU3h9JkskLN918mc3+22zyY5rPmZ6IP4KEDRe15GgeI+GWq6RTKzebs9KKpBu0O4JMeB4h75Ih39YmTAbVcYVpTXxmt9bhEM0zdq+Wv1TtVqwPluG0OXtcLPqhJBYWWLDe2MzJgiU125gqLPETPXoFb3mXtmu54eFMfYCwrd5Rrt98tnR54eBSj67UaBwqHKu2QTS/OptshhyT0ojBFcYTwo3PceAR4Z8zmy4s7uujJTrQ+X0Ublhcn4NRO2gsJjzpd9axhwoRz3JJnrJbPeJUNxrux15Iz7CgrDmfWaHxYU8+0dzBAeww/Le3A2iN7CJ1fdMRGhwIOmCvSe+3HUQ6XmAdU0Ch2LJ4h1vk4gcq2l21e2Nom7Nlz23PalXSFYxnzd5XZMp1PUwtS69t8n2bVGuCurun2F0G63rbRIrM+y6a1yb2sEm35EsOnN9vk5AtrzZFhThUYo1lxmnbFe73zZ5hrh1P2EGN+j/H2nbfsjomXcMhmBugR8nVB4a4eUTR78/o8EPQpQjKKecSxjXSDkwT0eHhRGQwSFbQOspL7WfubJZHVb+Bsfl6kFgUpdPX9N36hKlaCoC4GyQvm4QOYvbZMzmWAIiltkP5CzBChmGQ+KfoxZBYVWjr3BPkeCAqL4yZY9guJkuz4rz3+B7APmcfuy3iNLhwWKqmzUOLKra81+lVkcpfIxGb6DvQnr40ChwlFXdK0N5+ldI6sbFsj4uO0MBIXXJyjqELCa6NdbIvWeIFdwn4ctDIw1626ABMUH7ff1dg9n2nWq/VOejaZ6n8DeSwqtl3WyM/vFdg1XyVInQTHf7nuVUKx+nqHZD1lU8GSUq4lQrB5EozxQD6JReTm+DsicKdndqvJqIBvZFXL3uu+3CcXKiUiQ66zr9GWyn+5pQnnwuLYXcPKTaY16s6pMq2kgfd5RjX6Pund72nr8W6RSc5XMaXoe+CoBbT12t8nirrvtt/KnpkTOtvtY7r5baPd9kliSzhLyarldF2SdzQIB1xPE+1gjR6XVfLe6jD2z9FlB4f51tpBuSS0DU0k+LShklAqKORIUKyRzLJRtTpGDlysonBtYc4VrEnoFxiiXdZWFN9t5Le66RaS4wGhQuGCsMwSFzFgTyqu1tEDmIKvcHSMdAFvENI8PSQtPWm/7Xm3PSSXPxaEqrrW9xTNLDwOKUXXQ7ltnCzm0zHEBtwjmrkzv6t+DouYq1fEuMATFDNkba4VQVk6Xbe+QUsGcLa9T98C4yopRWaqVqqdPSeHxb5HT0a+Q7ubnCbPXpnUbDEFRF5eZ7kcgm2GrEiooThJgONt+22uEdo1KU+NF19p1nya77focXMgeP028YvVp0s/6XFbJRw3xCpbJyIfrq1EPjdt6zFr8VNMb63F3yQ4nW4QM+YA0Us+UbU+Rr72mNgqd3j6rxnel6iB2W3OIN9vn3yG8QDe6fS8R6/qvkGHRDXKM6EnSkftHpI2jLVDzhGu6pNe7QzznKwTru5SdIWEI2a+4LgnfAv44e2XGM2Gc70cPA4rqvan7S5V5rcy4W/53m88CChUkQXGVWDM3yepq19kzJBghDXRDaVVBqlGfnvqE7h4UdwhQXCHDbW57iWjs/GukcW0osAfF++w1/PtiqrogCdRxoNBlDLk61zFv3wL+FMO2QjAFxUOBoleqxrVJgGA6lSsTJVReDgKKeux6XH3zWgtXSFBsEKuysY3nSK2+D/EpKXpQwN5n8iBQ3CVAcZnRoLgA/DoZN18lhyErTSGUsVqT7nV57bX8yGs3DGiPKq/vHNmaQQVMKavi+rvAr7K3ed6Ty3SaeMUKRjsz99t2HLxqRdwSsbaeI8Y5niIjvTonhUPV+Y0S20haW8Hv5whW0yC20eiLZHPMq+W4x9u1nCDW2NNkZWHv4K1/16i5626t61hv17FKQOJjQqnyvpR5f7pd33Z7HipV5mVVhe10O17tHFLTdiq0agGsBU2vEV1aXEr0bt0ke+9K24QtYvNQIyR9C75nlh4GFPvJmxpSchbTWUKLXiY7gH9WUKyTBnEPio9JT43hQX8EhXHsvnm163UPChlXTV2ZKCg+bOe9SeZMaez+Kmls3yWVKi2InXLcUwxB0T/rcaBQPr9GPOsFUvmENMI3SKbfIsD8QdtvrRy3Dsh+ZulhQNFTFfZ11VsmFI0lYv7SCbK8dY54OX18GsaDYqd877RUQXGcaC9whlRuIGMBK+33KYI5DLXJNJ5fUFRw+Lt2BTRPSlB8RIDCGPkxEhR/lmFYUKVKa6p6ys4yBIUxfXO6qmUiKMxVu08w93fbfW2SCuY1QlLoYjcU+gmhzH2pXIOxqCdDE6tY9dHg+tmD9ulZqUYAZJMNkrUvk9FZ0xRny356UmShaif0/ZZ0Ih8j1sBtgs1OEZHgi8Q6CjERyrV6gWC384RdsNwdV+plSU2zqHleJs97nSuEHKPdt/LJdJgr3fNy6ei9ZlWmwNDJa0TCc/i9c9xXGaZdqlg5gtTKdCH2MhGyfKlchxB8JunTgGLcdlX5cF0WFLfI/KpPA4p+0KWfLRCgsKeVoHiJ0Lgh+gK61gqK59qPSXiCov4exaw1XGZsuzaqO0Vo7Vo4Lg5q/o4w0yLTQqi0Hyi8hlp54nUKijtlm/vku3BsWi0GWCWiMD8iwOHzddF5JhWrzwqKyjgqV+NAcan97wpbe3jAeFDoGep7QZk0eIn0zpwi/PSvEGCAGPViJYUVHmcZunqrB8j/vbdqPVVQ7DAEBQTgXiazZjXvF9u2V8v960XrEwtrPEOqYVrjRHTPS1AYatUKsRHPWruvG+QAzTvEAvJjonGoZN7Wk6GJVaykT+vhHrVfjZzXNJD3yOEBtZhHGJjf6vq6247TjzSDlCerBNv/kFgbXyBzZL/Wtn21fWcaoHUVNQ2vtjszFVGFqipYdkJnxP9bhMJynVQmP2nfXSjnFn7WdvTQWCMdx8rZKm9V4LxeO47MtHPeIWCjw0JoGb2/3Z5JTZ1ZJ2yo59v/NaPhmaVHBYoF4kXNEBrtGfJlHxQUNZ69HygcyNyD4nOEhu38VecSasw6i9Zrr8aw5/K3VXO085g35Vp+jlijFwlw6DW70K59kWFEw/tXcYSM6DwsKGYJQNwhZ2gZi4dUpKz8sBpzlwDiB6SlVJXNZ5YeJShuEi/+XXKlrJVtNfzUg+IuoyWF7tUKipvESzV+ICheJ0BykwwnmvO1ScbLYVg96P31oNAK0FpwnMAOmcx3nGC+K23bCgrDcD6DLZI5Ias7qldvP1AYY98lQaEXb4lhXF3X98skwLdJN/RrZVs9aY+fJkJGfZo8qgcdT6qeK20EyAKoNbKx9AlyHa+seaw73g45+qZW9nncWUIm3SDl1C3CM2ZthdepguZ6LCTNlZWEZVWuPK92R01f1I7QOP8+YWu8QUBFuFwm0kTcd5lQAs+0Z6GNJKnY1BoVr6e2hNMJcIyAyT8llNeL5DJzpm37B2TlonaQ49NeJBRfZchdnpHq8kcBimrc7weKG6T2W4cuHwQUWgMVFFoJrtmC4jY5a9U0CtfkYySjCAqN0Conal8SP9MT5/oPmc+lcX6MiOzcIAqNqgy5QoJihmDG59r128PE+9cC6UEhMAW291ZB8VvtuOdI2WN15FWGoBBoHxGy411CttDuS2/bkabHAQoYDYprBOMYFxcU7gsPJylc3dXuKygcSWA1nGGteYYjclQeelAYB6nXV0GhtWHm7z2GoLhOhNWuMxoUKljnyNE8M6SpvEKCwiTFWi1Z85/GSYrz7AWFVZMVFLOE6f1Fwhp8vW27wbCh0eOliVCsHgSVg8Jp3DYVOr4iW/H8Hpm8fpKhwV3305tTo8Yar5D5QaeINfEcwYqzhMw4TbDsaeAP27bHgC+TM74tvH2NMFIdowbZj9doQe0UIqsrm2YIFtU79b22z68Bf5NwPBu9nyed20L+/XaMs2TFNwSbqnzWdgpCvjqchdoaAZvPt+dyvT0joyQe12XkHcI2uk0oUzNt+2o/miVgpxLlsPdQCxSeWjosUPQKBwxdnTUme5dg0H9G5kXZTqZPlvaYGoV9kt8cmfx+lnj5p4g1cId4wWeJmbPnyFDgAlGF9wHxUq2ieJVQJNbIhtSb7W9lnYVYRmS2GYJilWT4twnG/pPA3yIYs1ZHqsjoUbvb9lkhmFmDe4Mc0+CP1kFdMLwGr+MYAfSr5foNB9KeldtfJ0Cx2q7tBuHt00Kz95e50C5MgmKXvcVoTyUdFihqErgWQ13t9QJBJuF9k1y1nIJaQQQpTmtIUIWilxRnCEXhNNmK38xas2G/07adB75CgGKW1KRfIUzVjwhFhHaMc6RC6ArtNdg3inbvd8j+T58QjPavA3+bHDYNweSvlGegpaKy8yqpyN0le15piajQmRdQrY35ts8SodDZd+QkQ1fsC6S5f5VQwC61794nFoi3y/N1AbKaUiDMMASF3rUan/HaPh1NhGL1IBq1no/7rtogdH/DcC4shPJzjGC3VdIYrY/Zv6vSVe2Bmlvkemb19vW27/fa9rcI1qX9/XsM+1rNkEMTXicN0QVSYbNziVAxFcZ7vdvO6YjKY8C/CfwnwL9NeK3++7btfw78IvBL7VodhbnRnseNcp96seyfWB0fOipk5V2ywPguma6iA2GV9EK5VBjtuENAyIERG6Tc/SKpPGmzVG+e9w9HPMH9oKAYtTZU+aOgh2xxcJlUrGxl87CgEAiQid9rZG7sLJFCcpzh1O1rhDw5TRrkhvFWCfCYVmJ/DpUrmdLIRC1qGgWKfwP4z4B/l5Bbf7Vt+18Af4IExTIhc+4ToLWPI2RrCJvUPQgUzm/qQbHT7u/Vtu0s6UzQsfAcQ1CYrPnH2m+T3HVYVLkuKGry/5Gjh5EUoySHppnxVkhN+TLJxD5gH3jNnaox4QqKvhpO5c2k8VvtuD8kE+RlhqvAt8lJtJr6dwmGWCYlmh6dqlxp5ZjMNw4Uc8BfAP4S8O8TLRX+Wtv2vyKskD/ermeBkHB1fI9ugCoptHhUbEaBwsqNHhSGSpWYPSjWyERFzW9B8QvtOMbz+4WqgqJWdR4OPfOR+SlNaUpTmtKUpjSlw6KJ8FhV4/nT7DfuOL1hXm/2GOGtukE4UW8SniMdvbWyvM/H9Zg1euy2m+V7bZu7hBPXbiTaQr9KFJW+ToTA1glPzRZht3ydzG9yHquOTCMkRrFtDg2h4+tg/aid538G/mPgG0Qo0uP+l+3+t4CfJPT+U8D/TWrdRl5WCJvJ8TSmDdaaGp+DvXsN22m3QNoR/r/Sns8yWQtiWuUqw/DeTbIgyvyxWok5qvD5qaTDBEXvwq2f6RFy20tkvNbQ0yajQaFRPgoUlQSFkzwWCeBdJkJaNQT2rxHu3deJPKI1AjjbBEh+giwSshmdFRJep+fqQbFLguJXgL8O/AfAzxIuUa/7LxEes3UiVr8M/Bzwd0lngcb5ifasDMftBwoXkR4UGuc1T+o0AYqT5bptH6FrvaaevE5Gesxlttz2yHipDhMU1UtRX1ZN2HPbjwhmPUEwlYy/zLDhjHlG2+V45hBVwEGCQu+N4bLail+vzr9CeGJ+gqh+WyXdtD8mPEl6rO4TjGHSt5JCUFR3ay8pfo0Exc8TUkj6T8nWzW+0Y36DCBnqtXOw8gmyPYQ5YONA4bP0XvsFyWuHlBQrJCh2SUlxtZzjKpHIApnJXLvfV1CM6qz72XxOE6FYSb0MeBDVqLj/9/vXx1PbLWwDv084Eq+SCeCmIFRFTMVpq2wnrPpUvFqjcJ9hNdwqwbq/3ra9TbYLMv/I6u9/B/g7wJ9r236uXcNtQhGSHWs9iArbAuFYPkbIqb9KpHN8vV3TG2QYbpcIBb5IVHGfa7+/1I59nqyYfIG9YcCNcpwKHdNLTHN8jZDZS+0+nEFIO/e3yVwrC5zPkHUfwu6t9tsWDC6RxxnmvB0ZOixQ9PlVfldDdltEr71ThBzxZVS5UctUx4HCUNsoUOy0Y6owrQP/KsGoEGB5i3j5v08A45V2vr8I/E8MQWEiobmukFo/DEFxnQTFXyfk1FfbNbxGMjrAz5CgeIMA6hvtHs+SMsRxCp8FFCqGtbr9pXbO0+R7mCNkioDwnf6wfXexfDYOFA+rk0wkfVZQ1DLX+jlk1qaCfwP4bUJZcJzNGimYZ8q2Ncxk4vouOZeoB4WZsZYb3SYY/y7w59sP7Xw/IIB5nQCnsfO/CPwVEhSfJ168nXetVDSe7/Fgr6T4Xwgm/xIBqpfbOaWvE6D4YTuPv7fadbvtOT47KJRsTrKFYPDvMJQUZuGaFGP28A/IREZIZU5lbJSkMFz7oM8eTBOhWH1amIz7vx5ztvy2shnCQHUOnfq2aQxOmpBM9ajpJeq8Rq3ro9dOmSUgdZGsOnyZfPWvkWv3PPDT7fyvEyzzJ9grD08QLG97OMdR1s4gRtN/glBYvkLYIN9r388TkXSIwiRZ+vPtPr9B2gMnSba+wJAtTWBXvpo/6/VWY/k8Wdl+goz+w/D9XW3fa4xbBWie7jaR7G8Uf4cceWMU/0jEtw8LFKOS1/1ed6rel++TFYFWz90hFBtBUd2Oo0BhJcgoUMgsKwQo7hJr5EVyasXnCUb7IQmKcwRY1omOttXYpR3PxPs5MjHQAcWQbYQExZeB/5BYf62E+NW27T9vx5whh1t+mcy51WULOVDzIKBw0dCBISh0O1dQzJYfkx91Spgwf6Vs+6N2/7qCBcUMR6hHyWGBoipa1YsiQMzZgVg1r5LdZVVK3iDHybifq6bHg3gJ5vmMAoXMfIIwXWWyF8n+H19o373JaFD8MsN2CxDMskZaANdIUMhkZrYKii8C/xHZTG4J+DNt2/+PLJt6ru33BpkrZgUHBGNXUBjzqVm2KlqQ3YdNvPdaZeYKChcuk+Zrv7FtQun0mD8iXOL2N7lLgnOUG0aa7X4/PE0M3B4WMozYvjfGNdRdn2Q1iCjDLLGu1U4Zs92PVNv2GH5S51UH9xrcz+OeJ6v0PiHl2CwRkfjHhKIwQ8DgZ4kQ4XFyLT1N1mOY5C5EVFjq+LJTBKt/o537d9t2Ogks5P3JdlxHXVrropK5RaYOVmczpGz12W0xfI7mN/t8tANfbNf7Qdv2B+2+niNgIcScsKLjG0KW7BBJ/19pz9Zn73OvRQVPNR0GKBSsHq/fboksEnq7/b5OPMQT5Av0p0ZQKijM45U5rAb3byvYXdvVnJeIEJ//bxMu1N8iowBGHf6QodZ9hgSFa+4WBwPFGvA7hJVzof3vc/gyCQpH2EDmyt4ni7Bc12vFe80PrpUtOjJ8HibZ2zB1gYjIQHjttts11woSPYyr5EJyuR3zX5Cg6BXr6pV8qumwQKF0qGEnSDNTTf9NhgJ7VEfvKilkWhMY6jmqYqEkuVd+L5ffb5PK3T2ikuKfEm7aHYLxfor09bvt2XYem496TgdJjwPF19o+v02A4oW2nW4A3bVX237Ga+x95QxBnwHsD4rq5eslhVWbLxAS4P227Y/avsuE97AOQhMUXoNNV3+73duF7lrgUYJiIhSrTwMV9xt3nJnyAwmXf9H+12moZ93GlZtkCkevWBmW8vNVcp2tfaxWSB3bKPwy2e7NkTY/bNv/TPv/JrEmfoe0Byx2Ne1FZ6bGvopjjQzMktHtmwTU7hD2zSYhP2pIdLPdx/lyPr+/QPabqktClbW038o0//d5GcGfIZ3EFkHRvjNf7BRZeGsvyB2G7X2OkaNBX2/X7XLmmFDYv9ajRscmkg4TFFI9Xm30+c329zqpTNwlXsAdhqCoSWwqS1o0MyQoYC8oNsiQ1mzb7hvEC1XLVjv/Uvv/etvud9q+XyGZ9BYJigXSLey17QcKK+w+145nRETaJJjuLGlc6xa9QDKka/J+oKjzZg3NzZGgONOue5csVPqEbBF0lhzJZvuL7XKv19r5322/v9Cu0YTMGkvfDxSfluceGx0WKOrKruXhC1TR+Xb73qFghs1WiFiHoJhlOBRTQV+b0Og5sqwfEhS6hgXQKUIiWHXntjOERwnihZ8lQLFJrIKCwinmeoHsmaKroIIChqBQmRIUNxl69+6Rls0GQ4vtAkNF0OexXX7cdouhBLLL7nESFGfJ2IbukI/bZyaK2HzVzyrYbpCJmV77Sww7/VZXstd7ODQRilVPvdAbBadRQrGu73R/7xKP2vXbKvJNss3OLLHe1ggH5W9TTNTDbRkgLCANSnVpG32+2j7/EgnDD0hbZZWAjQOczxAspiPXhqNG6203IExMc4EcMfZDojj2ftvXinW7i0D2790i+/hukcrKMqOd29WZ6r3XtM3aH3iTWCLeIJzYd4iUyy+3bf+AHFN3mlg2VtqxrhPRGEOBv96u7fuEHPlWO+5F0hndZ1T0NNGyYxx9FlD021TBf43UUvXAr5ODLY1u9Ia6YDNtRFCskaBQ6RAU8yTDbhCa/hYBCpWED8k5S7YfMPT1EjlDj3aNhskqKGpjNkGhLBAU2wxBscB4UKyTCes9KLzHGqWoC5BKkNsusRcUX2vP7T0ijQWCwe19cppw1VrdoZdNZ8KfJWTiBwQovkksJi+TRQfSOFBMtJUxjj6rpOg/M9Z9jVihIId9bRIvwkZsxnxHea8MN1m+tE6AwnAVZPe9OVJJWSfi7veI1dHElY/JjucqPn0cvbY6uEVWPSiBRoHiVPv7+4RHbJZgKrsK1vkYgsLeH/59jmETHu8Nhsk4VYHVbQ2pZFmC9B4Bip9q9/ouCYrvtmfSg0Lp/jLpafzTZDj1fSLGsdae3UlSQlOey+HRRChWlcVHwWAcVPrfhslcl9WJF4n19NsMe9nqsbKibLd9X0ODkPaG3TZmCZY0ajvH0LkqZJyJ7iu0AanQ0oPkhKRdgk3mSNgob9bJNXKGNPyFSU3Mt1hqhexpuEQ6TIVZfXbKu/PkIGijPF6vilPNZRY6Lkt+571vEGytR+wYYf+ZJA9pM90jUmxWSCXyZbK3JMR7PEVA7WfbMd4nQ5bVoeKyIKQrjOp7mEg6LFBo7JoQqAtwiUgf+SYJinmyH2Id/qv3qsoxE/3my7Z6qqxMq56eWpVg6NDr2CWbc75MNoi2gbMNO9cYgqJWK9Ku0+Mqw2q3WD0+b7dr1yBWPvagWG9/n2M8KDR+len+rrHwmhsgKD5iLyjOk/L8DPnOnmv7CooXCfmh3P1B+/yrRPXim4SSdZ9QRk2OhweDYqIVrMMChSuVwtyEuHkCFL9LCmhLhmrt8X2SGX3ZkJJC5tebAsGs8+Q4eUHhUEg9XCYGCjwI5UnPjiu5YcZVhqCw47igEFgVFLXWfKnt+zbBgDUD1h5VPjuVvwoKpUIFRV0odstno0CxSM4++ZBgfEcRXCKYX0mhe/oeoSCdIC2rl8iGqxDK4gphYfwM4blSKX6JoZTvQQHDPmRPafI67E0rfNC2o2ClcaiCMkPotB+Tg+xdZ18iUvZ+QCZBXyUTtmueronS1i5YyVyrBWUTU/Ygx8q4rjmQwHt0/Fldlz2mP9VekLw2o+e1/RqkjWAdSE0fNGTW55QZnVFx2y3H7tlqh73Q2SXnHELaeE5EUX7cImBzgli+IOc2OrfwywSUFon35vtw298i7JnnCeX0AtmI1HnolH10Th7OdQAAIABJREFURhie9L4nng4LFObXmgt6ndBGPyZeiOGhi4TBbD+O+4Qc2CAH0nuOc+V4erXMY61yCoYlrCaRm09qMve4Jsi1gGuGbPtfj1udDZCWhtdG2d4EyZosafHRzIhtBcg4UNQUkQqUUaBQltoiooLieWKh+QdtWz1sguKLJCguMQTFIvBPiBzmCwQoXiCV2aWyrQuH7mSL16qsm2g6LFDIzCZkXyW8I++QyRoQD/JFokRVr1EFRX3xzzHMYVokTXFDYDXJXCZZb8d1PpIrv4xeBz9Xb5vMWUFRKxZUxlTcZNzey+e+lmkJDGPJMAThg0ABw3NVsPSgUAl1podK1S0CIKfIsKxDNc2s/RJ7QaE37hiRvfzniHf4KvEedSsslW2NEx0vz8/F49OBYiIUq4NCRKqKQf1bFrpJzuG+TwjcT8hRMRBr2O8Sr+YtUrBfI16luUiQnqoaalRJgex8DslOeqeOESyz1D4zGgxZU1JZ0n30SvX1EMLLZ1JTO6R6vCpDjLorMzzuLEMlrt5rVUZ0NtTz9Wk7HtfJU+sEHE6Qyt462Q0GMp3lDgGrdXKAw1p5ThCK8L9F9Nn6BmGLmCPmKDrvw6VJO0v56T1NdEjwsEChi/EmAYRLZNuXTwjDz5lzK0RF3JeJB21jNWcyVVDY3wrypaswVSaVtoiXvFj+NodJd7CkTKjGYw2x1T4oVX7ImH7We/irMlWZvlbBez+es4JCpqmgqNe7yxAcypweFHoAKyg2yNm3HvMkmUcmKD4iJ4ZIPyCmkPwjwuL4eRIUM2RUB7KlgznCc+Q0lTppZCLpMEGxS1gYa8RDtXrhYwIUluwsETOevkp4Qe4RFoiguE+6fFW8fKmeV4WpMoNMpHfpONkl0MZo5gtVBaaCwu9UhmDY7kHpouu5V3RgKClGgaJXrAx1QjDtJuNBISh7i0VPEORQ0lWCqSsoTH50WwfP+ewFxYekpHBR+h4xWuE3CSnxC+07S3qN/8PQ9DbGpFL56eIaE6FYHYQO4vhVIVkmDMDqBb9F6uwQ0dpfIgS0qXDq9b5GX9EJMsowS3pdThK2SzWMZWMYhhmNQvQGtCwqa1bPvCxW71WDU/lQ850qXLSN9LCZ4tLLkNmyr0ZrvQbP5zVUG1CI1FCsyqZOC5eZO4QM1UnxFil7T5BpJzpUXiBSMt9s29Sk+B8Ro3neBv43Iu9K2/E4GSG5SkK4FlUJ24kOBR6EDgIK19kTBNO+QDKCY1p8Ed8heg3+fdKjBNmQEoZrp2WeGpiniYd/q7s2Q5CGC41AnCRn4lUvVPUA1eNUeeX/lSHr2g9DGaKcqZ6vB4Fiu/vMZ1kBX5WpUQns5vtS9utBoVx9r5zTChidGVeIRe11Ilw4y7DS/C0SFH+TaEtkCNXBqBDgqrLYRQ8yH+KppoOAQqZZJJj2HMngP00wvKv/7xOg+HvEA9dUWyNzhTT7ID1Pu0Ts1soEG3NWxlCJOUuY9NaBu4LNdb+rF6jmLfmiJRPo/btaCr0HyRBklSoPkhR9fEVQSLvsBUJVsPQQwbARXgWFGv+Py7HNorUC5DoJirdIVyzt+zcJ5epdokfXX+D/b+/NgyzLs7u+z8ulqrL2rl6nu6eXmZ5No0Ga0WJJMxrJEghJIWQWBxIyW9hmCSJMYHAANhgEtsNAOGwTdhBeIAATZhFISBoJ0EjDSEZikGYkjTRbT09v093TS1XXvldl5vMf53445/3yvpeZVVmVmVX3RLzIfO9uv3vv+f5+Zz/xbrzHWorCCotOQNeb75ujXWH8HWiggQYaaKCBBtoNtKMsVrMMva1BsW/fESH/WkTTgHA7Z3ye9J4/CvwY6bE9RLqkVsj2lJCxR/vIsMVHuusZeqiEavWQq2RG975uLGa6VQ+5FqWqg6iftBEC/l+9GVrp6jOpCnR9NnPNp/7uMVp0DNmrHhjHU/WeqqTXML/9hCtvX/cMfM7nu+dyggyLNOFKD8V+wnjyHUQC1z8h9ceHCf3jEtHo4b2EB2REeLDsxAKhh14hm1arXxozvSvoZkFhXJP1quwG8TLxIj5PFpp8DPhxslXAEeJBC4qa1GTik4VDBYVZhZWRVUavEUxgauo9ZPJSZfrKkO09tX7vqizXc0B/OElN8fVagmmuOX6eSQVdM2zrYWqtVrNAYYJXBcVFgrF/vdzLZTJFWRfrbxKWqG8mQCGAHiBAMU+4BN9HhJcsEp6SY2TGul3cnaiM+1plsnvIjqabBYW+ajMCloiH/ArB+M8R5lyAJ4CfJKuiG6xg1oLB3JAuJCv+XSaCT8ZklXCZ1Jl/hVidrBViUDhl3xo16/21sVZ9wSD6QFbL3z4AVbMuTFqj2lQlj6/dvqfFbrUrUR8obFOzjyw9cR8x8TxAFEjSpOqq7nNbInxPv43wP/1jktEfJN7jPuD7CEukxfHeS4DLRIKjZECipuxrpKt287RjLFYb8Z73vbZKemv1xDoH3gf8TLft8e7zS8Qje6j73UxmXYc1rOMamT1u3I5uPsMUaqyShkSzsw+TAdvG6e4p+1e33kK5bt+aIpxkZ/erbsHW+15fcnveuoZYfUWY1GB93YqOY1z20cNRpfTzBItfJwVKvRef6p7dse5jIrNebnNwfpoQsL6LDII3weAk8M+7cX89kXF+utvf814iXY/ekyEmu6JO4laA4gI5TxwmX9g0UFgVfR+ZCagFXiHEjIirpCdhD9ls0wSoWoUcJl/0YTIrpDJvvfc2Rnbc/N8GrcPa6rV9msR8OVfVFuq1dU+qbVRQ1Ou1bssbAcUBIhvcDMB7u31q0tXZbt+fJpILvpsMSXmTeP5vAj/Sjf0bgG8nYus+S4JCmaAPFLvCN74VoLhIahz2YGpB8UT3+QTBrNausLx/rQ0l8+oWXO3OIYgMmNYNJcMroNzXnfso8fItXeBKUdOZqkrt9dUuanZeBUINep+mXrtyuW9L1VXoCuf1FEJan3hVwWvKVQ2orKA4TIJiP2tBcY0ExSoZfyUofnv3XpYIc8o8oTX+424cX0dkeJwiivwcJZvNQSY1mDlpfYHN046wWG0EKtP2qZC5j3hkxvuvEDkezxOP89fIbGY7EL2HWEc+yqS33PkUst/fKvEa9OKqmM+VfWvooCVrLHVW9RXH0CYYQUKghnLUBCihVrPZhSukVaa1ghlS0WcF8xr1HoSv+6jYCh9jhpfL/tIZskDoQ922i8Tc/stERqbP4lFSN/BZLBK63gvEO7Fr1r/txmFCwceINeQ0kYhwmdBh6H57jKzabvam49y85/w20laCwu4PCj2vEMrchwkp94VuX4tPvoNQFv8V+ZK9XgsKyDCSEZOgEEwu4maSj8kY0loDBDLco96LgGiBUi1EClG1YGkFhRXOa3jINIW/nr8NI2nNyq2FqgVF1WSmgUJt4z3kmiMolkhLoV1PXujO/73dvv+arFcpKL6ZeO/v7M4jKM4SQvQxcr2r4TQ72mK1VaA4Rkqjqs1fJoq5fJjI4DDFX1A8RTz8nyED5SAFKghV7jzxMJ31NQnKoNXkq9XHGf0eMhK3zrzmklfGrAJM21bHVcVr1hm6gqJqAFVjaT/1mp6zmnOrZQxuDBTXmATFEaIA6jvJAMxHSUavAux95EohKH6O9HNcJqKpP0RICE91Y/pMt/0cCQqfl8/qxmhHCFYboWp57/sLMWfYFeJc9/1hYoH+TSbbor2/+/0CIRevkPX2rhGvVkOh7WQsernSbVf5G5OvUGHJ5NElsgxNm8AqW9cMvBqSWF2MlX1rKCJkCKRQt8inusViOe+oOa//L5dz1eurm8AkVNSLHL/Xqeexlq61f88RCUxPlecFGap5mISmnpBVQjh+ufv9Q4SusYfI9XiegNB7u9/2kUluvl/73FoWqSY972raLChOEYvtA/SD4muIuessIf2uEC9NgeUiqdzJgBsFhQyiEm6dJphUYHUbVmtStQZVIajO/fPNthYUvngTtHx+FRCCwr+VmWuWYTUITAOFwKhr6TRQnCZAUdcxA94Pk4LpZdLC9yIhC0BoFp/s/v9aYo35KPE+lwiNRVA8Trwni4nf9aA4SVg17mU2KM4RbqkxITytkKCo1RFVidcDxZ6y3xLxYhWs5knrFkwW9GlNtq0LrqantsHXLSjUNvpU8eoOpPxfQVEBqMYA00HhthaoqsoVFBcIUNS6LQZwaAVcJVOXIUDxXPd/C4qXCOHq/QS4DpKgeIIExRK5EtW8/M3RroGSLjnlSBM97ydbVWqNejfJqiPiET7effcxnScEqS8TSbTv7LY/TyziD5AFqW17M0c2bn6DFFzayuuXiFdl44G2ybxs3SrOVY7X2Ck7yqbK/QppVklxzYLMrvO4E4TlRh3jEOmJlm3bUBLvpcaEtQZnx6eAaLUVCGOHCcNPdM/rQdJQcYwUXF1rjY2zssw5Io/jCAEJz/uN3bP9HPDB7v5f6q59hPSKj7rv9zBZgql6+Hc1bRYUe0gPxiJhNqzlck4SMUDPE/E+7yAZ6DUCFPayU2BYJjt8vE4y9eVyXogXcD8BuocJwUqQVom8zulV0KiuPZm7riGCYh/ZiaPVTFSMLRvxBGlu1ncMKSx6Xu/Xa7cus9YdKGi0BPkcPkGWWThIeCseJMNGTDP2ee3t9r3e/T3bHfM9hBzwsW7fjxIWqjNElvm3ds/qFbI6ry14xmTimc+vNU3vatoIKD7f/XWlsDjOHqKIS7W9v0489C8QvfreRs4gJwhQGI+lW2xESMsW+tF1aKVyut8uEYv4GWKRv5+YsQ6RcV+QL6nOvHUG63NZyYgLZA9Ca53I1FZaNKDlArFSqkmZD++9aTZwXIKyMjuk8GjKsaufbj4FPAhhVdfnITL91aqPR5gsv72/e2bnyKagguIYUV4BwrfxTQRovkAEi+wlJrJXyGfteS0qp1UNJmPaNke7RrCCtKBUg+KYfEVPEWygq+4g8RqvdL9bKgZC0Pgp4pXZmPg0sZZYTNo+q/cQAthbyWb06iDVCEv3+5MEhK1QosLuuBVcWu9DdVEJi7YySDXk6m7UKCoELpNs6r6/QAgkepQVwnQRCoUK12rIbb+7PtXyBavkunCAzLp/udt+qjv2DwL/J7G+QhrPnWYWuvs6Q8Lj95Z9/xnxrg8RMHmS0E8Ulr2XPp2tTSLe9bRRUOwhy+NAdqWAzOh4BPgJ4sVZdfUMAQp9zy0oHun2ERTVM1Fjq54kwNMHCuOZIEFRrUrVagWTyq/3WrMTaiuzOsfvIeZS19tfIASSewjGXSrnrUHdVYOoSrjjbUGhYOU9taCAAMU8AYpV1oJC8LiOjEih8d914/6Bbt9LwI8ScoKgeBvRzFrTfTURV20J7mJQqGUYTHih+32FeIgQQPgoAZIHCcY5RxQMk5EUlgTFY8QKsECqsILCB32FAMVXuutbNdZxW6NEqlagUfObVrL6m6q2GsoBsmSzwDeDwVlXUHwT2WF2XzmvcWn1Oq0pF/pB0QJdK5+gOEiAYkSAYh/whwlQPNrtq4BlJ9k54p0Iig8Cv6/b5zKToHiDMJ98c3f/F5hsq+Pq6iRTTdibp10jWI3JXIAa/lbhsrfsMyat/v6tQsNHu7+W63mT6FBkrVxfL902C/27SFs79vXuOF/5rxFsYPKV3ZisNFKtUo6/KtXCCnK9gjQyV+Vcw2xdnyAExRGZ5yAEXiTm2wMktKwT3Bd75G+O51rzucpaw/CZ8l3D7iViPbZtzo8SYYRGMZwly/n4XC2Vt0i4DzWUvJWAzmvEFGYzBq1u95UxVXdqe09jJvlhV9JGQGH4xkr5XQZWM/DFawHZ1x1zkhCqjpKKeB8oZEqFEUFhNw1BoeAiKKr7rmoZvjhJoUbrfB8o6M5lhwyFOve9n1xvZcQx4Tl4B9lwmu6+ZOS6ZtQipLWSudvaNURlXmFqnozzvUQAdRYoFKhc87R0LXT7He/2fRL4oe77S91+Xyaz/B4gmV0jRn2+dx0oLBLWB4oRk5Lnz3V/bbgsKO5nOihUN22SeZWYwd5ORsZ+ipCiPa+ZH4LEFwWTQkv9LijO0Q8KhQWbaFagQmpJNW1phWCup5jMsTatuAp1LbM4Rq1irkyCogayVFDoH9cFa2X0HyVUZkFhTyfNwDZ+O9gd/xxplXwS+AOEQPVKN+6XuuNHRDxXaw5XsFKIbIMvN067RrBaIZN0qhBQIbBCClFaUCq8TpHKucebi/EOMvv8SUJ2vr/b5xqZu3A/afF5gSgd9+NkxvohIgbom8kcBgslO89KrTysfC/c7yFZVzY1jkho6LHQVel5vXfvew/h3Xm02177kAs7hb4KYSHnvtfLxzHVMaqc+5wvszYZ7XUi0++Vbp93ku1FR4Qxep6Ai8/O6egXCUgcIqIfDpAJCg8z6Xmpz0SqOtbmDbw7jDYCijGpCC+U7c5v58kO184tmjvfQTDhc8Sa8DIBEogXKiiOdf/vJV7GB4GPkKA4TCTtvIesCH6RVDor07UhMuuBwnVRUBjwDZMekiogCYpF+kGhQFgldBnez7Wyj4Co2SZe0zg1SFBcZToojD94J6lYr3ZjnCcLTtc2NZ8g3asfIAWrFwhNxNgyyOddXarVLL3rabOgcF9BMSYevMKSxTJtLvku4kG/QoDiFdaC4jyxUpztrvMcsVL8JJOg+A0yu8AsBQOox0w2CKtSbwXFiP6VooJCS5XML4Orcfn7CaaDwsJCXrMGhjgeZ+m6Ujiecfn0rRRWRa+gON49byNsTU+yLLf1XQ6TqbY+h18lQHWEEM4OEtbBlwiL4irp21IYrxNRvb8a07Ax2jWCVftqfHy1NYmv3CbIzh02On6TvOG3EKyszrCPUKyfJNhrmck4pCvEHHWCLOL/zcDf7sbzRrfvAgGjw8TC76tS0JtW/qCNV5oj5tRakNqogSpHG9NaE6v05MwTLLmPEBgVPPaUfTUGV9nd8+qKrMq5WfZ6PNr34XpzgTQwu74tEKy+r3uO+8sx7yCmmbeSOTQPd/vNE+EwEEr9WcIArDD4BClgHWay60rr9aDn+66ljYDCl2cJBMiAuMtk/QqIeWofwTwGJP4qsX68ziQonPd9SbrNBMUcuYa4tkCAolqTLHDclloQFMZFuU6eYxIU9a8hKMtk4KMMKSjmSFA83Y1fgdJ9BZSKq+d0rbhW9hXgdQ2p46/xvmoZgsJ7N7uiguIyAYpPEXWpBMVbiTV/gXgvEC6/SwQoNJI8SawpLzJpeNBS2Rob+iyHu5I2Aopx+W2u/K9/XAEDgkEWyLifRQIU7yYW/mXy4Rpx+wjZO2qFeEH/V3d9zYyLRGXwEQEKqx8a9FdBUYUZTa7ej9pRBUW10/s8zH7UTA1hln2AWAlfJpjjc6Q/2kAamOzgrgBahSd7Pvkc1D4MjK++mrmyrwEgc0yC4gRrQXGFBIXNMOcJQcl+UO/o9rUW1oNk0MxTpFBsATm6ba2ZHG5G/d41gpXyZA23cC6oeQuQ3mXD7WTRD5AC0Hnika90+zxLzEUGPKt7QDz+e4hX/AghpDxFGCoPEVDx8V/ozvk8scZUncN5up27qgtQeXmBdCd6XmEqC1Tj9XES3nsJZfU4Yd15ufv//d097Sd1FmObNFzXiASvJSlUXWYylMT9xySrmtMiJMyKPE7oD89144EQaF8EfifwaVIPudLt8wrpuryP0KX0kGhxu0h6VgxJrOGcrQu2Kuy7ljYCiupNsCfcfPm8lYy9PU2sH2Y0fIlYvAVFfcGnyUqvDxOZy19NVN09TAhsPvCLxMN+iVDcnVNrPFWfKbeCQq2iFrEUFCZWjUjrzEo3tpohofvsIcIzIyg0LNQ4JC1F9fmqbVRQ1DVEAVDPgmtcBcUik6CYJ0HxLAmKT5Jtan6V1IouE0lOx8k1z7qSgsL3pzVxmTQ8KOTBJChamWPX0kZAUYPpdBvWBmIfIO3ppwnhwwyxLxJClaBYJVcKm52dIJjsswQofoSYzWtzZzMLXyJMvNW0Wn3OjrP+LyiMuN3DbFAYYLhMrICOd5EshvoQEWDxBsGEBh1WDcIgylH5KzCq76Kq4LX+SU3VakHhO3HMbxKgeIFQpyEC3Z8nQKErVUHxA8S7cnI50t2TY1QauEo2cTbzs8anVVD0CVsbozsqZHGggQYaaKCBBhpoO2nXWKzUOVQGrze/QRoltc4rt8+R3SSulH33EKFuzxMGQmNjv9Rt03P+OOGdHRHeg7cyWYR/lUkriUmtv07kjmhQ1eCoXL9IytdVEVYPUW6HkNvtfPFwOfZkt88ykVRK9/d+wiL3MqFD/Q7CunZvN5bqOW/jcDUOqBu53fYwejwqrXbbjpffaojKYdJK9jShX6gvVO/2/YSnw2SzS4TeYd6Nwe2Hu/O8rYzNItVa7tpEM/9X39r1WsVmQGEWgiVjDB3RY0G3fT/xEp8jQKFP+nkmQfE2AhT7mQSFxYvHJCiukyEev0EUHRMUWtHaLAiYjP3RGqMlChIUDzEJijdIUJhZX0HxfDfedxKgMF7WkgTnSUXbUBZ98Y5VAFwt+9QMCekaGU+rRQ0SFJpinyYsUYLCjP4KikfJtNeHiXgGyMz8QyQo9NRozPA600Dh3+qS3ZW0EVAYdEH3u75fSxO8TpovV8h0n2cJACwS1qnnumMMAn+SAIV+5kcIi5S1o5ZJJqtxT59hcqWweVpbPR0mI4frTN2C4i1kX5Hr3T292Y1DUHyeYK77CZ/BIyQoLNPveGtj6rZ0Qg1ChFwpKiiqSdTAnL57ExQjwjr4fiZB4aQgKB4jQHGtG/9bu30PkSvzFwgfk9dy0nFFqjFU1X3q371slnaNYFUDjqshss69egAMmbBahq/ZMgQQj/dLRDztg8RacrJc5wAZvP4pgu1fI9aaDwN/j8wwtwIKTPbs/gjRbsXQPsdUy75VI2qdl/1Y+mwvGU5prVoh9hoBK2OL3k4Yrw+QbjOTZi30XEMuvGefU4Vrzfyz6kmdomo4oklPMFnpfW/33C6T+TivAH+o2/dfEuz/LLEmnO3u9V7CY/O1ZHz1ZeI93UtMGzBZksI1nHJfsNYVCJNry66kzYJCb4DxqwoFFRTPEvGigqI2dTxIMuSniNCQV0hQ/F0CcO18ZeLTMtF94utJ11kNCYGcz1bLd5jMIBSYiyQoTjEJildZC4p7u3t4lJi/XdecGASFApzgtFhcHygMd6lCSfXa1Nit6oK1RI+JTYLiD3T7/iSxNjxLaHZnunt8kAC87QYo93m0224Ii89VARYm/d+Vb+4Y2ggo9pFtbdQw1AiMIK0z+QuE++9hAhRvkkxxmElQvI9QZw8ToPg7ZOBBZRJz2FeJwj/f2F3fnPQqnTvDVtdUjVcaEzM+ZGEbur+q/isEg50gU17fTgiFSwQojDZeJcBgZUHPW4MYawXFFhTGW1U37HqgmOvGISgOd+d+hahFQvecDhCgUKA6RbyXN8jVg+7veUIoe4QUML2exeEgwe5zvfFsQGnXCFZ1YdS7XEP6IB+boSCrZJk2s8uc8w8SQtWbxCt5gZDx3yAW7HvLvt9AvKaHCGHsfLmOhS0dg7kg1j88RbJK24pGocO4rPlyriUyNA9yHYBUQM924zlAQFtZ3dix/eRaqn6hvmARzdNkopHz+2UmQxQrKfDtITs1KdcbMwyZHa5O8wwRVni27F/vzWudJ0MRL3Rj/TT57t9KCLmuu45VXaQG8UtVCLxjAtdhc6BYZRIUFwkmqrFFh4iQkFdJUDzU7f8wae6EiMe1ruEzxMvyJe4lmMmx3U+WxBEUB8kskz1MgsIaIJBFzSA7kMg4tZXOuDvGeoBLBKAf7/Y1sFtQ1LosWne8zhkyQamCwrHVjAjjjTV4XCSzQTT3VjO5c7mgsFZLu+4azysoHidBMSYKhKvNvb3bLii0TgmKxbLtjtMuWrqRlWKFeLg+YIOoIRbm9xPS7GuEBeohYuV4rNvurPeNJFieJmfIMRkg6AsWFIe7671JzMTa3q2x4T3tIV++tafojr1YznuE9I14f6eJlWIfa1cKC4HWuiyQqrYMa6mDFhSOp9ZtUThRg7jIZDpZBYXmdC2MzxDWJWPQ/J1yz97Xk91+Tj6fLeN9V7ddsq6J2SRtc8zWVHBztGsEq5bGzV/IOa4GUy8SrGbrRusjXiPzDY4RrPYpAjKuLT72BwkryX2EMPbx7hr3E8bgGo9qPPAqwYafBr6z22Y87HzZ9zTBnpcIVjBv4yKTOlZ93XMEa+8nwydh0vBg5uJ8c7yhjMYrHybW0HvIVpiHunGcJ9Ym971OCmGO02Qp3arO9Y7b8Ed/d46/RHpIvCcF4LOEfniKnEre29yHiQBtCT11M9jFzH2j1AeKahWqoDhKvMw50tp/hXjZ+wkF+HECFI+QoDAY/CHiBR4iXo6guJcQyOZIsI2ItUZ3228A305qCK3Ee7ob9yWCEWS2S0yWzXe9ke4hGNpeSAbsQ1qmBEUVqiCY2Jhe44wrKDS56o+voHBt9VmrAC8Rk0zbFUNQaNFzzblAgkIN5nL33C4QE8RZMkj+q7p9a8UABVVJsAygKL/VlCKBYT8ImyzvL/u+QTDumLCKfIqY5b+asE557oeJF3iEeDmC4j7Sl65KO0fWwjhEpPB8Jymdt+6n091YLpF1SxZJpq33K5OPu3PvJ4NdqmvLEgnu3wbN61eHrIouKFbIAA9djxUUR7uxuipXUNinERL4gkLzgaBQMPSZzZGm9vPEc7aTbwWFhYi8t5qPf+tBsavDTCpk1Al0t+kG1KJkk4ArJCvtJ1jhMvBviLXiA6TB87HuYxP5VSJ/4xnSaiPLPt59tCxZtuw1slefIRsam+0Eskp4tk+TSrN6Vi3I6VqxXPbZw1oI7iXrJLalGWpCrEYMO3xYe9Hn1teVRJ1rlYxpgljLninvYH+5t3sIa9UVUhBUwLtOZo+Pu//V3w6EWYkcAAAgAElEQVQQxvRaQkijhe+oTdTS43VjHZ7uAJoGigoMGfdg96mSskLFFaLs/SOEIk63/cnuc5h4QWMi0++LJCj2MQkKO1bYt64PFDLDRdLr8S7WgkL/sp/qN18kNQ6ry/oRlAo0mnEFJCQo9HkbayVD7SWTw7y+acUtKOZYHxRPdferIaCC4mS5zpnuGqdID5PjXyHjHQZQTKEWFKpkLrq+3IPEi/GFOOMcJV7IMtFE8zGC6Z2Bn+o+tqMZE32FniVBscTalcKZeh+htSgMmWbqGKwS3gcKtaZaZK1a5+ZIU7FN3vzsI5nS2ieqyrrqBMWl7jdXrfrcWlAsk00tBYVCzr1kFLMTUQuKS92z0sIkKM6QUdNnu2O1pH2Y9MtrkbzMJCh8hpBBmwvltzZy+MZpV+sv1YMOGZKmF9fXXIOwlYfPMllv93vI1/AGobC/WfZ9C6FzvIuwvB8gQwZ99RAedmXsy4QOo7BgpngNXp8jWMgyO6dId2GtvOL9uq5U78UFgiUVgsx0r+5EQ18UpjTEniCmk1e766tnmPR6soxB4ad6+n3WC6SVjG4/DRaGj54mdLf3Eeuwge5Xu+vcT9a8ukb2pXUqoTt+TOpBjqfPm39X0ixQaJ1XINAqLyjOkHPgXuD7SC/HSQIEWlQuEAq3gYpvJ4OoXyfL8kCC4s3uuIfIAp0HSEUZMsTDQs8VFKukhiN5PyrFutvOEaBQdRTMtlbwvg0FOU+C4hLZGuaB7jzGQmlmruUsKqgdp+7GCgprGEIy8DRQLHf3bQiMwqZlet5Fvov7SfNxLVVRw4sGUJAvwpnfGbWadBVo2pVCAUlQ+PIeZbKIz2OEL/o9xMvSd3yCAJVq8dcQoHitO98DxAu1XUuN+7F7agsKNYRaidD7rYxgZXNjjmTeFhSaeAW9pRsgNYAKihrwcapcs4KijqMPFMtM+pF8rg+QoHCcK8QkdR/pylPYXOn+uq+VHH2/Zp7UTJT1QHHjdqddY7FqH0GfwupjrvsqVK2QXmpbuJwk3HwHyDVFz65z4EGi04dhH9ZxWibWj3sI1jK34onufM6FDxGsYSuzakRQEFoljNDHyb6rkLqHsnXNA/Gj8XRMRglY4L+upZCB9obZnCYKNP9Edw51qBqMrzAm5NQhVK59Fy92z0e3a4WU4S9zRITCM4T3SGH3rWS4jB7zs0T3p2e6cb2t++gV8dga5yzVKemOpo2CohZIg0lNQ6Y/TzCUTZJt4WX8k8x7tPv8PJksdZFcj75CgGIfoZzeS6w1+8i5UFBY3MxQDLUPx34fMU9WUOiFMPyizfwwLVSPwQkm3XFao7RWnSMl9RYUB0iAa3TwHLNA4Tr9Iv2gcPx2CHmJWIvfTSrcj3bPzuKeV7p39O8IYfYwIcy+nSxG7Tut1irINU5Z4o4KNGxpI6DwIfuQ6uKvL0Pfxj7iRT1CCBYGC2r6nCNm72NEnz37NZkdskqsFPeS1Xf1s9s482r32xdJ4UNLk8Dxt/tIIU0t5AqT0nOV9P39EmmVOtl9NLXqD9FaZpDeddaCQh/NEmkKhvVB4Xt4kbWgWCjHniNB8TQhoLrt8e7+jVq2b6OgOESswE901zCmQJN4Ted1lb9O/ypyc7QrLVbT5oWaAOr3Klz4yiCEDztrqDQbWH0vk4Hb30e8InugPtgd/wrJWk90+xqPZQtOCFgdIAUzz2vugyUEDpDeEIUp14NqqPU+nS40tmrVeY3M/tNTodXsle7enu/2PQ38EQLWJpCpi5hsK8wM43BtqGEiT3f3/Gg5r8HkB7rzPUDA8yih43lvBwljyK90/z9Ges0vd+f2OkLLsMn2M2JSYL2j15BKs0BRg+3qoruH6aA4RAopY7JquVao7yct8+fIau0vdtfaR8bI3k9oDa+RwHqDYIzzTFpaLpGawXWyd6ygaNNqa40VSCY13ugr3e9f6c4hk+/pxm88wF6yncwF4I8STGntlAqK2mxzGijmSFD4HJznDzEJihfJYEfXqcMkKA6QcbqjbgyfJwW9J7vzuH45pgqKWkbhrrFeTQPFdVJQ8cVBqpQVFAfInk1HyNieEfGCqhDzu8nIXSNU9xKznr7gx7t9HyTjphRoXiUZw3QmiBe+nwTF/m4cgqJtuaLAUE2WrhyLZOfV18l4rpXur25G/fVf7vY9R4DiIVJwqqA4yGRbhhYUlvx/hgCFz8GinjaiFhQvd8+7Vl4/RIJiiVh1jTG7zGTw+tu6Z+x7rhY0J0UnkhYQrqo3TrtSsJo2L1SvAEwqaPNkNwlItnSOdL6WDV8n+5u/nRBMDM+zdtT9xOt/hCzZo7K+j2wTuUB6R7w2JCvOkaxqezADyiWVc+Euq7hOniRZ4S3EVGCIn7BU/3qFDKH8nd1zMUmLbpxvdOer3vYaAlIN6cvEGnWMfDfz3ffDZfsRAgpPE0llGoAVkv4U0Rz7OCE8mUdjazTI7P8lMo+lZiY6zvr3rqD1QFF9t/pN54m5qjKmoNBKpZAA8fCdk58g5sRHSFBY1PglwuolKAw8XCLmwUvdORVoIM2fxnwZMzUmFdMqjUsqm1W61nJznFwz9XNXf7h9XxcIsMtkv4cEhcw/DRT65FtQjOkHhQH2y8Qk8gShSTxDtGqorkKA/xL4GeLZ30tazhTwIGuRHSFrlNUg/+oF6+OTuv2OolmggEkXkRaWRSbdZYLiEJl9ZxTqCsFkCh+PEuq52Q2nuuMfJHvUtSuFsUl2SlUN17IGwTCuFLrZTC8ysL4KAkrVK+W7gtWJ8vtbCMBq8TJN2MxEM1kghEZBoe9+Gihgc6A4Rsa1mW35KAGKbyGzAS3x8GeIIj0nySAY+28Iite7/R9hLShWWAuQ1nl3c8LVrhGs+nDfZ/RVWVVQct5VqfXVW6HDpB9dYB5/lBSsZGu9Jk8SFh+DuY8ToXMQr/oswa4nyXCVzxIe4/0kW1uWTtle7/uIbMFWQwiNy63WtDHZ77vmepwhQx6Nz73cjfcxsrbgXhIekDFWF8hqL3UtU/9QT6ql4moJo6Wy3Tyb14mcjePdfT/d7Xume35vEIVM58i14ng3Dt/FApnEfF93H1r97si1YRZtBhSuG87NzoUjchHfT7x83WWCwnMcJQUrAwMhGOJJ4oVOA8UpYv58k1SOP0t20q6gUKBaKL9rIPgSyWTGXNU6WXpGzFhRaNSHLCj0wJg9/iipRFdQjEhQ2PrmYjmvGk8FhZPNNFDYb7aCwkamguIc8G3dGP6j7jfb2BwnjQoQzP/57j4ExVFS89gIMFqtZNfSRkBRIzPNboBcdGugg74Gg7cFhQvzUbJJsKm2nudJwr1XQfHt3b6uFMcIDaWC4uvIIHjIlaIGc3uvb2Gy6ZcBirVGk3niB7oxer+6+gSFk4ElGN5KmlsrKOZJUJxjLSgUSlpQ1CyTFhTXunNWUJjWJCjOkqD4/u55WPb7OJkZQ3fOz5OuV0Fh8Psqk2bcGrwi3QUxVgMNNNBAAw000EA7nXaNxaqP+nSTWrepxutWTwFk6AiEDKu35CCpzD9Vzml2+DJhXPyN7revkG4rCIXecLx7CDl6D2EI/iommwQYJ6VFqLaj1JWogWCFrAds/JZxslpwrKerF37Uje0qk2UmjpItYgzD1Mtt3sUl1ho05rp9rcdlaOYp0stuzd97yIolGkpOEQnI7ybKS/zzbt9v7p7PRTI08bHuuKeYLDG0hzAQa9DWOlndgTVovqU7PrykBUXfA6n+csr/l8tvFRQ1/vexbrvMp0n4CaJo2wLB9MbqQvaDWiBNuaaifg3po4ZJRddioAfJcgl7iOJxEIx/kkkTq/drdrwm32WC8W2pICjMND9GuuEgFPFauK0FhUYDfeGGyqj42mXjEJOgOEAwr6UnzhN1v0wi+7Fu328hwHK6G/c9hEXNhDbdmXTnMnRFqpnkGjqgHwC73kq1HrU3uFh+03fs/7VyIMSLbFeKOSaLdz7Z/W9EqS3qHwE+0e3/ZTLmCmJm3EcwyCNkLY3Xu+tdJK1OZivKeF7HcgVLRKAeBENZ7Ow8GT/lSuHMTXcPB7tzGlksKHSJ6obTynSt++0qk6Coz07XpFYhzc9nu32OkKvVke45eN+C53Wi58ZTwD/r9v0G4HOEVeq3EqA1CcBVRsDbtuA4aZU0gKSm8MLNuPym0a4WrPpoM+ECffvVDlFL5X8NoQfIQqO1cUANMjce1yooi4QxUs/H9XLelgVN6hU6du94jRR8vppsPzPP5JpCN+4xAd2LpGcH0hiscLdMRg4IKcv3yOY+J12Kc2QSmVEBZvy574NkTLP5LStkgvEessPWLxJu0hOEkfc7CTjpzZ8r+57r7t/YK4U7n59uXxjMsf+ebhYUlWGXyu9LxEM+RAYxniCl6KoxyFTGz+4hQfG+cg3dZH3z8ohsMwAxTx/pjn0fGXCollG9JgdJcCpUWe7G1miGv0D6wPWMmPnYgkKhaoFgziXSm7FAgML5u4LCMZmtIijc9ktEi4Fnumf5WwnB697uvufIyeEiAQpbSwyg2ABtBSjULCooTCE9Qjz0IwQzjJgEhYElxigZmfsA4cL6LaSgUiugVynZAMgKCqu5C4rr5RhLRyh8KChauE5QzBHMaZSsdIH0ZatiC4oayGmlxhEZzGhQ5TyZQgUJiofIYqmuSma7yOi/ROSTn+jG/NsIjcSS1hUUlwhTxtexHaC44wQrmG2VaCHSBjrXgGwfjuyjUGWxURM+j5Ly93sJa5Yxuh63j0hW/RCTTYLVH5bJ+ClZbp6Ey0ECgqe6/d5BzsEnujGoQ10jsrfPk0lTKvyOxfWmZuJbxsDsbgPkqz5nQqxZ8q+X+3yzGwcEJB4mczLMqblKJAM8TepuT5Hle95CxOr+G6IY6wfKPTleGz8YIWE8nRbJNol6IG4OFDJlLaF/lngZ1ujYTzDXV0hLjVXav57oM3uerFVyuDvmJ4gXbbyWL9KyOiqjzoVzJCgWCEPAeQKA7yZipRRoDISnG9OzZLE6gxMPlLH4jFbLX7uUG4ZSE4wghSw7oSySwZE1awOyX5YTy1lyTXgnk+mvT5HhLHuBf0UUbP0QYeJ1baM8T61mAyg2SDcDCmOFDEaEeNnLpM9Bc6uRrofI3O33E32JanNjVfafJmKJBJBxXWYLVguNL9yoWf0j57rxvIuIk5onYsFqnvcVQoiTWQXcAXKVq+UJ9A9YxdeVsaZSQZpKtZgtEquDwexnydSsE8RKppB4jgDMArFSfIFcEd/ZnUdh8mNExfpvI4ChuZvyHrYHFHekYLURqvJ1JZN8IB+OFUMOEbL2pwih4VXgV8n6WBBscpzwmHyWFEB8dQZje61zTAaju6/w0drv/G9h7M9047y/u/bjJJucJaClS/Jod5zuQQ0HPgfXzGWyCPcyuZbJqnYEqVXSzWV5lcxsdF8NCNZjXCIEwmfJxCa6+zlGTjVPEhaqTxB1jn8XqRNaScZseo366mU1iP+uqGW1lTQNFM6briWQ/VqPEPP1p4n5+1UCJE+S68VrZAXYz5Nrjlaok+W8KrlVCa6ZCWYWQjD2VYJ53iDihD/HJCjUCs4xGdf6AAkKNSk1ExlLrURTbR8o/M217xyZVGX5BMcuEFZIM7JtCZ5jEhQG+38dAYq3EULZLxNrye9hMgvd+l4DKLaYpoGi5mnLvKqtS4R/9zMEEF4lXlrtVvsKsRo8SDa3rGm4rR9EVdIZdb58P0AKYfcQzHq0O//TBOjuJwSqx8kV7hSZOqtfQFBojXO8AlYgXGUSFAbKQKrlZk+cIauznyDrd0EyKeTKs0QIUS0ozCj8AAGKp4iV+JPd9x8gfTGHyCactx8Ud4VgZQkF/59Fso5zn3SdEAC+0J3jGPBNBBs+S5bL+SqCHRUAFGY0XL5C6BCUa+gO1PugMFbL+6wQELTUgLWrrLjyOllz9irp3VDJ9xmYKFtLUlSY2BRApd6EMM97kSzPZpb9i6QgpdBYGxwYb/V4d/wHCcHPXBqrwSwDf6K7pzcJCH4fa9v2zJEGBo27NWxoWDs2QJsBhUJGDc8whfYk4a7SlPgtBCieIUHx1d3fI6SmME/M67+dYCQDGq8TTG7WtI2jq4ZSy888TtYbFDAXyaJz+ustj3OE9MHXEhSaVv2uL78CQs1lxKRV6yK5nllP8SUm53BI4Wu1G8deQgO7SoLilW5fDRArwH/R3eOp7vP9ZDak49HkPYDiJmgzoLBHBOWvaaynCaFgTLzoDxGgeI58we8lGMScc4WqM0QfkBNkmX0z+wzyMEvQmilW+oV48Y+SM7W+d0spnOnOTfeboNDyVkFBc14Lx2kuvUY/KK53Y7y32+c0qdm4IgliY8WM/r23G/91EhQWmBMUAH+aWGHPdX9/F1maGxJo2wOKu0Kwgo170/XELpDytwv7HKE4agx9kIg1/WpSGX6ZEAp+kwyXM9P7k0QYnmvLF0iPt0KMmebVAwzphYBgverFNplVljrQ7aOsr4uvZWmY7EWoh12jbytY0R37Rvd5ldDLdE/WZ6Zlyx67Tj3Hu+f3OJlFbnjoPqJ28bcT+sp7uuu8pRw/R7phhYhWN6G9UvYdaAZtFBQyhfUJYTKj4ynSwv8QAYr3kjU8XibmVkFhz76LhMn3n5FWqM+RAKgekr41Twu/3cgvkOEUaij3lmMOkbFQnk9Q1HpdZnO0RZv7yGJrb5Ixty+TrcwWmn0FxUr395Hu2EXCuPEfd/ueJkHx/xGBh7+FmGysmSgo5hlAsWW0UVA4a9dg6Nr/7l3EjHqSeMk/ToDCRsUvES9ed5k98y4RQPkxcqV4mklQ1EqwplpJWmj2EkKb0bi2tTGlie543Yq6JNuI31E5bzXfqjX4qc/N658kQHGSWC3sFVV9OJbB1uezSkwip7ttTxA1tCDbJOwn/OLfSQS0fy3ZEb4Grtie5/aD4q4RrDZKCgRVoNCS5Nz3PGGAVED4V8APdvv+OPFqTxOwOU6w96fJMAhDLl4kvCd6PoSBAlKFywLpdltlEiIKWb5McyM03ta6XsLRe9MQIfwU4PRqq6NAxpF9nghtOUMW71Qfciq4rzvfo6Q+dRT4b8kCpXrZnyCD77+GmGq+2G23ikoV2PS0VCucBul50oA+bS0caJMkKOo8qzdijniBzxCgGBNWmJ8lQfERsoXLKdKi/xvESzYpCUIoebjb18rrNU7YQHbIlFZIYWqFUMLbMApIZt5DBq5XN2MNJ9Hdp9+8zr21FqLNOJ/rxm4slqEsdkSBLNz9EBlrewT44wQo7AEMMdE4EXw9AYrPEcAyZbb68634PoDiNpGLtGotZGrPiLA2fY6Ywa4TIPk5EhQ/SZpnTxIrxv3dMQ9051QAeoVQL8+QDFxdcHWlsCkyZFE4hRWFCcer+r5SjqsaE+XctR5WzeJYKOeSIa0A/AIhUOnPqJYxV4p7uvM9QKZ9HQb+ZHffh0lQvINM3f2m7hxf7J7T46wtfGd24+0HxaC/NKRAdZ1M0rQHuB6Eh0m3239GsMTr3edbyP59T5E1dDVIfrpc62NkvJDs7Lxcx1OFqSrr7yu/1xZrCoGy/FL5rR4Pqe+olAsXBSuNuhoCPk5A/zQJX3UhdYn95LpotriuvV/qnsvby/PdQ0JPAdHC3Y7Pe6vjruUV9BSNSUFzoC0iAw9dN7TwCIqDJChGBCjuZy0oDhKmSCvaHuj2/xzJDL9ACit7Cea1iq8MMCqfJbLPoNYjut8PkclWdgRZLNv9XuOAqxHAT2UyJwiTqJYJi1LNFjFoUXem8cCC3QbRJwlQ/FtizXhHuZd9pAHBCeUxAky6/gZQbCM5K8usLtQHiQd+lGzOtQf4Y4SPo4LCbD8FBkGxSlitNHH+fLmOMVyCQoatK4VBjIvlGM2fB0gmMybMQAtdaRUUfhScVMXNNHRlqf7zEREM+CwZKO9qdbjcp7Fhy8SKYV+nNwhQvKv7HCifqmXtJwTWY91vOwcUg8WqoRqcXT0PWoCs4vFZQskeEclIn+/2fSuR5PoaIW/X+fcSMQd/sNv35wgj739P1t49SsbRHmQyq3uFjNlSmYdkGcP2/E0rlXpIn5BSsxKFrqGTXlfj9U+Tmeqr5TxawGr44pHuOd1LKPO/pft9vrtX10SY1Bes0lL1sPmy3etUw3NrcKj7D7QFVDO8KyhkrJrwdIRgzHcTAhMkKF4mFFjn3zEBil8kEnsgBKsvAT9MCB0mEGltqsKRjGfHcb0qxqqa+QfJHF5Xf7/rQQ29qB4X04NlXLerWf1i2U+tRs1ED4mMfIgA+GHCXP0+cm2yGF0tmO1kpDWu/l6ZvK9ywACK20BVIodJK4mF086RvSG+mlg5IEDxNYRLUFBoFTpPAOE7un0/TpiE/wqxspixYT62ajUkQytMKbypamsegMmWN1X48ByrTAopSvqaHfaStT9MZ4JIO6q1VVSf97A2wEQNaIkQxL6KBLWAriud5zIY3t9r6rDPYftWisFi1ZDCQlWK24e0lzCs2p3jG8u+rxGsphHWUgP2q/0IEWv1SbLswZ/uzqflxhAQvd7Oq+ohlvrRiyxk/FQ9AzLfREPDPKmMm4dhvz77FF7vxvEcYbT+STKRqXqGhKOQXOo+Z0kPhkaEQ8TUolH6EhkWIlznm3O21EJloNtANZRiGu0lFPI3CYb6BvJlvUomBhl3dJFsEfMRoq+qXbhXgT9HKPwWM7tEMK+Kuh4RQWHz5hGToKgMIygM6xDoMnMLCt19F8n+VJcIP/i/6D4q8NVAAJOxsi0orP04IgTR95FuVDUxx7ZMGhSmMf9672agW0B9S+eo2b6feLFK5N9CChrHiRlWwciUUrMBP0IIKJ8gBIsx8OcJl5eguEy61fRbL5TzWbZZULQrxKj8P1/2USU3a0VQqHEoQJ4iNaxXCP//z3b3qq9HC1uNJVhgLSisVyIo3k/EpsHkKlitcj7n+i7a79tD2z+CgQYaaKCBBhpooDuEBsGqofWsISqt7yMMvV8hrDAf7j4/TgRsXyaTpcyy0xiqt/hV0nD8Z7prnyDCU04QHpAz3cf6tVqr1DFUwFurVQ1UX2WtAq9CbY6H1zbW6RpReeWjpBJtcm2NYa7JtroUNTB8jgxtOUToJp/vtqnD6I3xmjX5ayOGkoFuA00zHVa6DPwHhIfiVQIg39Z9foKM4a0Z5CZV7SO8JXb00Of957rtZwjl9Qxh7jzXfcw6VzEXFDLWfPlUxRzWMnILCuseaoFz+2cIz8xK+bShG/UZ6VK0wvoXyNivo2RQ+kUy87wq5jVGuZ53MNvuAGqXz9Xm+1XCSvUAYaH6WiKT7TuJwIonCQZ6J+nX1vdsKepDhB/Etgd/nmCecwSoznfnFxSm9hhMUv0UrgJ9wPBeFpm0aEmacK1LVRnzC0RJ5+q7MAhzL5PPSZ+L4LlCBKBbP+sewnr1xW4/q/dq4vU57wzL1DQajcfbv2ydH422fxAd1RI5q+V/yXn7ElmD6jTpXf4owX5vI4yiDxHe8TNkkVFDLswctO/4HuDPkqy1QFbumCNYVE8JpAfbBKHqZdfDbZua/WT2nwlaEAbcMwQ8FwmPxz5i7XiVyVILxi4LnxqaImT1ntje7E8QYYxLwHd35/4qsiYu5DMXan1rxu1eRw6Nx9u6dI3O7xxMTEjP9PyvK8ySMgeZrCH1swRjPEGC4rlu//0Es3gNs7PNiJgH/hQxv5ptXcvZ6HEwREUXoVnwgsKicUr9F5lsDDomSz683v2vy+5Mt+/PE+tjXT/bdcm3VutumeVxqDvPHyNicxeJOl6HCe1siQw4FNhqHTVwX7rNHDI+tM2YGJ3fOZiYoGkL/IiYafV5mycOkUt+lfB3/wwhHD1LBnEfI4MJbVZ5lQwC/5OkK+06CYpVgvmXyNl7lQxKr+PVxWftE1VeV4pVsvDoa93/rib20vg3BGAraxjz5W81Bsq4qMtl333AHyZWHYj+Te8kylNUUFQhzbIS3l9L/nZrha/x+FAvJnauyLeNpFA17vmsECw4Ilj5AhFaolDwA0Rd2MuEAAHBTmZJv5OwSN1PxPdaV9EWZn+NsBT5YswhmSPnV8dSYVItVrK041UIkr1Xu3u42I3fFjbnum3/iAgjMZyl5k74bOpa6/WsFn+AmAZeIKx4wmxMGDWsLiLUYG3Xpj6oSIOyvg1ULTvtZ44MKnycYKaHSUb5ISLm6hohQGg5upe1oLDC7r1ksen/lbDqmMz0ZvdZYLI3kxawdk5vS+0IDrPGBYXpr2pNgn2BqLX1BpnC673X+OV2Ljeb0nCSU0TQ+reRqbpzBCjsS1iFtNoCYrBS7WBa7flAMNIewjJ1nWwtMw/8QcKatUJYsmpX2RYU7yGY6QEyEvV/Jy09S4Rwo1qspiPT7CMDC6vFqmoFdcUYMSnUXSb9Fqrre4haW3b+Xiyfer5qnnCVsOqiguGXiUB9M1+WumeznyzWUwuVQoK2XSn6frv9NGQFziDVo1ZBteC/fV5HhOcDgk2+lRCUfo1Imt0LfDtRtucHyVjUp4ncD+NyZd2/DfwnhIDmGM4TApwhfOZsuC5UVa7Wx7Uuli5Hi3haju0SWZbuDKFI1zY7Z8mcjOo9MQSxlluDXAvu6677NJEw+05iTbEKSoWKa1h7rtZbA8Pasm3kvFiFk/r7YVLBdW59f7fPeQIAZ4h+UL9JMPF3EElSP0Ay2bNEpp0F0jS9/j3g9xFr0HI5r4WrF5nUPLREVfOuVi2VensfemxtoWatqovdmF1LzNJzvKbZtoJm61qEAMVewoT9VYRb9AXS9Vgz321xpubRWqp2qO3m7qE+FbBK1quEiVJT6D6Cgb6+2+cUAYBTRNbGpwmG/w8Jf/MPkRUPXybSnazhoW/5HwK/l2Akx2MbADP3TH+tY5R5BITqt+lUWpbUMCBn6WUC5L9WxqOGMwsUriheX2vaA92254nc8dfE8oIAACAASURBVLcRacE1DVgrl1mJNaBlZ9LgCmzIeUxWg0lWVA6/QpZvG5HZ19YA1F34RYI9Xid6pz5Ilhn4rWSDgytkT3Jdah8Afn+3/VB3vXvJ9cJe4zY6aL0eVwiY6X600oft3CCU8NeINe+TTLopPa42bKhWpppTAplMC+mh+R3Af00U2D5IrCc+w1oj17XNkg/SNMHqVjPM4AosVNeLVrCCnCcvkW69EanMWhdwTMYZXSNA8WHC9Osa8l0EQ+pCs5GyoRlfS/TJg6w4XhncEBPn+uoN8X8V77r2nCDrirxJrHeXiPVOBd76U5bAkSrDtpalmgHuevV9wH9DAO4goXm49tRi0BaHM5xFagWrOjndQhpcgZWqYNW3wOtjsCS0L812BIdIk+wFQpi6TMzOHyYidR/o9v0+AkwW8dxPlpW+TFjEfm+3r1G8gk7gaO7VtAuTPZs8nyvQ9W6s9qU6SYLis6SJ4TKxMpnCCjmL18miZiMaWetzWiQCRf4rInBkH7FaVisapEna7MRZ5RJujzNumitwEKwaqun+9XW2a4sspRxePce2nhwRc/ESMVc/2O3jud5NzKuGBGogtddfbV/2N7rj3kYm2Lo22JSgxippwDXkRRY9QYS3GP7yGiH8PUsGsl8kPdu1WoiClaQwV+N2TYI17OVBIiv9MrEmXWEyYB2y/MPVcpw0CFY7gKqS2GY2V1fbHtJPXkEhE/nCzxAMdoIQqiqjv48IL6mFNhfJAPVFUqj5iwSDP0pmdozIOKsaIFgBfaXsO0esGS+R4SQnyUrqHmsBO0hGhUmhR22sahurpBVKK9mDROzyFbJ/Ys02cd8K8AqKQbDaATRNsGoDq+1LIQM6S18iKyYuk53Ij5PFd1TBv677TRXUMsoXyH4XMshfIsDyGNnPUJXajuA+RgW/6914FLpG3TheJKNxTxBWpVdIX74+e4VIi7BdKNudPBSgnNEFhcLifUSWywWy7Y3PqgYe2nxtP5OgaGl7Bas7yhXYd4ezkNi3rc7Fs+ThGsjtd0gW9vwKSQpKY+Cfd9stPK0wodVmRAg+FqiGsPr8NUJ/WCJbxpgrURXjammz8vuIWIPeJBTzp7t9PkfAxeB2A+I1IMvinq/eM+V3vfpavC4T+taXujG/gzQqVzcm5DPfU84zjXbQzLo7qO+BzVoe+7bVOarP8yHVvkqQL9ZinQJgnhBSFru/YyJcA7Ka+3z563pic2XH+DeIQqL60A8S87IxX60WcI1sJWNM2FVSGX+x2/cFwnBwlHx+Cnk+D/+X+efKtqqsV83gErEOvUgYA97ejWN/OVc1JkC6Hjf7zga6xdQGiPT9D9mrTuHCF+xLFxxjQqO4nwTFj3b7VOuT51NiFyQy+/9CgEI3noHmY7JqYF0hFFQEhQx3lgCTFqsXiJXjCGur33p/tqnRFOHKZDxXvbYMfrm772cJYe5JEqSCq11lve+dGyK+c0e2y8nSBMfILkl2enq6+7TWF/86N9dM7bNE3V2tSOo7eskvEu47+4jXKupmjT9PCDq/Thhcf5lYPw6T3vM2aH8Wg4x79q2lJU4SsP7fuv01ROuhaXW91iAy0B1GWwGK5fI5D/x3pOJtnJLz+ZVuHzP8LOhsiYdzhAL+AuGJ+dXu8zohVGmBWm3+rqetbRQUKu4DKO5iEhQy3HqgqMKJoKi1Py4A/wMZZHidDF5X9bU0s4KK8V/7uuNfJUDxWRIUb5CaRhuQXoNCWmZtzdrrgcJCpbsbFDt7dLuI2kQpa9/qDT5FQsf8jZo81LKPa4OZ43sJVv+fCaPsq8T8bzeNqhdBZvyd6o57gxCqfp4QrMz0M0OvNjWYtm70eR8qA7Vdl+xEZSucM+RU0Oaj3C4X30C3kTYKijHrg8I53MLSFnR+iZiPzxHAOEUqyeNmX0NKLhDK8QVCsPoVwnQr8+8ns83bRK+W+kBRf5sFiisMoLjrqAVFLVpWQbHKdFDAZGqPPQr9vAL8LUKjsOu5WYGQGXlL5ZxXCPVbK9UniaqDjvMQaaat99FHfaCodOeD4o6KsWpf80ZO2u6zVVZ1O1HYQsyuG4eIJCiI5CAhpQtN1mkFHKFl6bjfSXSaWu7OaWwXZEjKKmnQ1UIlxOo49fLXGNvq0Zgr+zqW1qKlt6Y+v3tIL8bHyRAV96fnu+vndtMdE2N1Iwx+I0DaCF0jQaECfYlQ0o29fY4ERQ2hEBQ1wFvftd+/lyh9c50MgqygsLzCWWL+/mUi4+8CWbFW8jrts2jXE33X1csjeARIXQsOkzHLHyfWwVo8r9IOA8UQY3UryMw3g/UExWEiDRbCTdYWNXN2bmfvNv31e4mUIVNZW1CYfnqWUMcFhYXeZE4FuBrQ137qPVVhiPJdEFdQGMi/SoJivmyvtLNAMdSxGmiggQYaaKCBBrrFdEcFr1faqGpTPdZbSfbfPkDGSlm76VTZryq51WPttiq3u93SbD9GJOY+waR3e47QN84Qus5nSH3H0BOvoWGg7ZpRqT6fPkOs/xv2CBkyqQH6I0RJvHrtvr+36n0MxMYVvFulDAqKQ0yCYoG1oNDaUxVkt1kAbaV830MUs/4p4ENEUlQLCgtYP0saAfY355IsGFfHxJTvs7JmKiiWCFDo4xcU9nJiyt8BFHcwCYqDrL9S6AtvY5vGJLMaTG4n8o8SLrZZoDhLAOJzBHOaamUAuvuabrsRaoP1YX1QLJCgqBkbuw8Ud5QrcKeReQ37iLnzLMFGP9xt/5nubw0HbL0M9f+aW3GI8GCYRGtSLWRQ+4hgz9r/z2tUFx5Mls+pf2tiVfXq1yTayuKO/yA5RYyIQtwfJ7uG7HS6Y1yBO41aUJwnQPGXu+0/1/1t42Olmv4qExqDdZCItTKI3eQiWAuKGj/beida33dLo+b/CoJZoDhA1tmCAMXHyGSqHU6DK/BWkLOqoLAA5xLwV7t9Plb2rwxWZ3EfjUwuY9uTySD2K0yCQhCZ/aEr0UI62l7aFQMmBa9W0NkMKEzRhSgr8a/JEtY7m+6KcgvbSX1P19gpO1eYDf7xckzNlfCY6rWuFi0LRS8Qwev3ld+FAmQHqDFZF6tmb4/ImC5YG0s1K0Swz6Net9Vq6pae2E82eFbfqvfcxpNtv+d8oC2h9UCxQIDiPJOgqBnWah19SqpKtPO/Hcxl+Fofa0zGWJmtDakoj0lQVA2i3ktrUmbKb+0z6AOFdbwsUTGA4i6hvqC9Cop5AhSXmAQFTGobVRVXS4C0Bsn8J4kaH64SrkaSMVb7mOyMrmXKlWOVZGS/t8JWXTU2AwqvY2seS2zvXlAMMVYNzRIcZtG4+Rhi6BxuJfbfQxp67aZhyGIbCni17Gudq3H3+xKhh7xO6iD2/7NFDsSaVfMrDH9cKJ96/Zp7MSs8saUKb2N+XQ8vd2P+F2V7m/DlOXYuVO5iaue3jVLLPBUUYyZBYfaeoBAYGwGFmsJhQnM5Ta4VZpxfIwPUXXesVygTVkDUawqK+Z7PjYLiSjemARR3OVVQwCQozNwTFLX09CxQ7CUBpzp/iqx9Zb0Sszz2kv4FNR4BLyjMXqx+epiuYk+juwMUd7Vg1bdeOH+qwOqxlhVqrFIt7SYL6Har+RYLREb4d5E9yjW82p6mWoxkI9ldpVw9xTyQObKAp4ZkP0J1L6mU+9c1ZbH5vSa3jsv12hqIrTG4QkDI1mOtyfuLZL5KnR6WynWnZbUPdJtoPVDIvM6tfaCoglQFhQw9IkHx28gO5H5mgWKBLAjqPL9armfxURX2/d3nIFmqZ185d5vRXZOZ6va2zmFrVm799rNA4Vj3A7/EAIodT+uBwmaPMB0UUguKPeVYQfHdZDXCWs2wBYWMNV/29frVurVIlHBQMBMUhwhQCoq6QrQahFRB4PkVjmqp6OoihPVB4bO5M0Bx17oCpxkUx4S+oK4A2VpMZdcyN3obKqvboPkSwRIHCE/5P+3OXb3JVYBpXW8tW7pPG3JSt7f3VN2Iwq3qGnUM7TH1ebQ0zXDRp8c4rvNka81jRMWUQ90+djyxl+5A20RbBQqV22mg2E8U9vwRMn62hnJUT0Jl7JZB6/cKjBY09T4Uktqin5Xa8/R5b1qapkBXUFTrmM/jeQZQ7GjaKlCocbSgsP3LIWKl+FHSClVn8GrZaWft2i+kpT5Q9O1TNQb3qwBrwdhqEpuhFhTVJHyZqLy4u0FxV1usYK2QMiJe44gs2qwFStndWrnzZAzuhe6jV+JeIoTirwM/W7bdU67T1h+soSTQ72Hum+v7vDQVDno8KnSqct5ea6U5x6zrTKN6f3PENPEc8LsJ9+VBUmexzZvPdKBtpo2Coiq0gsLu232gOEaA4m8Q8bhWtZ0FCufgGvtazamtZjJN06BnH2bsW3+fFdaxGa9EtW4NoNhltFFQVGuPoLCqbR8o7ifiiv46EVOl9jELFFp6ZKaVKZ+2um3LzFUg0oxcLVTrgWIzq8GsbXceKO4oi9Ws+a+lPquPJNurh8jKIzLEzrIFy2STY4iGxv+A6Adoe8xjZPmBEelNry0vpwlUffehMDRLAKqkV0SIVqq6zrR1aDOhNa0+Uw3DF7v/3wV8mcl2pPY8HGiLqZXAN7uvTDgNFLaZERTGyPaB4ifoBwVMgqIKQOuBwvl43LNf372pVdRkrPWU+lkm3fWoHavncxz25x1AsUOp7wWsB4qaoaCbbj1Q2DPPbI4ad6UGsdGVou/7NEGoMmVVsxd6tleq+7b2meq/76NqJq5CXAXFMrsZFHdUuYVpc2nf99blVmk/ARn3se3LarftEuGxvkp0Ufq/ifgh97VUz9luP429MFnMWaGmWpAcmyxZWbbmgbR6Q1skuj6LfUzqNRVi1Rtfadp0MouqDmFMmL8LP2HxHuDvdNvVQwzK3wl0x5Rb6LPOTNs+nrIPTAeF2wTFdaaD4ghrQdEyr7G800BRg/1gEhR9wJimQVVlHyZBUQFY6UZA0VZz7wOFXqIdDoq7p9zCRrWRaaAYMwmKa0wHxT0kKLRW6d5rV43qSnRs1awrtRmDs0BRyfIL15v9Pee0+iMt9Y1lmtmjVnP3fqtvZWeD4q4stzCLhZiy7Roxz2nAhclWlrrV/hrw/3b7H+g+9boKMRfJJCghYNkaY2jbMU1j/6qz+H3afY6b/1tBslXwK03L99jsrObaoRFCuNxPGHudYr6LeDb3kQr8QLeI1rO69G27QsYltaDYzyQo/hFrQaGFvwVFdfcJCgt29o3Z9aNdW8Zln7ZUw7Q1su8cdQ2ZNnFshjn7zjGA4g6hWaBYYhIU/5D1QXGZSQuVFjGYFCJqLZDV5nulNg1plnVLcnWpWYHLZdtG3W+zmLXPjVdBUf3+uxcUd32M1UADDTTQQAMNNNBW0R1tsWppmnxbQyz2kyGI9bgHyLjbHyHD/PYz2QKzNjW2FNt1Qve4v/v/SLdv7WTR5/qr8U/19+ppr16U6tmuSn4NYaz9a+u5qh5T9ZlWsZ9FY1IXqfkruh+XCcPEBeK5/Xy377eR4TmXCUveQLeJbgYUDxJJOxUUi6wFRa0RIiiM4xUU93T7rgeKWeNVie8LJqym2tZlWI+v/7fuwT5X6SzV1HPMAoXWugEUO4huFhTtSrHAdFBYKMe4rAvdOS4Q7kHoB0Xr4+4DSWXkWqKgjYFq968Aqu65vhTavmfVBsXTfJ8GivpMLrObQXFHx1jBbG95dXn5OU/O9dKXgL8N/AJhgDRje0wYc2vVjuvkq3cOFzrWJWyhUb3k1aveB1sNsvOkkFSD4N2vll/bQ1YOaZ9BTaxqn0VdaxzTLKrGYo26Fkj1+4HuWnuJSi0QZYd+injuNZ55O+mOjbGCtX7iacf5OUuCQtBUUFihtlawrclFfaBYYRIU7XingWLc7F9b0vjd+6qhJ21tkzGTwk0rILnd/ytQ6jObVSTU51efQwVFvb9dAIq7J8aqvUwrcW8EFJbZ1602DRQ1MH1MVrWtUaoVFAYh1hQmr0P5DdauFG08lquTfmlXijqmek6B0D6XPmGrCpB1HwWpKlgJijaIcueDYlqM1Y4QrM52glXLvpXqXGiWm+xS2UgP9yop57ehch7jXKvs66v6DKFr/EzZ9wAhP5tRDpMe6HasVbZvQ0RqHkQNM1G3qYLRfDlHPX97jVksv8xaCLTf67H1XNV7X8tB1PWlxhq3gmzdR7gsEO/JaIMrxLP/T4E/Rrw3awdbzcXogzpFzJHl9YwMqOv0zXD2tgtWZzvBqs+MSPltPVD4sPtA4fG1qbG/VVBcpR8UFnVuQTEt8LtK9jcKiipEVcV6s6BYZTYoapZ6e66tBoXM24JiHwkKQ3BG3bZtAMX2C1anu9HfLCj2kKBYZhIUPsQKCqsVVlBcZi0oxkyCYk/5vfeOuDtAsdLs0weKeh6tV32gOECCwsabgsIqxDBpGpkGivXejzQtu3EXCFbToFJflex+ncnkoWol2UMIR4YOTlN2fcRjQg5+HfizRJjcw0SFdJOeVCiPdOc8R7J/zeyr1Cq2/lbH5G9VeXV86g19FjdhXtm8Zfk2mapCtrVu9V2ntWDRHEfPbxUuXq+FnaGLClNuu06EJB4G/iUx5b1C1ANbIHWWfeSacp7MKbEEXx3Deha2WbQjBKtZ6wdsDBQWd94sKA6SoPgV+kEB/aBo52RphZsHRXveVpDZKCg8zyxQ1LHeSlC4LlZQjIj3ISh+igTFMbYFFDtDsNoKUIyZBAVMB4Vq6YjI9T5OgOLfshYUnutId74KimnjvltA0Qat9IFiXLZZy6WCYoFJUPw08cxfJUDhRAQJgiU2BopZPv1dKlidK67AWci1UKcVz01YlbUWicd6jMyzWGRS56gG1HngbxGVRI53++rVqIbGOWLuOk9a8av+0FrFqm7QsmGFS/VOVE+z+/bVmKrTQxsz1cr8I9Zev89L7lS03ro4jfWqjtXCpcJTuBidUIVmiGd7kXhXfxP43u6cp5nMpfG+5wm4WE/M9WW57HujtO2C1bniCpy1hqwHCi3pNwKKN8q+faBwzmpBUS1iUmW+mwFFe6zPZz1QeG4Zs9U8+kBRr3krQbHCWlC4hgqKEZOgOMVtB8X2C1bnyluaNhRnzlmg2MMkKKzk3QcKpd7/gwDFm2TDMkFhSmsFhU2NZcLamqWO9W4BRb3PWaDwt2usBYXXFhRzBCi+u/v/TSZBoTXw1oFi1wtWtVyZ7FoFCMiE1nPEYzwMvEzoDxqFv9zt+z8SivgjREKn8NOAKGykMakDaVxuFVP3k/XrOuO26hLrM4jW71WXqaGEfcJXCxdhXOfwaXCpLN1CpW5rmwi0cK/Htce2U8qINMRChnf6/BeJ9/ZPiXda7991Xs+WrYOuEdA52O1bjcGbpV0hWN0sKAwkr6D4ZdaCwodfQSFDTQNFZfTKeDcLispUtwMUrU+/HcNWgKKuMfV8ZsfIyHMkKCxI7X63ARS7Q7C6UVB8mXi4WjNe7vb9H4FPkaDYw+RKUWOsKiiMKm1rUN3NoPB91OPaY6u24fcapN6CwnZA/5QQamtg0K0Hxa6oYzULtbYTu042Fjb8r8Y5aei7CrxGPLpDxGP8z4nWXJTjniFe2wGyLabsVY2tVcFshZC+6h6tLtJ6Aeo9C6E+9ho3+9bzt+dpBZdp+7bb19unD0KtvlGhCf33ojB1tfu9ToHLZGWSo4QXagH4DuB3AH+p2/cKmQBgEpqWMPXUm3EB7jjaalC8Qawjh7vvFRQGnz/HdFDU0JNZoOijrQBFe407ARTWPYTZoPgKk6D4y92+mtkHULAxUPiwBMXrhFB1lHiYf4RJUKwCzxILuqCoTNyCovUXDKDI8Y/ZWlC8yiQo/mK3b1tn7PaCYsdYrNZThTRsVhnUR1ZfyzlizdAD8hlC5zhDhBRqJTnT7XeK7OI0T8i8Z7vjr5XzLpFelNqpyXFVVlptPu3aU1nN46s33G1Vvq+GgPrGVspx9fdWL6pQbyFY9Zm+9+D+06Twqne15Ji9V99XFUZrBuFit89pst/6MaKbFsBfAH6IgJyRDXre95J6KM01Zt1XH+0Ii9VWg2KJSVCcYy0ojhIPe6eCojJaBUV9VhsBxTIbB0Ufo2wlKFy7W1CoiSx2n9Nk09JjxOQFCYrLbA4Um6SdYbHaClAY/3SYdAu2oNBKcoYQus6wcVAYVN02LbvdoKi0EVDUeLRbBYq6qlVqQVHvWRIUluqeJ0Bh13ebkUKC4gobA8X0OKpZrsId7QrcSLkFY28OkfJq9W5DWKfOAD9HND7+NJPyuaUSINcbE22uk15YoVEzCC8Rr8JX28rYlVqDaYVLH6vqTW/PW4227kf5ba7Z3qezyMq6Qv2t1VNmWcro2VbvT6ry/1z51Ge0ytrzK0xVXUKh92B3DnWXeaKD1N8nIadX3VycGknRjr/SjhasNlJuQVAcYToo9hOg+BiToKjtt/x/RKwV9h0SFBfZOaCAyTVlK0DRemLaY/vGWc95K0FxjQTFEQIUS0yCYoEAxd9l86DYBG2/YLWRcguC4jDTQXGIflD48C6V/0fEQ1xiEhSXWAuKVfpB0b5w6VaAArYGFI7rVoCizdjrA0VNUZbUMExKWCTe5SkywF1QjAhQ/D2mg8JxrAeKO1SwGpO9944Qj2WRYOG/D/xSt9+Xut/PE4/sIUL5VqeohskrZMztZVJg21/29bFbDNRKJK2Bc9qYZaeqY7QsXT3i9Vw1ZMV9W52hjqWPxatONE2wasdTz9XeY71Wq3uMmAwznC+f9vjaAILy3WRZx1zDe2pTh0Xivf5N4HvKda91n/Vg0nfvLe0KwepGQXGGtYo2pPekgkLle6eAop3bvfZGQFHXC+OaKyjcdxYo2vXsVoPCdyIobPwJk4y+SKwvFRRjNg6KDdD2C1YXN7BYHSCY3Rl9o6A4TYKijcdqQWHZhY2Aoq9gTqVbAYoa0+Qx00DRMm8LijrOeszNgsJjpoEC1oJCl+syk6DYw+SqQdn/BJOggATFRiOhNi9Y3USOyEADDTTQQAMNNNBAlXaExerUaDQ+QIabVVl7AfgimdX9RaLW1OdJL8bpbt/7CIOv+oKJsyvlfN6tzQVa60z1xNe/fcosTHqD6759eRNtPsQ0I6p/67iqBNx612cZd7VO1RyTdmyjsl/VM1plur2/+vxgsq5wHW/r8egzbLSG8tbgXc87ImPoPgz8FSI0aC/BE7WVKaTxXt3JsMi2DnINil/abovVqdGYFhTe0CxQWAxSUNzDJCj0fbcBfP5tvRL+vlNAUc/bpxa2oKi+f69XDQTTLFbrgaKGpsCtA0V9Hq2xogWF9WZmgcL47RsAxXhpuy1WZ8bcEChMeREUx0hQLJIxOuuBAtbO0O2+7W+VAW83KOp5KyhaZqtBJ9NA4f4bAUX1t6wHir57qvffrgwtCwqK9pkJCuPpZoGiZnj2gcJ4LvdJUIzHS72Y2BGC1fJoND5NejYeIKAAEeP/60Qy0xJxW5U9Fsq+Poblss1H5F3WpNM+Q+Y8a9m4/d43p/atMZuFS/u9uuyqcbr+rcbaFlp1mqjHrzbHaTiuHNIKXp5vmrfE81Ro1ffk/7PgVJ9Le7+tQX1Mum2PEcb8Pw58HZNej2ViKj5DlnQ4Tcgbl8u+Tr3WY952wWp5NKaC4kGmg6LVECooLDKs60tQtHMmPeeBfs8EPd9vFyjqvi2TtHG9sFaoqaWFZoHCa68HimtM3mfLzFsFihpX7GcjoPijTAfFKTYFiu0XrFbHTIDiftKf3YLC2aoPFMbpWIRSUPQxbfs7bIxZ29IK/r3doKiqcx1b/Sso2pm3BYVMu9mVok/oaUFRY6racbT3KOO3GSgVFPX6FRQPMB0USwR/taCoVdonQbGjBaszXVag8/6bwD/utv0DEia2XtQSpZzpa6sJlJVl+vIhKuxgusLYR77Cygb1GHWfPhZsf2u39Ql77TWrbjDf81sLi5b9+taQuSnb+rijbyzT9KX2fqf5nuvz933Nlb917Rkz2aFjEXiUqESzD3h/t+0vELWRL5Ll+qzbe5IU1CGn3X0Ej9233YLVmS4rUFCcZC0ooB8UNVbVBCmYnMN8MX2xRdPm+fpbS9sBihFrGbHG97ZA8V5WmQylmQYKpmyr91ZN4e04bgUo/N4q/WMmO3QsEszfB4qHWAsKU29ngGJ833YLVmYFzgLFmH5QVOHCnniQL0rhohVmKmBotrczbks7BRQyTAuKaplaJSePWaCYtm29laIVlvpA0QqmLbVCY1vzpQpWTmy119YiUY9MUHxNt62CQt64RvT9OEloIf2gGI/v27mC1YXRaOzi7+P47rLdfI7K/lWuraxVHzNkpll9DTApR9McL02DTV346zg8xvDFltZjHe+rz0BQ2am9x/Z7K1i1HoS+82u8baeQOuaF5rgK2wodqU+Xaactmn3qGlKh0p7XqXKBzPo/WLZBxHRfBP4Q8PsIgWpEGIFdgy50f3UGXCN0lPntFqzOj8b/XiKGtaBQ+a6gcL8KCn+rd1OzwNczQ9b1iJ7tUh8oJEHRV4dvq0BRP+1v7Xhb91u9TkvrgaKdNFrB6naCot6XCWuCwgmpguIHWAuKVaaCYjy/3YLVlXGqib6ECgrT6jcDCh/icnNsHyhaF9WaETbf+0BRBYt50uJW6VaBoh17ZbzWhFuv057/RleKcdl3FihaAbf1obegqO+yPW99B0sE8wsKn/0RwoVcQTEmQTFiGijG4/mdK1idL02YrwG/nyj7BfnKawz/dZIN2tdZPb4w6fWYJV/X/Vtq2bqyZutV6fNG1OtNu67bKlzaqaAeU9fFaeP22OoxmDWOOjdXhbidjtrjpq1fVehsBcN6rnYqaL0efXCx+oxCFd1v95A1r/Z3v5lIdRT4fuBbiZKA30oKWOq3JlIf3m7Bysrrzr0tKARLVcr7QGGJlsqglWln1cjbzBNo3lFezQAACVpJREFUQVF7y/ZZ9eHGQDFtXO18O402C4pqyOgDxcqU4/p89/V+bgUorFPWgsLaJZCgUIiqoHgV+CBTQTE+vN2C1eXu6czRDwrYPCha11f7Mltmqky97oibc1dmqZJ33/k3A4ppr6UPFH0rymZB4QSy2ZWijnU9ULTaS/u3BUV7vOew3lgLiiNkzStBYUG5FhQfYhooxuPDO1ewujAajeeJof4w8BGyKsUF0kN6jexFPiZr6Spw1TUDJoWFKivPomms0Sczu896nuiqq1R2mcbifUptPW/dNi6fPsGxT8jro/bcfeGFbRHRPqGqfS4t7KfpKfWvcKn7ttbDi4T3ovKHHaQe6vaxiOgKoaNUV/EKIYT9re77W7vxeI5tdwWeH42ZJ6TCH2YSFJeZBIWWa0ExZtJXOg0Uq6wFxTShRZoGoPryaxxTu/1mQdEyVB8Dtudsx75ZUPStIVJbsmI05eP1byUodOlVUCwyCQqLiK50+7SgOMRUUGy/K/DKOF7AIvBXmQRFLZbTB4oINk6qQlQNhK8MVPel+d76YXtHzKRg1QeK+vdGQVHP0fd/32rRjn2zoHCcm10pWnPxegJi65Oqfyso2jgu/15lfVBcJEGxxFpQHGYaKHa0K/DKaDS+QJTy+ifkIglhoJPta2OCqrQ7v2iAbPWOKg+31N796pTf++Y+WMsKVZGtHuyNwKXvTbSsWVm66iH1+D5Zf9p5+66vQjxqfq/XbdcMqXquWrg4xa1HK6Sno96v5x8x2aKuXscmFZAJcOPutyWy+ozwsfbu+4D/qdu+jx1Qx+ryaMwF4P9hLSisXzgm428FhUUl66LbB4pZc9k05p81VcxSVisD3SwoqpeggqJdP9rjW82hzsWU31uq620fKMyUmQYKj6vn2gwovI5r+SxQ2AatBUWNTdhbjhcUe0hQjJgKiu2vY7U8jgXy77MWFBeZDgrNvm3AdLsyVGZqqc60VbDaKCimbdOi5v83Aoo65hYEs0DBOvv5e9/YveaNrBT1nqeBogKnJX9XIjCQZdzsMyKFqfVA4fFXu+/WNLMabz8odnSB0BOj0fgU8IPE7T0CvNRts7ecr2KBuMXrpIunzktVP6jQmTUj1CcwzYswTShr2bGyicdU+d3t0M/GfeeHyfG3kKvjaLf3nauP6npVGyfUY1xD+rb16RSzrHizxlLL1FXDSh2bSa/1Wp5fo+315jy2zLNnOoTR13u7RoTCPgLs327B6vhozBn6QbFEgsKkJkFxgElQ1KDnCor1lNNZ2sN6x9W1wd+qcOK4YPOgaIO463XbeXnU7NvOu31AqdQKcX2Mf3XGthaYNwKKuv6uB4oR/UaZ+vt1sidkBYWB7MtMBcV4/3YLVqfHkanVB4p9TAfFfiZBUa0m1Wy73gzZJwxthPqk+8r0NwuKllHb6/p/n5DTAn09eaBeqwYTbmalaMfbB4oxk0JbpSpYCQoLKLVjU2rwGvU9LpbzVOFWwdy0uRWmgWI83r9zBasro9H4u4i4F13/xrnuI+vn+goMSG+FpjYfoFJ7960Q4qeNEa37tDTNitVSZZXWKzOLqkGyzpFVmOu7bt952+PHPb/3UesCXY9aJbpve6uH9T3v9pj2vH3r/rTz9EF7TPCWIavqJ0eAvw5823YLVldGY74HOE62LWtBURX0mqXRLuZwc6Dom5PXE0pYZ/tOAkVNmGrPux5tZPrcTaDYy1RQjD+43YIV4whWf4MAwZi1oNBvoZRYhZUBFGuv11ILivb3aWOZJqxNo+0GRauJtfv4+2xQjMfftHMFqx8cjcYvEq/SFjSGmfmKYa1g5XbJdWYj7N33+KYp8u1r9ftGPCQedyNwqeduY3cr+0y7ZqV6fPWCtMJpSztRsKrnac/RZ5ietoYsln10G14gPOq/tt2C1Q+OxrxMNt+tsZeCwpdaBav2wdcHdaOg6KNpoGi3z7rWTgFFXyD4bhOs6nluBhQ1oasBxfhXtluw+sPjsFDVNu0tKLyRKli1NzuAYvKalVpQVMbcbYJVPU/fM9moYDUdFOPxJ3ofyGbsmQMNNNBAAw000EADzaCNdiG8pfQVouTKJVJeNNmmJje1egdlWx9VGXUj+037faPK61bTtLBASQteH7X3Potm7XMr771Px1nvWo6n1R3VsVoD76zzGfoIoffuJbIHz2xg7LecBMUZcpB9oIDZoGi3DaAYQLHrQXGZARSVBlCspfVAUc+x9aDYEYKVt2nI4UVyYIeIEMRpXR8q+0wz0vax2rR9+mg9dlqP+gyWG6GaWSi1HvSNXLsaPjdqAL9VtN51NzOltQbeakSnZ1ulERm3B+E0uEo870PrjPG2UAXFHvpB0ccEfWvGAIq1157lDbjdNIBig7QRUPS5lgZQbOzafaC4U1cKuJWg2BGC1XG6/myEPmJWGIQns+92pSqLz4KFj3YjOknrye079+1guToftqzeB5lZ8Jn1DNfbvhmd5mZoIzpPhUQ7Dbi91dX63vuIrN4OWY3F3JJtp+OEUrREluXpA8W08IT2Jm4XKG417TRQ3GoaQFHoOJH2OoBi7VgGUKzdB7YLFDtCsDpE6B6GG9agYsu+SfW19r3iWXrIZgWDadC6XezT5mVAv5Wu7/9pU0ufxWonBdr1QaaP/dt3OutdTdtWu4IY/z1HhsNuKx0itAznzD5Q9AFhlgek77cBFGv3gwEUsENBcZkM7B5AEXQrQTGsFDcCih2RFTjQQAMNNNBAAw10J9BOEkEHGmiggQYaaKCBdjUNgtVAAw000EADDTTQFtEgWA000EADDTTQQANtEQ2C1UADDTTQQAMNNNAW0SBYDTTQQAMNNNBAA20RDYLVQAMNNNBAAw000BbRIFgNNNBAAw000EADbRENgtVAAw000EADDTTQFtEgWA000EADDTTQQANtEQ2C1UADDTTQQAMNNNAW0SBYDTTQQAMNNNBAA20RDYLVQAMNNNBAAw000BbRIFgNNNBAAw000EADbRENgtVAAw000EADDTTQFtEgWA000EADDTTQQANtEQ2C1UADDTTQQAMNNNAW0SBYDTTQQAMNNNBAA20RDYLVQAMNNNBAAw000BbRIFgNNNBAAw000EADbRENgtVAAw000EADDTTQFtEgWA000EADDTTQQANtEQ2C1UADDTTQQAMNNNAW0SBYDTTQQAMNNNBAA20R/f97WVQHxKYRvAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# we want to show each color channel\n", "fig, axes = plt.subplots(1, 3, figsize=(10,10))\n", "for i, subplot in zip(range(3), axes):\n", " temp = np.zeros(img.shape, dtype='uint8')\n", " temp[:,:,i] = img[:,:,i]\n", " subplot.imshow(temp)\n", " subplot.set_axis_off()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Multiplying Images with a scalar\n", "\n", "Just for fun, no real use for this lab!" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvX+IJGea3/nJd+OCIIgLgry8dG5ublIuyuW6ougtN01d0yeaRtYJMSfkQchiTzde742HYZibmxv2hvV6Wcww6Ja5Ydmzl2W9DHN78jAeZJ1OyEIWfULbNE3TtNvtvqaurlwukiQvXc5N56XTQRAXBHHvvnl/vG+8kdlqSa1pSVOlyQeEsjrjxxtvxvu8z4/v831q8/mclaxkJSspRfysB7CSlazkdMlKKaxkJStZkpVSWMlKVrIkK6WwkpWsZElWSmElK1nJkqyUwkpWspIl+dSUQq1We6ZWq/2rWq3Wq9Vqv/Vp3WclK1nJJyu1TwOnUKvVfgE4Bv5z4AT458B/OZ/PDz/xm61kJSv5ROXTshT2gN58Pu/P5/MCeBX4a5/SvVaykpV8guJ8Stf9JeBfL/x9AvynH3RwvV6f//Iv//JHXrS0amq12mMO72yI+oB/rwE1Fi28ObV59e3cfld74KxF+f+qb2o1+/3iUfN59ZeoCf5c6hEJIajVfgGllDlf2N9E/bniz3/hz99/94U/aoBSCiFqZvTVsX+uFI6jX0s1n1MasrVajT9fuN+D8jhvxM/H2wT7+/vT+Xz+H3/UcZ+WUnjYPC/5KbVa7avAVwF+6Zd+iXfeeedTGsrZlUIs/zwO0n4WSn60maeq85VSqIXrhZFASn29oihQhXzf6UuvRwFhULfHSwm+HwCQJwV5ngNQrzdJRaKPkxnNZhOA4XBI4LkAuK5LmsUIoZ9ACGE/K6VwXB+AJElQZgxBECBF+ezFRz35+0R8kIb9OZJOp/N/P8pxn5b7cAIsbv0dYLR4wHw+/8F8Pr8wn88v1Ov1T2kYK1nJSj6ufFqWwj8H/lKtVvuLwL8BfhV46cNOKE1RwO4aP+/iqA/T2s4HuhdWFk8WAmHOUAJGU7WwU7s4jm8+C5yFC5e/S6YyHHO8RJDLAqfcuSMXmWhLYyYTlNnJw7DOsKf3Asd1cd0QgCLN8J2QcjOYzWYU5j6O4+EZSyF3IIgiANI0XXz09z/qx7QEPuh4tXr1Ph2lMJ/PZa1W+wbwvwO/APzJfD7/vz7snPLlE0Isff55FkctmvQO5c/14IureECpOh+kYPX1BOCFTYQ5R0pJIbX5r319c0fHwfM8ALrtJrNZrI93FUjJZKYXfLPZptnWC3w0GhEZBZNOZ3TbbUC7AhgXJYoijo+PcRzP3FOQpxkAYT0gnur7FEqSp8ZVUA6u65rj8w+fuPLZeZhLZL/8APm09smzI5/aDMzn83eAVaBgJSs5Y7JSi6dYXLVoFUjk4s+lHPudFCzsfBJl/5CA3mmdJXNZkseJ3Xld18V1za6NRBqrwVUSVejPk9HUmvCNekjYDplOpwDEcd+6Ap2Oj5OZawUus9EQgDD0mUwmAIgo4tz2BmmmrxfWfZS5ZxpPCEPtZsxSSRjoMY7GE5Q04/WW5+l9roD4EAvBiJ6P9x/3YHD351FOzQwsmrk/725DJRKhHuIyGIVQRuNRAuGW0XsBxqdXSuFYt0KymOSsew6lwlBFbuMALhLrZjjYOAQUuK4+Jp8NyUYFx70jAG7cuGEX8nPPPcfwaAzAH/3RH/Gd73wHAH99HaG0W3D/7j2CKOTq1asAhGGI5+vzn3rqKVSg77nWjjgZ6Xs0wjq+r+ciTj9i0ZdZl0dQDit5v6xW30pWspIlOZWWwkq0aOtA73aSyl1QGCvB/IMSVEaAUghp/1jI6StcY2cLBW4xttYBVPdJs5jxUJv8vf4RJycDAE6GfbJMBwOTJMYTTgUyUorW+fMANEVBZ68LgMPz/N3f/jIA29vbDAYDe/ytm3fY/rb+rt/vW9fo7/52znde/i4Anc4aTz/9NADj6TFIjYtAdB5xAhde7wesBm1lnZrX/1TJp1L78HHlV37lV+aL4KVFIMui/LxlJRaj52pBKaAcpHggJVnOjSys+yCQuOaz54BbphCFwFM5x/v3ALh58yYHB/cBnSWwqUtVIE2kfzaeMJ2O7b0cx7GAJc/z8B3t70+nU55+4VkAfvzjHxMEeiGnaYof6s++H6KU4m3zm1+58hR3794FoNXtkJmMw1e+9lVmsxkAL7/8PdbW1vS13J2PO5WrVCPQ6XT+xXw+v/BRx62maiUrWcmSnEr76UELoZRFWOwHHfN5kkxmRFFDf84y0lxbDs1m20byQef9Va53Vz/0caT+WWWaELU0zPjkYJ9bN64DcHBwQB73LE5BCEFkgnihF5AmendO0wxVFOZaM1yDmyiynPN7e6SpsSImUxto3NlocHxwDMBae8L9vrZA/DTk6Ja2TFqtFvV6k+5YP1s47jO6qc+RdZ/JyQkAb/z4T7h06ZL5fJGXvvQlAPIwotlsVpaj51KYcYZBfQnolEsTQHVdm20RwiUvCgvzFkJYV4ifAkL9eZNT6T58HHlQOTyYxTjTysNXZJl+SYuisC91PEvZ2tpiZhRDnmZ4xjfwBShj1h/t3+e9t98CII2nNE3a0PM8JtN9O1ee5+H7GnDkiWpOlVLWLZnNZshMX1cWUOQ5QxN7mE0TYmPmF0WBG+jah7AeUe47x8fHRAadeHjcx/d9tre1G/DOu1ftPdfX18kzvVjX1tasy7C7u2uPae79KpcvX2Zn55y+p6zcLMfxUAZqmec5QaifOUkSikKf73oejuNQniYFFqRFnjzCD3M2ZeU+rGQlK/mp5FS4Dz+NtbJoAXyYtXCWRQfy9LN1Oh1rFjejkNl4QD3UO+80mdHtbgDw9o9/xLvvvA1A5PkEnv6Jdy9eJDfZg3gyZuvcrp2noig0DBkYzyZkib5PmqYUxupo1Fsg9G6ayYL3rt1ESW0p7O3t0T2v7zMYDIjq+j4iFERmpw7PzzgxboHvBGxubvPetZsArK3tcO3aNf3MjTUuXNgD4NKlS+Tr+v7Tccb6+joAR/fvcLx/l+1zO/b+Fy4+AejMiHArVyjL9HN5nofr6rnMC0VRFAhPW0cO2MyK//l4dR5LToX7cO7cufk//af/FHi0Bf1RCuFzoxREQT3Qvvpg0KPZ0D54FATE07FdvK0o5Fvf/DoAG901Al8v3kYYWaRgnmbWh97Y2OD60U2LQmyEkTWfPc8jMvf0fR/XGJOO4zDo9wFwHQ8lJVGox5MkCaOBroM4OTnhlT/+XX2c57Gzoxfuzs4Or7zyYwDOX9zj/v0Der0eoJXPG2+8AcDLL7/Ml0zswHVdmlFVrn1wcABAL8/wfb+KaSQJTz/9BQCef+FF1je3AJjMEurNlp5Mx9XALrRSkEos1FIIMhN7CJwz7G5+hDyq+3AqLIVF0QU5P/2i/jxVW6o0pwTvrbU7xFMTQ5AFddflrbdeByCdzTi/vQlAp9WwQbeTQd8udqWUXQSjyZit7R0bHAx8z86blBJprJM4nYHBPOR5bq87Go+JZzNbzVhaEwC9kyPWTawgCAL2j3QA8d3xlD0TA3jjvWswGNLuaDzD9R/8gEtPXNb3KSTTiY5PbGyuM000CjL0fPt7ujKmiGcWm9EKfK5d1XNx8/pV9i7pa73w4pdoN7VSybIcRQnr9nCFg1zAcwTuKtBYytleNStZyUo+cTl1lsKjyIeVVyullqLnNtV0BmWj07VFR+PBkE5DxxBGgwE//OM/4Py2NpPDyLXZg/37d+ycBH5Io6V3SuH6Nvo/nU4Jo9BaEa7r2iIoCkleaP9ayao4ylGQZXoHj+MxAuj3dV3CnTt3cAx6ME1TZjPtFuT5bQqz0xcCBiMdU2h0E969+h7dVPv7d8OA3nAAwNVr7/LC9ff0OONdHIPCbLVaBHUNfmooRZrkxAZMpYIQ31gBAp+b13RMZf9ek5d+7asAXNh7go2tbT0uIEszXGPp4Ajrirjuap88syvmYcqg/PellNoZlv3bd63fv7W2zv1bOjB39Z03ePLiHqMTvfiazQZRoBf4xlrXugV+VCc2lYh5keNGelHtbq6TJRXMWckcVejjijwlT81CLnIcY0wOTwYLacuU0XhE73BfH5eOGJXKazxmfGzmXTk2OOj6cOPODT2WeznBeovBsGcOKwgN2rHRqqNM4VV3rUmrpeMWk/GYwDwjJzH1AFShxzMajYjNosY7xvUMhqMY8cM/1opwNpvZd6bebKGocAtSYatBKRXFz7Gs1OJKVrKSJTk1lsLHZV76oO8edB/Osuxsb1MYwND1d67S7+no+9baGkcH+6Sx3hEP9+8SGSvg/PnzmDIECpnRMBmLsNlkPNXm/1HvmMgtULl2E4qisAVDKs/B1Dv4jsI3mQxZ95maQKcAmqFPWJYyOwXjoXYlpJTEBlDoOj6Hx3rMWZaBKY8WnmD/aJ9ORxc29XpH1mrxfZcnrmgUYyYdjo61i7C5ucm9e7o+ou67jMcjZK5/3zBwCAL9nPvHPZRJnTaaCplql+XN19eJY+2uPPv8r7K+uU2RG+tIQt1YKtnZfmU+ETkVSqFWq31s3//DoNClWfjZSImm0+P/MK5Ay3jcCJeguIWURMZfHo/HBMb8F7ND7rz3nj03n+iU4O/+5Mc0Gg1bYPTSSy8R1asoe8nzHPkRjhnXtD8Es4h8IZDu1NK2CVXgGHKRtfU2h/vaLRiOhrRNSi+ZxfhCz+u1924gpWQ8NiQrM8W60lWSvd6ANNYZhyQ5sZmMKGyQG5h2HKcUacHhPQOH7mzyxEWtCC5dusSlC98DtFvTjPT9Z8MYz7gLg0QiicgxCEuVWaXSbjUYm+xF/+gu2+c05qGIT7h1TSshRyle/LUv013TMZk4LWyWxREehVGKSgBlJaiQSCltkdoil6VQTmVyq2XaPLWwxASPRiP3s5aV+7CSlaxkSU6FpXC2ZXkKlfhga6FiL9ZmeBkQJE9tiXCn02E81ibzvdu3beHTG2++aTMRg8EBr9/9Y+4f6B3ddV1reSyWNB8fH1uLKooii4B0HA/H8+39BZLDQ93R79atG1x9W0fvr159m3t3tMk+Ho85ONIuwtbWFt1ul1ZL77ydVzu2RuPu3bsMzm2b54vsM+d5TmaCea7nEwV1ChNQlFLaEuudzS3O716283S0rwuqJuOxRV0OZn3a7TbCTPRicVin08Hv6ueS/T5vvaVBUc998Vctn8T169fZ3N4F4Zu5qeP7em6UFCil3Y9C5QsW6bJLK4SwdSGfN/mpEY21Wu2XgR8BLfSM/WA+n//9Wq1WB/4xsAYMgBfn8/m//7BrPU5B1FkRobDgH893CMOQ8Vj7u1mW0TFmepol3L59G4DB1Z/w7rvvAhBGEVeuXAFgbXODIAjwAv1S9/t9GqbpihDCQnbTNLNpxyiKkKaScjabcdy/zb17umrx7p3bFZ9BPeLC3i4Am+sbVkHV63WLQPR9n5OTMeORVlLT6dSujziOqbf1s+R5zlGvb8dlQIOkaU673bXKMwgCtjc0+Krb7dI1sYaNbse6BUkc0zeIShHBxMwdaEVQLtbJZGLJVVqdDvfv6ZjG0WDE8y/oLgOFctk8d55vfPM39T3XNq1SKtzIIj+VkBUPJiApLM29EMKS2YhFKv73uQ+lOD9z9+GzKIiSwH8/n8//E+Ai8N/UarVt4LeAP53P538J+FPz90pWspIzIp9Y7UOtVvsnwB+a/67M5/M/q9Vqvwhcn8/nf/nDzj3LlkK52z0Ks0+5a8+mY4IgwDclvkoW1jW4dvVdDg6NyXznHRuoe+GFF+xu2Flbo1iwPIQQjEum5IVAa71eJzK1A0opYpN9mEwmDE72Earqw1A+SOB65CYqnyYJPUPOenh4iOfp3XQwGFDkyrofx8c9ys4wjvC4dfcWoC2IMrgYBJHFOaAchHAr8BTC0q5tb22RmCxHURSMDRs0QGqyBzETms2mPT9PUjxT+NVqdcBAlmfTBM+4BYPRmOGJnuPdvSucv3CJ83s6uPnMF56ns6Yh17kKbOm1cB1Lgy3NHCoqGHRZFyIUlmB3UdQD7Fgf2ofiM5DPtPahVqutAX8F+GfAX5jP538GYBRD85O4x2mXReVgI84P8AJaTkQhcFG2atF3XK5f1UqxSDPefPVVAHY7Ll/5ylcAbYpHJr0ohKDIU2vaSyWs716v120acjHWMJ1MrO+dJAnPPvOcrSCM45jRUJvmk8mUw0NtcseziTWlw7DK+MymCUI4ZFNj2g/zir5duAyN75+mOVtbOsJ/eHjMZKyV0ubmJr3egHajaa4dWj4GpRSbm5t2zhL/OqBjGpkBVUmR0z86tEqh3W5bhTWbTezner1OovQct1otmkPDHzEZ0ds4ss+2vX2O9Q2tFAopqHIJAlnyYFJS3H28zJZl0PtYZ/1s5bGzD7VaLQD+N+Bb8/n8kRkqarXaV2u12t1arXb33/27f/e4w1jJSlbyCcljWQq1Wu0/QCuEfzSfz98w//xva7XaLy64D5OHnTufz38A/AC0+/A44/hZiqOcqv/CA6IZiitrwVKDeYIsT4kMpPb4YJ9spk3b7738Xb41+TUAzm9/nTjWu2Oz2WBmSqVPTk7stQB2ds/ZMuZF66Df79vdsNlo0O0almXHoX98RCH1LpplGco8RLPZROaam2EabtpMxv7+vmVjrvt1cik5OtSBR6/eIDH7Sz1qEplA5XQ6teeEYUgS6/tNTia06o2lCs7797XLVH/tNc7v6OzFzs4W64ZPwRs59Hq5Ge8UVzgWJ5DMYosz0AFDEygsMvvvqJyLFzSW4uq719mKp0zGej7eeO1HXLqk8QyuX7eYmUIAZes+JVELtG2uqLp2f7AsfL/IuH3K5adWCrVarQb8z8C/nM/nv7/w1VvA3wS+Z/7/Tx5rhJ8jsezHAqIgZGQKim7deJd333oTgL/ne8yMfzybzWwr91xJ4kQrjpPxhAsXLti6glkS23SdZ6jGQJvMpdnrIJhMNOdBHMfIvOIobDQbNEy6cjIZ2Z6R4/HYugWOI21Wo15vICS0pmsAdOt1mqb/o8xzS6aSZRlHI31+FEUEflmHkBCG4RJytXzOdrtJ22RVjotj64LJQtpsi1e4eKGzRBKTZrEZpwPGXk1FTqujxzgazxj5hhTm4gWyZEbP0fO/9tQzvPXGawA888WvogyKUzjegiPhoptsmia7haJaPp+vpjOPYyn8Z8DfAP7PWq123/zbb6OVwWu1Wu1vAUPgrz/eEM+GLPZkeKgIaSvwAs9jfDLk/r07AOzfv8dzz+hAmyoSdrf0Yh8lfUbTKg5QLrZf+/WvUBQFx329U29ubFuFUywQkjoupIYufRYndhG1Wi1krrh2Tac7+8d6MQL4nsPurt7pn3nqSdL0awD0ej12XtL3H3SH9PpDG8eIZ2kVRMShGVQVkztfewqA27dvMzrRz7K9vc3BwRFrbZ16DIKA3ARN0zRlfV3v4MGeZxXRZDKCsUFETguEcnDLXdtzqu7YeVI9v+czNXGXVrPFkQlarm/WQRYWZn0/u83a2q/qeZ7F+Ka/hBdiWZxcAQphu2PLBc7M5WV09hXET60U5vP5TaD2AV//1Z/2uitZyUp+tnIq6Ng+bkryYexMH9RA5lMXqVOAhfE95QLDUa4qtiJXqColladMT/q8/sqPAOjUAzoNw3tQFOSGZyDzC46PdX1Aq9Xh2eeeA+DWrTt4gU+3oy2KNE2rRilpandXpZStb1CFtLGGPM9xcNna0rGD2WRCaiL7f/gH3+cnP3oFgGvXrvHEExcBHckfDAxgyHFod7s4wgB+lLApSXBIM707CyGsy4BSFHnF4iQlZCbFqCjY29M+/fb2pk11dtpNBgNtDU0mY2uNDI/uaXbpBZ/elouHgQVJOY5HVpiYSrsDpnZjPE3pdNaYGjepXm+yvqGzJF/91suc39PP7AS+RWHi+To9XPb2XHgHBYso1oUGPmL57581gPhRU5JnUimcJhHKpAhViYKjqtOXksIQlgihLPW670iuvvk6hYE7F/GUNdOfQeWZTb3dPj7gC1/Q3INxktnrBkFEmmf4nl4I3W7XvqCLhWVpmlpfWyjsogpDn95Rn7cNnPn4cJ/9+xrR6Psua502AHvnd20cwvd9bt/VCMhXX32d/cMjS5+eSWVp2RutJs3WAsejGXMU1G3cI/Aj8gXlJYSw0O+nnnrKug9pFtMy89LpdLhuyFfkbILjVC7DeDy29+l0qsWf5xLHkLO6foAfROb4KfVml5MT/WzrGxuWcOVLX/ltnn5Wz3mj3QZz/iSe4QYh9UiPZzqdVn0k+HwphVVB1EpWspIlOXWWwkd1hyrlw9yEz5KwVTyQmhKiMqWlzBdKcqVt9rp/5yZ3b92gbuJUnWad6UiDh2SScGICYk988YvcvKnZlnbPXbDBxOFozIXzFy1TspTKIiI9z7O8B5PJhHZb7/ob610bqLx27Ro/+fErFuS00e1wbkebz1kSkxkKtevX3+PmDU297roug2HJ2DwmyXJSU0tRSCjKqLysWtn7vm/dmiyrmKmVUnQ6ayhj2ruusG4WQtLp6NqJK1cu2+xJHMe2AGp0cMhkMnloKtjxXMJAWzDd9Q1LszaZxdYaaDTb9IcjNje3zbUTm65tr1/gO9/VbNT1TsvyK0jHMf08TYn8Aohp2VLAPr8SDwYdz4alcCqrJD8uI/NpYHBerJ6Txg9dKMfHFQ6UpCZ5RisK8R39wh8f3rPEJjJPuXJF+7T3Dw44d04zIMdxbF/wvb09NtY3LRtxbziwpmyRFNTrerF3u11rol+/ft0WWvV6PZ599llrprviIn0Tu7hx7R3u3tEw5UHvJzizKj06K3tANEPqMmRoCqKyQhKaBRfHKX6gx7KxsWEXaKNe52SoYw07m1usra3ZlOqdu7ds7KTZqLNpIMdFM7GQa1UU9A19m1doPEUJR55MJlZhOq5vYye9Xo/dXb0GskDiOIYwRkrWOh1muUZRuq5rXRs5XKPX14jOvVbddp8KwiZpJu19wsD/SJzCGYImLMnKfVjJSlayJKfSUjhLostrJcIpzcrKcnGEwi2zIlnKLWOKD44PcFVGLvWOFoQewujneDrj4FAH9Lo7T9h6gbW1NQJT3NRpr+F5PncN18D21jlGo5EZT+XOjMcTej29A58Mh2xva3P5+eefp8indtc7GfQ5MrRpR8fvkI2qccUTvbtHgYswgcXByZg4Tqg3dJ6/4XokWdlJqo1nTOzQ8djs6mOYxGyYAKZX5Ky1W7Q7+nq/8+0d/sRYSi/t3+dWogleZ0FOZghlsyxDmF6QSZLq/peRdkcajYbtC6nAokCTbMqhsUDWWutMDMAKNDZiONLfbW3t2HOCKOeN1zWQaX1rk8iUtOdpDI5HwzBqJ0mKY2jfHkmEtJmL0y6ncpQf1wX4WTZ9kWLZfVlsyuo5DoUx38eDPn2zQJtRiOcEHO5rc7gRuYzHAwB2d7Ytz8L+/UO7kHFci/qTUjIcDu1LeevWLetmuK5Lbszn2WxmMw4XLlywrkwcx6ytNawimU7H9rsLu7uMR3qxjocD9rote62yQWvieRRKEJpIvOv6xKl+zmkc0zbKw/cDMP/e7bSYGQXXbjdJpzMyXy/EwdGhjSk0w4hL57XJP64PSco+biKwfAqO4zCeTQlN7rHRaOAbtGOWZfgGndkKQ+7ta2V3fuTRrGsFVTiK8XjMdmvTjHm2RDhzYliye0f7bBl0Y9jskBRyqVP1opTgtQ+j4zsrsnIfVrKSlSzJqbMUHnXXP00t4aTQZKAASirK6LMjXMsgfLh/YME60oX7x/epR6Zhax7TMO3NjgfHNrj25FNftEGzVqtlQTlFkZLkmW3uopmHdHBvMhlbS8H3fZthECgbvW82m8TxwN7n3O42sjDR972QH7/yJ/qe7Qah2SnzvEWS6F0/ihq8GNa5mJYFXgHPmnz+eDylawKKSZIQmDJmmWQWoCWTDA+BNCAtEXU4MaxO7U6ThpkXVYxsQZLvuxQtPd44yQnNtUDXUghHj63RaCBcQ6dWKJv9iPt91nxtGaTpjCDwkJ40f6e4JhUk0phWRx93584tmiYY2lpbJ5WqwloEEQs1aZ8rOXVK4VHkNCEahVAoVVC1JSyqIhqBBSINBgNLMzYaHuI42AXvOpJxPDPnZzz19BVAV0Nu7ZR8h6GtHXAcl+l0SmtbXy/Pq05OQRBRL7kfkVX/RaeaLylzwtCnKMxxMufcrk5v3nj3KjsmPRn6rqVwcwD1tL5GspWRZoogMpmJOGMyMt2aUNSNsnKEwDF2dVCvW7r6oB4Qhj5rppckCDZscdeUiWGtXltr4PuG8CWL2TAL/GBwwmw2s9mERqNhipW0a5WbMQdBhGMqMbMs57XXdKzgq1/9OsPh0M5/p9UgM3mCNEvswj84OOA587tqBKVjFXGWFR+bW+GsyOnZbleykpWcCjmTlsLDXIdPykJYbEbzKPcXysN3HFuvEIU+hWnVNhkeceu6ppnoRDlyqrMFgRzjqsSWQk/imO6GMVM760wTw8Dc3KHR1Lv27evvsrW5po8fDbmyu8NwbPL2fmgpyIQrSM0OlktBVNfBwLQolshNXRnSMjvv0cEhnjH/L13+VXyl+y8Ojw8ttkJlKcfHutR41DshkxVMeRovRPWjEKH0PbuttiVEdZyq1NnzPMKGTypNjbNYCOC5kqihLZg0z2xJRRTU7e/S2XBYczYstiHLqrG0220cU66Q5rH9dz9weOYLTwLwxhvf45u/scZwMDLHSXvtViAY903GYnOXo3tH5ro7RH6znA68Qlp3bImQVUjLvFXgUJhMjMLBOyN9H86kUvg05VGUy6L7UpgS2hI8lGUZnjFFR6OR7ULkiIKxabBajwRpmtpoeqcbEIa6OCnwIxzLsRjyxms/AeDpJ68wOtHH11tNRtOZRehlWUFoYhJJUdiahND1LHV8FEU27ba1sY5IJ6SxVkqNwKfu63P6s5llKT7aP+D3vq/RfVmSIpRB+r1bp9vtUDd1CfVmy2ZHveQTAAAgAElEQVQ5oiii3dYuj+u6ONtVAdFy5y9J9fp5ZIUeZ57nNhOilLJRfc/zbIZgreEwnpzw1FO6LLu33ePuXV2GPhwOqcuKl7IU33c5MhT1F/wLpO++w5XLLXuOY9pqpWlCa23TjL9rMzSO45DlCZ6rlVyuCoQox79ApqMc5BlfVadi+J8m1PpRYdM/7XVlAb4rEKXvOkspzFY1HBwjTTQql5VlIKTD7Ts3uXBBWweO61P+FFJKy8g0GvbZMhbEYNgnNXGHnZ0dhid9hFORgSjjCfp+WCkipeiYhTudjBBmLNlkhIhHRKHhQPAd3n3zdQC+9c1voszu+vUv/xo/MkolXAtsa7qnOx3a3Q5RZNiePI/gKf1dGIZ43nk7T+XzP9jOL8syW5mZZdmSwnDdSpGkJriZpTlS6uMnhWRzY4O+ibE0mx7nTRrz5OTE4i+iKLLMT61Ol5P72gJotzucHPVY29dFYLvnKgh4OR6A8bEgbGmeizAKSccJucFTnOVu5h8lq5jCSlaykiU5NeruUZrKPs51H7z2J3U/IVykrOgEPN9lYpiRk9kEx/iR09mILNO77ng4wnESmy70g4D+UBdBbaxvMpmUprTD1gW9A96+fZMXX3wRgLfeeZuo3qS9pq2AqN6wu9viDiaKnHhkOk/V68xMQ9rQVbQ2uvzRy9od+J3f+R34Td0YZavV4inDsrwdeLSbOsOh6eJ15D16XvMrKqFrNFzXxTWpS88NUAapqUvHqy5QVmRhYjeVFSGldg0KmS1kkqoOTUVRIKeGG2FjnTt3jjh/fg3Q5v8i/+Skrp+zNx6w2dWuzP7RAe26dhdGoxMiEeCbsnapctJMx2cC368smMKxxWXT0Rg/iMjNc3heQG7QlosFDh9E9X+Wdt9ToxRKeVi68bTJoqJxhUOeZ/imIi7wXO6aXgmySO0CmY4H9E2grtWETqdlA1WD3pDzZvHPZglZWfh0fpPr72nOg42tHd67rmHSO+fOM00SPF+b7FMD+wXD7WCCnr7n0jIm/8nxAbsm7dg7PqQTbrLzqo5XbMwqRN+FCxdYM+nB4snqORut89ZdiKIGwnEsNkKJKjUnpULlVd+GiiYus4pBohdvGROJIscqszj2LQeEUsqiE4WqFMtoNKHV8jk+1sp3fb3NzFR2avdFz8U4qIhjL1+4zM0bt811BZvbO/b8W7ducKGc/8EJfl2f32w1GI/0/X/y41f40pe/isAUVanloKGy8YUFOLOwbSOQ76uYPL1yulffSlayks9cTp2l8EnLB1kdHxc5+cFZCQFS2QCUpwqGJqWlihnpTAewpicD0kT/u6y77O5c4OZtHTE/v3vJRu9HJzOL1rt/96ZNd611WowMfdidO3fYu/wkeRnmFsJSnVGkNM35KkuZmnLj9U6dSU83kX32iT3ojyhibcVsbWxy/rwODnb39nSKEwjrDepNbR0kSYYwO7sQLlKJij1dVnwIeS7xnIfNlWMtI8dxtPtRkq1mFSuUti7MbryQwpMoS42WS0GWpDRNz8p79/Y5f940iBVYbomLF5+wGYfD6SHrobaAXNfl7v49OnXtckynUwtk8iOfLNeWlhtKclXWl9zghZe+hOtrq8h3PRJjBS66DPIDltRDp+SUymMrhVqt9gvAXeDfzOfzZ2u12l8EXgXqwD3gb8zn858ZIPRxXJEPO3exG7Hrukhj8p4Me8zGpnCHhIGhcY9n+4SG5bjZiDg5ObE+uu/7tidClmW0HO3H3757la987esAjEdD+oa/YOvcebwgYmz8Xd8P7YIripT+ob7/3rkt6hgFc/sGu1s61ZZMRmxv7djuTZsXzrG9o5VCu9vFDbXLIVzf9prwG22UqtKwqlA24wECxykxCBKVm+MktsMSYN0FkBRKWXegjIfo8z2rINI0tdmHRZbqsNnU7NYGZ7C5tUmvpxGVzXbDEssMRieWs0G0HSbpzM53t9vFM6nfdqfF8bFWmJfOXyAb63mWeUYYGddIZhR5SmCIYlxXQDXsJdK1pbjCottwRhTDJ+E+/HfAv1z4+38E/ifTYPbfA3/rE7jHSlayks9IHrdDVAf4L4D/AfgN0yDmSeAlc8g/BL4D/IOPutZiNuDTykQ8inxQoPODkI4yL4gCl8x8NxkNyU2WwZUxUwM4yrPY7mBRFDKZTIjqetep1y+yf1+X+F669GSVW2/WGQ31Z7zA7qBr6+sc908IDcOS48DMWA0t3yNqlfgBl/3rOhd/cfcc64bRqOEHbJ/fY++KZlBe37hMy/AeeFHIxLgpSuZ4hsMhy2W1hXgerutYkFNRKFsjIYRAmAAopFXWwXVwnTIgKZB5br/zPI8sqzIRpRRFsZRVKS2r0VgTt5bzkcxSXNdgMLKC3LhS3W6HgyNtAWxtbVHf1nPUl0NcIWwvzSTJbA+IXt4jrJvaDRcyYwHmo4je8T7rhgNuGqd2/hddhuXsgzyTpdSP6z78PeA3gf/Q/P0fAfF8Pi9tphPglz7qIrVa7dSAQRZZgh8F3eh6DrLIqJso//3bNwgN+Gb//h0CvwQSBbb6r3d0wMbWOaQylOXDCjgjhODWDc3L+Nu/800OjCug3IJNY+Jfv36d83uXmZhWc65wcMqWdI5nmaFf+8EP+PJLLwDQikI2zMLf29tj84mn6a7r67XW1/BKk10VOKYFXSYLcsOjyJJSVDgUZQ0SjiMQ7gL022QjhAgtZZrMclu0pZROSZaLOo5jnBIC7brkxqx3XdcWPRVFwWymF3G93mA2m1o480l8Qqtj2LCVYjDQ6V0vjC0fxWg0WmpImyQJjskouuiGvwBu6NtVkeeprV4VTsidmzfZPa87VcfJgu/Ao3UdPyvyUz9KrVZ7FpjM5/N/sfjPDzn0oXDFVYPZlazkdMrjto17rlarfQHwgBBtOUS1Ws0x1kIHGD3s5NPaYPZRax+si+MI0iQml9o0jWdTQhM1z5KYdDYA4MLujgW+hGHIaDRic0Pv1KPRiAu72pS/deN61SNydsma2NN0yobZTdvtNiejgWVimo1OqJuoOFnM/dvaZP7Kr3+JlgkathpN9i5eBuDipYs0Nq8QmcyCG4YUZqeUUqDKLIHrUPKcSSmtuyDQ0fTSNBZCIg3vgYNaokYrRQhhrQYhBYjKPfRcQUHVK6O0GoUQS4S4VqQiCkNGpiXcJJ7hrmkroF4P7fmHh8d0DKhJUVQBzDwnJMRvmp4Ok4nNWOS5tEVcjVbbNvDJ84TZdGwL37rddZLSisKpmsQs9HpYijdSFUqddnmctnF/B/g7ALVa7Qrw7fl8/l/VarX/FXgBnYH43DeYDTyI05hRT8cEAl9weEf78Xl8l2YZyVcSWTIOByGNeocsMz0LHdeCfEbDPi++qEMyvf6QqSFm2djZtccEfkSSZhSJjl3UfRdlfN/uepe1c7q4Sk2m+MaVuPTEFS4/8ywArWabYGPLohAVVfPbQrFMne6UfAoSHLMIpMJl4aUvtHujj8PStkG1mKUjcCxHoUKpKkXpuu5SHEksnLuoFEqlgixI88xmD5pRnaFRvkWnSXd9DYDD3jH7+/v6mVstGzep11MyJ7Fp1KgeEBT6t+j1erZwrCGblhqv1V4nno6ZmeY4XtgAQyCjxIOJhQrIJM5gb8lPQ3X9beDVWq32MvB/oDtTf65k8WXNsoR6I+DdNzTmwHMkgyOtIDxVsL6mF+hkMrEdijxHMyIdH5fQ5m2bEgtDnzDQcYBb+0PqLROcbDSIzS7VCEJcR1GYAqt63bddo3/rm18h/oM/1OcEIc9/UUOjty5dpmkYhYKogXIE0i5El/JVUI4Lqsog24XsYLWFcCQKEGXsxVF69y8PsRZB9VlbFmWhk3yfFWF7JSxYYYtijAv9WUrqQciJIZXN85zQ0UHb2WyG0gYQ3W6XY8PodHR0RM/XsZpG44R2o4kXaqWYJAmFwRw0TbpT/xYBsSlCq28HFEVq/w7SGaFRCiinInlBW0sLk2aeX9oy6tMun8go5/P5deC6+dwH9j6J665kJSv57OVsqK7PUBZTjw8WUz3Mv40nY0JHWrNyNjwkDPQO5BQZKi+JFaX1aYMw5ORkbFmflVKWv3Fjfd3SshcINjbL6PmEwKTAPMdhOpvSqhuEYZZy57Z2WX7v5YS3m9oi2Lt4mc4z2lK59OQz9E8Mm3JnkzhLF/pPGjAOoJRTUcshdVwBKApstyYlhSYTKcvHlaAwrsBSFN4RCPMP5kjzWaJUUZ0vq/TkUo3EQrepRWm32/SMBVBKGRNQQqIMs11RVzYNXEQVWEqGOm4RmNRpPZpYPozjoqJpG42G+AbdmSQzhBPRMxbdtslCVDP1+ZGVUnhMcR3FtetXKV/7k0GPwB2b71zbLcp1XctRiBLkSYpniE2kbJKbir319TULk/b8OqV77vqLSL8YJXOKxCwyV/Htb3wNgP7hfS62dRzh8hNPsLOtiUjyQtDd0oHNWe7gecJ2pGaBll7JHCXLoKFAlK6AwgbTpMr1M9hFbjpPo73ostfFYmWkUspeVxk0Y1lUlOf5QuFUYVOXLMCcFxXxdDKi2fQYm0BjfzpCme/zomDc00HfjXSLmYkPOH5F0lIS3DQapleGqvgWPc9jZJTC9NYtnuIZQFe8dtbPWTfP910LaPw8pSNhVRC1kpWs5AFZWQoPyIf1pVx0K+xxQnJwcACG7ajIUnKz04WhZ7slSaEsqKfIMk0RvsC2VN1TWaRd2Nq02YfNrS0b1Z9ORoSew3SsA5XXbr7HvVBf68lLF3niog7pnPviOSLDjeBFDWJZcgcKfEdaFKIqqjGIXCFkZQGUJb+OELZ3pZDCpDBNjYNS1uXQ/69Sl4Utl1Y2vamk5mSsXIaCwlhKD85/mV5cLChSsiBNEmvyt5st9k1ZeqGkLZQaDAY0ZcsMrLqfUmopJVpaLgDdbpv6PW2B3B0ck5oMT96tU48Ci7CUUj6weqqUpDRulquqcZ+l3XelFB6QB2HOiy/OIuFH+Xk6HtPptLhzcAPQxT2hp78L/dAu8CCMCAypSi5d0jQlMPwEcRxbzEGvF1lewN2LX7Uv/mQyq5rIFgVSKJRRPt/8+tfY2dLYhic2Nzj/nO4WFUWXqde1izJLCwhKmLGPLHK7yCkqvkThgKsqZWVdCddfgOyW8YQF0hpRLQq7sBfmTEpZZSseyC4sxheWlIKjFpRCNcbQ94jjmMmkpLz3iAzvwXg6sdc4OTlh02AO3EzhN7T75bouaZKSiQpCXRLexElsf/MwDC057OaJS+eJEb7pDzGdTglbEQ+VM+5PnO3Rr2QlK/nE5XNvKShRBqucCoGnvAVz1EEKaZW7EoUNgAlP2Py7LhQ2uxYuvtm1R7038NM+MjU1Ck6faENnDCZxjOuXxTUerm8shTiGPCM0pvksTehs6oxBHKc0WmsAZO4XUcYUb7oSUm1BdAA/K/j+33sZgBd/8irnQm0md7cv4RmyUek1iDOzA7sJvkHgOYVCKGVbmRQolDC0aQKkU+YKJMoEEzNSi3RUUmrromykKxXOkv+gMwFFUeAagJBQEmXqM4o8J88SpAm8qgJcEZixpLZEW6gCz9Nz7ipFblCTMs8QQtEwVtA4nxGk+vx20wXjpu2e2+PINOHd2tpiaqjpgiBga+scg0HfPk/iavcvz13CXIOcfG9iA5VSpQgnJfC1dXH//ns89Yy27rKiwHH1WAoJmExOIZQNxgoB7tlgeP/8K4VlWaDMWvq8cITjLPiewr74gDXfHde1SiWOY44ODpGqqhKMp4YB2XNtEY7nVdFyKVMcx7ERdymzJS7D0uT3HZcs1QvMa7QYD/R11zc3uH/rOq+88goAd9e2bHu01hdatprQ8zwLqnlQltiVBRbItNgwVx9jnt1zUEapPEiO8WBmQRXlc0mKks25qNwHqUx8pZxEx7Xn4yykfh3Hzn+BQpaw4jL+YVwLXThV3r+ouB8LxTPP6OxBFMeWsbnu1un3+3RMF2xnTTB19TwnMrfKJrwXcN8gVZvNp5m2prQ6OhV55+Ytnnn21wAIhGdTsoWqEJkIgeV7Vw/O2umVlfuwkpWsZEl+ziyFSkp8/8NosmygUVa7qYOwOHahIDG57Hg64/j42FKQBb5rI9SNMLDmrxAVZVlZNmwZhxzHZhbSNLUUaL3jQ3a3NTvSdDS2O/V0PObqW2/z5Zd+DMC6H1pLodlsWetEZzfM7lxUFUxZUaBYCAIuWENLdQ8L+AVkZUE4SttXiwHFErisUJZtSRUG6MQyA1MJBH5osZMQuGb8jvKrQq2sYnku1HI7eNd1cUwps5CCvLRUkNY6u7h7ka1cz+VxcYzjCAt4EkKQm9+iHoWMTwZ6/CcZ75qy9slwAG3FIfcAaK3vWoJcJ/ApZPmeLJAtLVhgP1d0bKdfPvwR5QO20oORcZt9kMou6iJL6RtEXZbECCVxTPQ9iiJbSbeYUlNK2eo7KSWu61a4+mYElD6p0gsYCOs+bcO3+O7t61w6p2MVg6NDfvjDH/KWq5VHo9GgYWok/OASmK7Li2Z9AUsuSiEE1ZqW73vuhQkx5yw3c1l0q5QjLDWblMp2WyrchUIhqexnKUAKx8ZLHNe3SsNxpP1NXMfBtS6Oj8SkfZMYiaIoqnSnWlAw5TjzoiCbaAVx8+ZNnrhyBYCtrZTbt2/rVDJw8eJFSxG/f/Mu+UwriMP9A9qGsGbQ63Mhb9GINACqFe0yNrT8rfWoQofiVIrAEZWHJN5XNXVqZeU+rGQlK1mSnwNLQcuj0mIpVe10UmY4lDiFAsdMVyYzJiO9S+R5SqtZtz0bfdfBKXdqmSOEqU+g2qk1s7EgNYHGthdYhiPP86z5r5SkMGZtIFxmBr9w48Y1nn3qO0zNM62vb9K8rC2FMKzb+wvXQ5Wt5aSqgo6OSyEXaw8enJ/KTbLzstTxxGAUlP2yEiEsZFhQ7TrCERVIS0gc4ZKXDVo9QJUkDB4elXtgXYW8CkDiCIosJzHzlxU5qgRWLbgiUhbcNj0mgyBg9523AHjyCUm73eaLvq4LEZMRt25pnMla1Ob+fW0Fjn2X4wMNirp7+zaOuMjA0Ls1Ws8yLIOQ7TVcz1gKbkBaMmtL7PsjFmonT7uceqXwMLP2k+FurAgy1JJLK5YAS4vR+7Kc33ccMsMMnKUpniOQeYl0c23hEDbpp6XMNvimS7RcQPtNxmVfxDbCdIAmzxga8EwYeIyNf/vGa2/yg3GDrXX9Urt+QGjAN4sdqBGujdAvYo2UVEv+7oPugLApwWqeludc6FLmRR/fRNkFCguEEovTJ6yLpYRAOmmZOcRR0qZBlasW5k2Sm8Y4Mi8sAlOiUZR52RszL6zykOb65ZjLTM5wOOS+4bl4+qBOu91mMNCLfzKYWGbr62++w31DhT8a9K1mdIVi0Otx+YpO91LknJiU5oVLOaVm9BxBVpLU4NiakFPe32hJTr1SeFwR6qMecbkCXkmxMCtO5V+pBURenjCb6gWazKbMZhPc8kghKcyL7DcbNj2W5xU6TzkCWVSWg1LKEnu01zyrPDY2N7h/W3c18l2BMv9+fHxMkcS8eOkJQJOulL0ahOfbwiUzoPIBludlUflRKV9RxSMNZ0IVkbWKQQg8IazvL4RTYQikxC98M7PS8jFI5FKqVxTFku9azo2Hbwegjze9FfICmc/s8YuKfBGmLBce03Ecy2L11sGBTdUeHh6ydaIskWwYhrz+um6we9wb2IrVCxcuUI+qbtpd32dk0ppOMKDReRKAIk8Q5lqO79tIoxAewlqanBk5Q/prJStZyWchp9pSeBS+xMe+h4BFMJM2pY1PrLClwyisi5AlU6Zmx8jTmNlkZLHzrnDIVNXXMDepyySNCYO6vUeSJORSxyUc4dpiqTAMMVYxyWRmgTqO53D91i0AXnj2ZTbXN/hCXSPq1p/ZwPMu2GtRxkSEY1mSXdep/B+Kqu7hwflY8DOEWtg1ZPWHcMVyy3iBRX4WjoNvkHtSSBwK+7ko3SqpKHBt4ZDmLjRoUUeb4HqUBZn1ySsLRiIM+Mm8vomdJgpZWIvOcRxGA8PjaLILoJmW9vf3CcOKo7FhLIrevXtcvqwBSo0opG7o9LYbDZIspdEw9Q4yI4l1SjPLZ/b3c4KwsgocQfXIAueM8L2fCqUwny/ztj6sO/QSWepDCpYeJc5QHbtAB1bm1D8gdlFCcSPfRZqg38mwj2cQdHFe4DkVV0KBtD0EptOpRUFKsL6+LCTHvWM2t3YBjU0oa/2zLMP39Oc8jclM41RXefSPtQ+sXlPgCNbWNTTaCwOaLVMN6LjWfVCqSqMq4dr8uefoPhULzpFVEi4CV1QxgYqWvXJ/pJQEnlelHlG2nRpZhluiIIVjqx+RksiQmoyyjGazTWIqEKXKSVM9lnQ2ZWLatjloVCdAPYzAkOMOx6OlwjWJsJgP4Tp4phNVJvVvA9oNmsYlOWtOt9u1ZDitZtP+TtfrdZs6dhaqV9fW1uj3+xYavbvXYjbTgd+7d+/w5LOaQq9QOVGklfU0iWnU9bswnk0Jzkhg4WyMciUrWclnJqfCUtCNpSp5FLfhYdbCw6WqcbBWx1LQTSEXkmeO4y30TFQ0zK6RzkY0TOnx8eE9m31Y5AQAzchj7/xAYxkLfjIt2kvTNE6Lig4tbxNEesxpnNIyFsDw+Ijj4z8AdGCx2Wjjm5231V7HK5mFHR9padaq9KgQ1W6apCmuH9odYbGvo0DZjIVDBb7RiRhzXWWeR1Y1DjbjoSSR6bc4OBlWgK1CMTQul+97TCYT+n296969e5vRUH8eDHq2TmBjfY3NTW3W+45LkmhLIc+l/a309SR5VgGzSnER1gITQuAbC8J3PfI049jUqNSf2OP+fV041Tx/3qIzB0dHjE+0NRC+fJVnZs/QbOtr5EVKMtWuyf7BZV78uma+OhklthGuEILEuJzavTgbpG2P2zYuAn4I7KCbvnwZ+FfAPwbWgAHw4nw+//ePNUojH8dVeL9UzLrvUzoLkXTf90hnCzGBpKys82xx0uhkSB7rF7TkVihfxiDwltycku9PH7eAKCwKmy6bTGZ4ZoGXmQfQfAC+URYHB0fMzLicVotud41mu2vueZGBeXkbHY+6MV8LqYhNJB2w+IdmvUGaVi3dRJ6DhQZXkFy1UJAEtviPwsym/UoqO7cUkr4xsdvttmWgRui0IMD1Wzc5Ojq0rMlZdp1tT6M1n3/+RaLQuCV5Rkps56KELE9drcRLejrkYhq5qmx1HI+6ieP0orrtW6GkIvA8uoa/sd1oo3KNZ1g/t87dO/pzs9GyLpuDZDabEZg2er2jYxpdnRIeDY+ZmGeuN7tMU60IXDciM7+n6wVQpJwFeVz34e8DV+fz+RbwK+hGs78F/KlpMPun5u+VrGQlZ0R+akuhVquFwGXg1wFMu/miVqv9NeCKOewfoqnf//bjDBKWMe0fS8qcvVjG91uAkXg/wKhsN54lM5plAHA6wze7YZpMEFSko4vl1mXACrRFUu78juMs1EEUS8fpe5Y1FjlpXPZMrJMbmreDo0Nuv3LH3D/hjUnMb9zTJm9Qf4bOmg46pmkOYmaeUeCW5cWegzJYgmSWaPzBAj2aLV1WGHfK/LEgzgKuolj4PZIksc+fJAnFSFtUP/nJT9g/1Ki//mAAL7xg5vwO+zf3Obe7A8B3Xv5dmwlwrlwmNv0cknhKFK0B0D6fWffn9Vs3yRca1LqOb7MPUsqqUIqq3Fsox7qFSklkoaoOW4eHdLvr5vzKklxb2+C26UsJ2rooES15mlbl0FLyyit/DMA3fvO7eMZlK1SBbp6msRxnRR5npOvA/wP8L7Va7VeAf4FuS/8X5vP5nwHM5/M/q9VqzccfppYP6gb9SOeqD6pHWeRW0L5vYQhH6vWm7fy0sV7nvdc1TLbTbDDsVf6t71e8Ca7r20zZohLyfd8qhaIo8DzPuhZSSrtgXddnOtOLYtAfW4ry2Wxm6cZ3dy+wtrZG+54e21HwxziGGTpsNKk3dByi0WjSNV2RFqPtUkqbHrXjtBBkYcci5XIH8LSMjxQZTl4pwtlkaisOx+Mx+wY5eO/ePfomjeqFge1IFUQRv/Xdv8sL5u+i22VkumbHk7FN9blCWTIbJXMKo2C7nXXG47FVuEopC1JzcHEsItKh2dTz18wyYnMt3/eRMieemI7Secaly5cB2H/9NTs3aZzQrBu+x/4xm91NpqaIDQ8w8YIiTzk2ZC53b9/k4mXdietkkuO5xi1MM/wzohcex31wgPPAP5jP538F+H/5GK7CqsHsSlZyOuVxdNcJcDKfz/+Z+ft1tFL4t7Va7ReNlfCLwORhJz9qg9mlOoSH/PtHyRJi38J6ZQU/xTAWq2oXj0wAMI5jG8waD4ccHOq+hHka2z6IeZ4b5p+ydLhqkJrnuR2367pLJrYQisKQugpV2OCeJxziTFsQXuDbXohF/jbrmzqw1el0+MbXvsH5CxcBeP3Nd3j7nXf1tW6FuP57AARBSNswG29trrOzqfH9zWYdkVfQ4grUpIOLNgAphHWzxEIBVJ6muv+jMc3zNCUzQcNkNrMeWavTZtcwS+O4+MYVC6KQsFm3ltLh8ZGdTyVz2ytjEs8sYExzWZR9GvRcllmIRVlq2qP0Dg26VZ9f8qFJzfxU3r+7toY3MoHjdwuUo39zlUmapgFPfzrBEw6Dng4odjfWLTAtHo/Y234OgOtX3+PC3tP2/r6xIPM4OyW5vo+Wx2kwO67Vav+6Vqv95fl8/q+Avwocmv/+JvA9PsEGs59MEdRHX8vzPFuHUA8CJuMBAL4ouHldV9JtrkWUsEPXdQ1vQpnGLAiMma4bm1Qpy1JBxPGUwA1sXGExe6FU3R43Ho9toc7b4vfoHeuxhNu7FEXBick4vPDCC1z6XT3m3uCE3kAfV2Q5UdMsRLduzfI8SxAtx7o8wnOrTrVwaEQAACAASURBVM+uKgGdmlamdB+oFHOWZRRZjjIxhiyJKYwiI89tHUR3o0vPVJP6Uci4p92K+8eH7OzsWPr3KIooTOxEyILA1xH/wBFWQcgstemOSe6QzJKlOE6ZntSfK5BV+Vu3Wi0i8zlNY6Ioss1wpqORZdDutNpVxWtYxze/a54WJOMZJ8daKbx4ac8qnKKd2fjCbDLm3m0d+9nevWyLuDSI6myQND6u7vpvgX9Uq9VcoA/81+j357Varfa3gCHw1x/zHitZyUo+Q3kspTCfz+8DFx7y1V99nOt+WrJY5VdKCZctvRPHcZawBSX4ZtI/tjvIzPdpLFTP6d2pul65Ay/KojWQZRlesMibUH1X5Lm15te6G/SHAwDG4z9kaMY9PDnhC4fHTKbaNegPWwjHAKGSjMCUXjuBg+tWbE8leCr0XE0/Vro2SqFKPgDh2oq/xepJqRTSnJ+mKbLIyBM9T7PJlKz8PJvhevpZ3nzrLY7e0rv+05NnOTQ5//uHh7x6eMgtE4SUvy7h6/qcZj3inHGT1t5pE93Sz+K5grAsKQ9aSCnt/Pl+uNAX01nCI7jGgnDcKvsThqFuD2esg+99/3vcNmza/Y0tpFdZHWsm0Ns/OiaKIgbGCsvznNxcry4c7t/VNG27l7/AzRvX9ee9p5iaYGYYNVd8Cp+GfFB84cNEOWW5rajSk6pqva6BL9gFolRCu2kQhdMBna42v3/wez/Ed1/S/z5Ladd1CssN2rjuQpQehaJMSWksPizHFxzHofAUmTR1AS5MTVv5znqdoyPNobDR2eHwnl5sjgwZnhizfD3krWt9uhv6Pq+++ft4gV4wzz3/RW6acuvAc0gNCrAVRVy+pGMQl/bOE03usr6hXZNZItnY0AsxywvqBkiVFTnS1C4IR1WcEcWM4XBoi4BG45HNjIzjmDeu6Uh8vb7Dy9/+QwB+P27z/Z52JQazFD9sEDt6PEooZAnsOUm4ZTIR4toxv2carjxz5RLtlr5fM57SaDSIXH1P3/VtliLPUzIzTl8IijImoVx8W9PhMxlPCT0dO7py+VmOjjSZSi8/oeNrRaAcB+Mh0OycIxERI6Hn/HrviJ0drUhOxvvs6o+I/i062zqOEvevEZR0/U6Ck+iMlp5DRWLo9z0vsOlSuUDbl+UJFQryYWjIT2f5niml8EHK4P0dhxaL6vX/KhbBZRFCGIVQpuQU45LwJHLBQHkPDw7wDKRvNptYck/XE3ieZwuHpCyWcuZl3MB1naWgo/53ozAyaQleszixreaGkzG37mk/vPfuEGlMiDfeeRs3bPC1Ez3O6YVLDE3btGd/8mNe6eqXmiLHM9VJoih4wyievbfe5qmdJlFdv7xBEHHU08+zsbFBavzgMAxQJsCQ5Ym1oISrmaPKNKSUkn6/Su959/Q5P/qjP4An9ML/ve//Lk9/8UUAnn/uaYJ6m2/+xrcB+Na3vkGvp8ffbgb07msLIs5SxkN93X6vjqsM5LmzRhRFFmcQ+r5Fi4p0uXCutCaSJLH/Xm8EzJLYjv/V4+OKMKYoLCnDeDzmmUsaS+E4DpPp1M5BmqY2jXpuc42RMIjSRkwc63l98/XX+cKXv67nCEHgRRVuRbhLMaWyuAyl7Lh829Hrs5VVQdRKVrKSJTkVlsJ8Pn9oWfRPIx9oNQj34elJBYgqRem5jq2B95TicF/v1P3eAVsdbQIMxgNam8bFSBTNZl51MnKxxU2u01+od8CCgsAhDBf8YMA1gBu9o5kodegxMWnLg8hl2te71O2D+2xunyc3v94kS/ju738fgNfeeJ2nntKMQNdvvMfMoAPPbW5Y6vO3r7/Hj5rfJmzo1vRZltEwIJ8gqttxJUlC1IzsXJTFRYNBD6WUrUVwVGZTt3cP7/Ld7+jOVV/4xrf4zst6XC//zm/x6ptvA3DlyhWaofv/s/f+IXJc7ZrYM2cPh0qlaCqVptO3b6fpDLPDMBnmDsOgCCEmQlcIRVF0hdEaRWgVra4xRjHGEcbrdT68xhjjeI3jCOMIoxivcRSvEEIYIRRFqxVCKMIowzA7DEMzmR06k76dTqe2KIpKpXJyJn+ct05Vj2VbnyX5s3z7BX9fa7q7un6cH++P530eTDRIMcvv4PhhXcarV1zUXz4GAHjzzGnw7F6kKcZGda9HtVxGrV4xzWJ2NafVT0W6jacxr1A4Gf+D0iK+WR7ItkXOn5nC8DG4rotZygRUG1U8ePAAS1TiTZUy15ymCkGiPZrueBdSaK/HqTFskAe3Y98BqBimf0VwxzSxBVEMi3I6NoUOQAF1+0h7dlP3N7EoFG27wOsfa9u5GLK4V4cJhcvNePqzjxPZQBqHcK2sISfAl+d1Z2KzfgKryzqZJEMfETVEJZTgy37XsoQh0xBCIElyarEoypWVK5UaVFausiyTBIvj2FCXd7ttxPIr/Trw0enpLsPmeBNdv4/3P/4UAPDBJ5/i4OGD+jxefQWVpkYxvvfOH7C2mtGYz5lr/ebiRbz19jv48MMPAQC7d++BoJzAZjfnK+SWZQYmty1YcZ5A7fV6cBx9nu21tnHTP/nkE8wf15N6x8w0vnpBo/tiv4v989qtnhmvQwF47ZQOJ2ZmZnDjhl4wxvbvwY3L+rW9f49ZFCZGmxgndOZMYwyV0YpZpJTywEh2LhCbBhlT7Ewt4hcyiHRGz7Y2P2/wIJ7LIShv4JVc8xszc7P45vJFVBo6ZAnD0JSu7YCh6epzi53YJF1DVcHNaxoFC2Fhbna+QHWXh5alkm10P4wWCLDNj88b+n5oP/XeH2/D8GFoQxvagP3mPIVfYj/mWTDGBtB6eYUh1/vjkGBMmY91+h1UR/Wqf/XqFWyua/cv9ntIKFGX+j30dV4J4zv3o1wuI0myvmJldAWFyBt1AFloLxBwbBdRlFUj+gM8ANlrbouMWQ21ahmzs1pi3u/HKFcEdsxq5qaZnS3M79GaiTNT07hx7ToAYHl5ESdPntTnOTaGfYTvr9dqOPvW2yhXtKcheR5alasVdCmB1mg0QE4T1tdbYLSzxXEMu+QYfoMojbB3lw5ZvvnmIT45p3fKpbv3cYXcZ3ABm5Ci5977Az769BOsV/W/XRajO6vT90JGaFAooeIQNrn8tWoZU8RVMTU1AduuD4CpMh4L2xYmfEuSNGdsCwPTHm85NpySBU7e4cTEGK6v64qPawmUS9qDKJak2QLR2dFAWV1roVvTn5ut5H0k/SBAqay9k/WVZaRce0f3btxAszFpvBOZcpNQFMKGYlmPBwO3HocfZPvrp2e/mUXhaeUUtn8/IxzRPfYZY3Fa6APUCwJHXifvtXU9/e7t64ZjcH1tGV4Gcyg7AJUTucr/A3Q9PDPHcZGmORmLoBjSShTiOIXhd5BsQL3JZKKjCB5NxIdxhImadl07iGB7FSzeuQ0AeOF4G5xKeu++9jre/0iHBU13N1iGLnQ9vPTBCQDApW+/QalcQaVGzVLNUVMSi6IIFsF8GWOIKcRxHAfr63oldF0X3W7XuL/1eh3lPTo/cOzYUXSO6nM5z7nujgQwPjVt8hud9gaOH96Pt+mZ71pdxc6OPtaeWoVo4oF+T2K8qfMICQ8xNTFpnhFQcLVVXlkSnA+MgSzbzywBrvJQTkoJRQ8tTVKERJojEoaZcb34Vp0SHjzUlZDvbtzAZppgvK6fwfL6gml2kuAIiY6vVBASHhudxMpyh35zCl98dg5HjuhO0YmJKbN5AAXIOWBk84rcGr+mDcOHoQ1taAP2m/AUthO3Pon9sPqQiZTkxlhBLBYSSJXRKXQdgc8uaOHWyO9iY1UnoKpugLivwTfNahV+h3QfwhDlct5+zW0HmQfgcI44ykhEY3BSiwJL0e320KRdMEZvoEciy6o7QQhQq25F5P0VlWYdR4+dAsjz2Ojcx7UZDSxNGcOpQwfNtW6sabd4ZmwUFz8nPoggxP4j+0zNfa29achmhbBhU+9G3/dRIS1LhRwRmNX8s82tWq1CCP37GxsbGKWdttPpYn631qYIowhtQme6FkMKhZAScs1aGRO7tacQeYG5f249MBTOU1NTaBLTVNYnkfeLFOTnC5LvRT4Lx3PNe3GaII5D2AR+evjwIXrkXYw1R1EhZm6pUhNKPVxcgFsrw6KKQ320adz/vuugykmMx7FNv0at7GG1pV9bMtVIR0pw7zsQYWJK3zPXsaEImxLGqWGkysIgbT+eSGRqUAfjSe03sSj8mG0nVvmpEOPHgE059yAbXBiySqWSABIzYNZbLTy4p7sMN1srsITOMId+iNGKHpSrqwvggT7uuG1DOLZheta/mf0IN2pPFpeI4x6dK0O352NmRk843xdg5KbHcWgy+Y4twInNuaQkElogds3vxGgS4dA+3ZnnnK3iAU1kUXLNZO92uzhIgjFRIOCVtevbnJvFw/U1QyzSbDaxTmjDWq1mMuGOUzKTKgyCgsycRBRFaFA4EwTAtWtXAQCvvvo64lQPq/X1DTPAu90OSoS6tG0blmWZSZUkkXkd+n0kFApNjFZNDF6p1A1qUhLbs6BFUrA8ZCgu+GDSAIDSNDbXUvJczWdB9/ar+/ewf7/OY5w8egIehTm37t3F4Rd1hcS5eglerYo1EhZuNBporWglqbBSwRzds7V4HbNTOo+wvrGGD97R3I0T02/j6oMW7t7V4chXF77A/oN6PMzu2G1KwsJywIpyAz+zGDwLG4YPQxva0AbsN+EpPC6b848lIR/lTWSvI3LlLMYN81AUBQaLAJnA9Wxcu3IFAPDNhfPodKh115bY2NBhQtWxEKR6Z7G6FhRh6jv9HrxqlJ+b4kYXstFowCG6nSAIwMndrzfL4AD6frbj2egG+neEEGZ3tYI+SnaWKC00OskYNa8EsYe0Jvw+5ndoIFKYppqSDUCz6kER/LpSciCyVuFeF5VKxQjY+GFgIMOWZZmdIuj7maq99g6oLp+mKVynhDjW11ZxPVQ9XQm5fVuh2tA4B69cRkIJVMt2kFB7dWC8jowezjfPbWJszMjCl0pzAwlYw5jNGdJUmeQumMo9P8YGWqeTrJLDOUqUoPR9H0Hg4y6JzzabTUxM6N6PFywLS9d0yDg2MY72rRsAgAfNOoSTczDsGd+Nfsa1sL6GDjVO7ZiZw2pbh2z1agPXvtMeVL1WxYsvHMRLL58CANy4fgf3H2jcSxJLTM3pUMJ2PdOwZ9u2AUgxxigJTdeMQdh8qn7co/hj7TexKAB/DGX7o7/7YwtJVlJKo9h8puJ6YNTos7K2ioX7d7GwcAcAsNFeRQY5n5udxt7T+ly+k1/CpVKV7EZYzejKgwC1Wg1JTDkBJdEc0+U113WRpNoVlQqwbP39KAzAOYcQOVELJ2oym4v8WriCT2zScRrBdak8xrVbnPEaMsdGQK5wLHPqdQUJJrLuR+R8jYxDuK4ZcBYXeVAqJZIko6JPTNCVRnEuLJNqvsts8DCujACLZWkRFoB6PGjxdS0Lys2BXhz55BUif20VqgfbafFN2VYBkPm/mVRQBTe7SKufPf8wDE1zWhgGcCtl3KfQZGJizIRs7XYbY1IvauVmHdff1vklr1ZFL/AxNTVhzufwQQ3MunHjhglzFpaWUKOGqkRE8Fx93I8+eB8n3v4Qk1M63zI/vwtT03oh9cME/YzDw/MQUs4kSSOA6RDTKZVgW0JrnQK6epUB8PjTncbD8GFoQxvagP1mPIU/xrZ7Etuh0cWEZOa+Mq6M9HjU72GVehrioId+t43FRe3Kze+exa4dujOuWT2C859+DAA4dLiCm+QK9vwIU9PaXW+126ifayAMtefRbnfgkEcRhJFhRmYid8tFWtK7vqJwJknBkEuwZS3KtVoFgnYaKymhTC7qdK2K2mgd5cY+AIDteCjT0SOpBlzuzATnyDAxjDEEEHBoF+dc5BwEqTQM0lApmMrIXhNDv5YRvabI3fSMK9WyLEjjAYjcGylAuQUYeME7EIznGg6AgQ/LOBzwGjJcgk2/qdKcuDXzdAaSb4qbpKkQwvBhWJYNv99Fr6rd/3K5DNvA1C34gb7+jXYb/CL1pMgItVoNHdKukPWGOd6RI0cQUijS6/cwlerjRgjx3Xc6LP3is1N4872LOHbiFADg1CtnTJjYbFbRoMpUu9M1Ij92yYFN3qBMFXzfN9gIt+QMeA3bSMmfyJ7LReGn+BS2LxhZuzNTChUSB50ca2BuWseQri3ALKC9+C0AII5PIqXs9qWLX+J13d2LN1//HrZLsfqobTLc8VqPQDykvhRHKNNv98PIPERuKbRJBWms0UStWsYmgaRSpYxqVRpFsLJ8h2Wj2iTehrgFy9PZd7dWgXeompehbGEAT7aEoYpjMqe15wUVLMUkylbJZLkZA0AlsVQl+eLFuNFiFJwjwz2yjBSGfieJHAN4kozBcvV3LMt65KIAEBlKpgWZSqPKVAwrIPJQKk3TQsVIgRW0RSFVQclKGSAWAJMDcMseBC0iidLVk+z3O52OkaznloBD/Q43793CA1pgy9UyLEcg9CmciWKUV/Tzmz46iX379ALt3rqJOlVFHK8EFehxcePmdXz55ee4fVtT+h07chgffKL7amolB5LIYEqRjWqdqlxrLSgKH3S7PTc9OnEcm43EsvjvM6eQ2ePkEx7VNPWjUGcaLUmYoEww2257Hc1qpgCdYvn+A0yONwEAly/fxOqKJgnZuXsPTpx6CQDgd9Yw0dSfqTXGEJLkWK3Gkaapof6WqSKsAmAJBy6VAeNEK0EBwI4dNTCh0KeOOcYCcEIHRpGETQ05YZRinFB8pTs+miW93DRHx1CtNZCaBlABTpNacgZL5YxOplQHiWKfqNZBKCZlsy5BCUET1BLcID0txvNSn6RJab6rBrySbOAyBoOt4BY3C1e2IGQCt0ooKPJUYpXkug1CGI5DpqQhd2Uqo3XPcwfZ70vpD+QUjMCvlCgT9f2DhQcQrotORy/+vu9DUBNYp9fH+Jz2FFfe/AwB5Z5Sv4vR8SZKmaZDmqJMalEXv7mE96lL9dXru/BCeEQ/P9XDHOUQ7t69ib54ER99pvUhXjx+Eu9RBymzXRwmron62Di61Pg2NtY0CltRFKBkuxD0+3EYQRKq1nMrP6Zf8ItsmFMY2tCGNmC/GU/hj604bAcy/VhI4VN5sOyVENGqW6tXDD23zRUmJiZw9nXNkLNv327Mz+8BALz7zh9QqerjN2ZrYDr6QKXaQN/XwBW37IGdzdF+zBKIKPb1wwgWibTYtg3b0QeoVqtot9fhU8XALTmAIv3BSBhXOg4TjFJ5b9FuoV5vAgDGmuMou7uhyH10hIO4ICWfc1HCBNlccZOt1vdNQZH7D8VNG7dM44HYPyVMP0POjGwJDsH5AJdVcXfnmSvLEoBiZaYGqDHp8xSaWDCqWGkcGw+CqTy/IdMYFnLwFKQyMXXRU0iSJK+SKJYL70IaTsZerwfPc1GtahRnq7Virtkrl3H+iy8AALcXI4wRd+Nqu4VGo4E+lahVKrFJ+QXLtnHmjB4/b77zFj6mMPGj997FaqBb16fGRtFaXcHJo3o8fP3NZbxy5mUAQLU5hitXdenz7sMHOPvm2wCAtY11g6B0HAdpEpv7XCqVDEhOVymeXlLhiRaFkZGR/wLAS9Disv8Sms35zwB8C8ADsADg75Ok3E8d54/63Z9bQIoLRFZ/XmutwqOSWBRFSKnUd+fBXdy6eQ1v/+EPAIAL5z/Frdv6AbmegxKVtF44eACz5Aq+8XoHMTU6RTRosy63OI7R7ZIQbacDSbe42RxFiXABYPvh+6HheuCcI46ojOfYJoEmY2aUqS0lMFrVcW953gNLlGmcQaLgEtovZcwsKgP3QiqtbwFdwksR5fkGlS8QUko4Is8jBFGulSAoRLEsTTob03sySaGUds0ZYyZkE0yZUITxQg4A2essESAG8giCFhWVKsNNYTEOJQjXkDU0FcKEbCFIkgRJL09A8gJZb0a62o5jxHGEmRldElziHL2e3jzGvAbOnf8cALD3hUMQhMLcuXMn4jg0OhAyiABKvNplG7umqVTJbiNKNKLx089exMdNrY8UxiGcMhBQmPn223M4c1a/t95aw6FDusvVj1NcunRR/729id3U2To2NgZIntO5WdzQ2tPjeWr2i8OHkZGRPwfwGoC5ra2tKQB/B8AxAP8VgP+aBGb/NYC/fhonOrShDe3XsScNHziAf2NkZOT/ha4U/Q2AvQCO0/v/FMC7AP7bJ/ydAXtU+fHHUI2Z/LnjOHj4UJchN9daaLe0+z83NY5du3bhm280SKXf75tM9OmTJ7Fr51cAgG57E1+c08zEafq6kX4HTxG9F5mdZrPbQYNrl1MxZoBApVLJ7Ga9Xg++7xcEZ5UpT7mug5R27bJdgku6hp5zCeNUifCcOVgQea8/LCS0a6eMG96AIqiLSWXaqKWUYLyYsU8HvIYsOcc5N98BcvFc27YRRRHCgstuObE5to08tBvoSaDr5VyAcW40H4stwkIIMMqgSqVMqVSmucBs5iUUezEGQE5G91XCztS60vy6wjBEqeSYkmLsedgkMJq13sXKAb1rhyoBlPYUqtQYVq9rj6juJPDIU/B9H+Ou9iKlBdy5cwcAcP/uS3jrjE4gfv3553AAnDp1CgBw63aAt954EwDw4snTcMgDcStV7NihPY1d83vQpXG1tLQE1/FMyKMVsghha+UUbk/DnkQh6n8fGRn5GFrw5f8GcBNaZDbY2trKRtImgD9/4rPcZowxU2rinA+oOoVhiMlJnbFvtVq4deuy+d6RIzor7DkeXE/X/BkXqNoO5vdqCjHX5iCPEZ3WIjZIxPXurSu4+qXmKTh0UMGd0APs1orE/QWteAQA9x4mqHIqG6UReEI0Z5vriImkZWmxBosJSJ41REVgNlGsQ6Af68/tmayjtaEH7uhciNJ+fV2p10Ds1gDKV0RJajLznHEwnuUKpJnUDNL4hbYAJC8hpcYjlRr+GSRKmYXMsiw4LjU9bUTglFSxWQKHJwjpO2kcA8RHoMIqVtoaxbl7z7xBUco4Qm1MD/xev6+FeTOEqEpNToMhb3QCF4hTQlSmVt4ohBCpBFKZLRIJpMog2DESEghOLY4g07Cwbbz+iV7Uq9UKvHIJe6p6DCwtr2B6Wt/batOGbelnNlZrYHNTX4sTCzilMmbKelJ225vwykTF3l7H5rIeJ+fOnUODdCvefPsdvP6Gxrm82nkZrY02Ll0R5j1OXZr3HixA3de0/I3mJCrUDcqUQKOiw5LRqoU4zWUCwHPeBa3i9fRqBk8SPvxbAP4KwL8HoAbg3wTwHz3io4/six4KzA5taL9Ne5LwYR+Af7W1tfV/AsDIyMgVALsAuCMjI5y8hToyVdBt9rgCsz9mBvgi5YDQStFltm0bB8gV7Pf7ufx6nRvOAg6GoN81rbsBUrRXNbpx944pvHJao5e67UMYr+qV3XcCrFMW+uCeE7C9svFUJibGMDqqV/e7d9ewa4d2O9Y3WgZf7/s9cJUDa5TyAWrR9sMAe/fqBFhrfb3QqAS47vzgNTP9fWFbyCMmabJOmlUqa9Qq8g8opGCIU+NnG81Iy7ZhUXITgkOSYIlXq5gKgZQu+mEfPjU4lRwbNSJVtSxH91IDeO+99/Dq2dcBAM3RUXQp5HI8F0JKDcaB9u4MBEJqfgsAQJKHNaoQImShQ2oUq0ITfsW9HOdg2bbpiNjc7Jh72W63oVA1ClWWYKYlOpUubt26AwCYnZ3FHIn4dtpd9BUw06cwwqsafQ4P0yaJ+fGnn+L1szosuHzlO3SWtQd17NYdHDhyBDVCpS4sLGHvPt07cea1s+hs6vG30e4adKxCAkEhCmfWQALZsvhT73nI7EmO2gawc2RkxIYOH/4SwEMA/wLAUegKxFMTmC1aUZotTTWlt1Okxi4sCiVHT35LOAODyqFSj5QSjuMYoRUZpYaH74233wKgH5zrlsFL+nattlrYv08TmbiTkwgK6Li1tTWsruoHWS5zpGlG28YMfNkRFsIwxOKiznHs378fXQIyXbhwHhcu6AFe9cpGbaper5pFpCQ8cK5p5QAQFDmjdksHaSnp7zJN89hdSmwEmzlvg+MMlHaTDLDELQiq2CR+Apk1cCEBswTGJ/XixxhMfiEIY8gC4cmdm7qSs+/gAVQoHu53unDLHrobOt/DwfKORykh06zWVqC5UzBhTZQm+j9SnY6ixCwKSZIYdKYQwpCXbLTbuEg5BT8K4cUlsxFMjI8ipPKwUh6OH9cpsfn5vbhxQ59/u72O0XrNLASOZRvB3lq5QDdvlfDdDa0A/nC5hV17NXfld9duYmF5N+7e02FCucxw++49/R23BkkozImpGSQmj8LAMii6WRTyrs9iTqqIHXtS+8XhA0nQX4YuO/5LOtYXAP4hgLMjIyNrAP5tAP/dUzjPoQ1taL+SPZH/sbW19Y8B/ONtf14HsONJjvtzlqapwdRrWrBBV6rI9Z+S1+C4rnGfLcs2rliapmBCwKEtaa3Tx+q6diW5sLXfDqBSaqBZ04myg2eaGD/QBABcvtnG3v37cZ8SRZPj44hoR+50Ouj1tMs8OTaJbodIUEsubt/5Dm+8oUOTU59/gpUV/dpx6vj6268BAGdfOISIXMlGc86IlZarY0RQmmX6wjxMgAIKFYPcxY4GQD2jo6MDgB9J33Fs27QBCyEAEqMpea7RgIhLDnjkg6sMQpyaYzuOg7W1FTpWgC+//BIA8MUXgXlG9Xodkd+HQ3tSkqSmRZtJhTSmsCZJ9X8gjchIX3+URIjjGHFM7eJpgiSrrEDlbrZSRgBnc3PT6EUCgB+GppJQBDxNTExgcVEnDQ8fPgzX0ViCQ4cOIer76HZ12Mg2U8wTw5JoCFRnyAsSMcqePm6QSHz4iQZCzcztQK3ZwMmXNMipUq7izl3dRHXr9j3MEUMWTyRsR4epHxQRlQAAIABJREFUMVfgBHkHZ0AW7mEQm6GDwbyh7EntN4No/GNsO3BlO/Y+K10xxpCSGAsDTKxm2dxceJrGCIM+Il+7gqurKwZFNrtjDp6rH/zc1CTKrmbidR0bFwj1tnf/EawsLhvXvNfrmgEahF3smtPfX1lZRUiAKSY3cfbsbuzctYveW8LSih6Ilmvj5k1N0X76ynWcPEmgIDGOFES+YnHIOM5Lh0Igk7XSZcBCqY4mdRLFSMlF5Zyju9kxCyvn3KAILZ73O6g0z0+kSZR3GTKOpMC5ODU1BUGVlPv378N19d29fOcSZog85DWhBW/1uQSI/Ah2protJTIueyYVQGFWGscGURlHARIS00mZRJwmCCmnESYx0pDOmTEok28CQHmLKInRpWdcr9dhWdwIvURxDIvu5eLSilkUV1ZWUC7rZxH5AQ4ePIjV87p34fTxaYRuxqUozKReWWtDWLp0vGf/Qbz82gUAQLv/Aqanpw3vBrM87Nmr812VRhN37jygc5tAm1C4JcdDyjPA2Q+demZqymzY+zC0oQ3t2dlz6SlYljWQGCt6DpwP0lRxKxfqsMmbcEoWJCFcXFGGEAy0UeClXS9haVGv2p31dUxPavxBmgRwqfvxxvXvsHe/xjwwxtBoNIx30Olx9NZ1Am10fAwrK3rV3zE3jcsXdXv2gWPHcPzESdPrv7y6avoCur2OcQtv3buH6xXtKWS7IkCty0jAsyoDKxB88rx7MatSABRGECzWsixUXcfcp263a6onaakESd2kjBWSo44DRq748soSupsdQ293+8Yalpd1Z+nMTIT7D3X1Zvm7JUyfPq3vy+im6Sr0wwgcDP1u5jkpxIXnme2KKpXbuCEI/yFThEkfPvWyhFFkWocZY4ZhSXFm2su1zB1Bxm0b5XI+LjzPMy32y8urpo9B3biN0yd1f8KFzz/DnZu38NUfdDi0vr4DO8gLEpwj8PXzOX3qJTxY1r0P/SDGRFljDnaOzZAKNiVHEwmHmLh6vRDjYzppGyYpGvVR+kyxO0AOgMHoxgHQidr0KXoKz+WiUJz4jDEIkQuMbn8vjnNMPCWOkSYKAbnyJccCty2ULV2uWlhaRECltzhJ4VDrc2u5j1uUSW82xyGJPyDotnH91k04NEHGxycwv0+Xnb7/3gYjDoerV69i1y6NenvQuYfXznxjJrpUCRokHx/FoXFfkzTFl19rHPyJF0+YmDwIAngl17TOyiSGTYM6Vjk6MFUS0sShzGTOLcsCSyVWiY349u3bBpE5NzOLuTldErVt29zX1tKiicmTJMKVy9/iyhVdmZmc/ALTgQb/3L91B2OTOmT64tAhjI/r6xofHTO4/3qthn6ni4QmNaTmJwD04pVTs4lC3iNGQjRzQRggiiJDoDPQtl0ovUgoU7FZbq2ajqxsocy+V6/X4VMlAmC4elXrP7506rRBt1pCgBcIbCYnJ7FGXJ47du42Jcl++DJmKGQcm90Fh0ByYSpRrzVw9aomXdm374AhhgnixOQRUiXRpbb8IvGMHtL5wqiUMq3sSikDhHoa9lwuCmmaDkz8AThv4bWW/cokwHqmLm45NkRCnIiOg8CPEVFJy49ClEp6F0mSBNdv3AYAvHD4CKan9c6wvLyM1oqeIGkQQIGjUm0CACanp3Ge4s4TJ49j4YE+VrPZwh+o6WrP/C5Yqxw+EXYIKDgke+aVS2ZHTxKJl89oinDmuWbiRFEAi7O8QYlrJCIApDLJuQXACo0yzEjQcc7BlTJeUMk+iLV5PcBRsrFBNfs4Dgf0KBYeag9qZeUS2hsbKBMt+tT4BGaIn2Lnzp1gdYLs7nQBYiHq+V14xAfR7XbhWNYA52NAEz4K8oSkZdnm98MwNJPZD3uI4xiKMBTaMyjkmOiKEykN6i+KIpODEUKACW6ec7PRMItCtVKHQ5DWBw8eICZFp9d6ARq1iilR7pufQjvVQrhra2sYp7HxcGEMp85owpX19Tb8Fe01ttodjDdHMTNNOXieL7hgwuRU4iCGS/cpTdMB5Wk91mnKbtc3wdOzYU5haEMb2oA9l57C9tgqTdMfgJmAQV4/IYRh9+n1eiansL7eRr/XRr+vMe5ltwSfqhTV2iheOKZj4tWHC1ha0rHy7dv3MJu13a6vYmZuN8bHtZvpBz7OvPYqAKC9EWBmh95Brl9bQefLNp3LHg2gKulzLldc03o9OTmJNvX9N906PKJg+/zceTSqOj7thwEcy4agkCUIgrzP3nWMlmEKBUG08GWvbnYTzykhjHpm56w3G3CzGJvl+Zl+t2co5K5fuY4Kncv07DSOze/C2WkdDqVxZOjinUoFiZUJsKQDNGkRlRArXhnrG+toUO+BnyQGbeg4eaOSZArCpdJzygwoCaGmbOP0O45VQpvCH2FbkKQKppIcsOUHAQKqZJTLutqSXf+1a9dwcL+uBLS7HRNyKZV/pl6vw+I5MK4z3sPueZ2jaIuOueeRauCrb3TuiDll7NqvBXtOzO8dABj5/dCUThkT5jwtu4Qk6+hi5n8yjqrcI8azs+dyUXiU/ViXZEhxK+dFQpZBKHSjmWsN2FygSniEKAixsqg1AMrlGsam9Hd2ze8zIcLMjl04duwYHpIQabqpME0Sbq1WCxPU3PLCi0fxzn2NYGMn25gcn8DN27foNx2Uq3pSCMaxa06XKmWQwCJYbOnrC/jg3Q/oAi10+z1IVaLvGN5UrK+vmwRcv9/H4SMvAAB8PwSnPEiv34EShg4AiikoxzAzgtNgrYzWUKZQoPHW2Tx2lwqlUgnJDr0ohP4kGNMJUSEEUCBULQ7ibIFe7CyhXq1haVXnNEZHR01OI45T1Jp1OmcfHfr77NwsFhcX6TMraDSa8KnE6KsQPMi6IVMD33Y8z4R5bzsO0sJU8jzP5BuyhB8A2AXi2X63Z1CPmJ4G59xodfSDCO2uXryPHD6KtbZ+3Y3ya37x6FEo4rlQSkGmzCxkliNQnH4ZzLzY8ZltdL+2DcOHoQ1taAP2u/EUMtvuMVhW1sOfM+EyKSCYdv2ExWBZwiTtGFcIMuUm4aBMCcTFxUVTKrvw5TnsJUz70UN74Pf7kFwfb/feA3A9ctkrNbMDvPnG23C4TlLN8Wk4jmNKdGVPYJbCDN8P4RKohrGcDfnevQe4S8nINE6QygRRlIORskx+MdF46PBhrK9r9390dBwhcS5YFkfAFRJkojGFxilI00QkOIdF7rsDaZJeoR8ANkOJdljGucm+1+t1KKrsAECa5KhJYWd08RI9v2+qL+2Ol+s8lkqwMwEfKbHa0iGH7TimehCnCVzXRRRt0vF8c5/CIEQmozQ+Po5rL31C1+ygTKFUGAaQUmJ0VPNeTI2PYZNQrI3mKFqtFt3/vKq11trAzh2zhhVrbaNtWL1W19ZRoyrFS0dP4esrWgogSWN45czr9AFWGqiO5IAzYa5Nl8fz+5TbU2xu+Bn73S0K2ysRmYqSlBJSZqg9YWrZjDHIVBlR0yRJTEmwvdE2g00qDoe6B8+dP2/i3hQcS611TM3qbrrV1pJxK2d37cat67oEdfiFF7CbGIMnPBcyTVG+rN1nYZdQCvVgO378pHGl11cX4FMtf25mCmfOaxRlyfbgVqo5r6JKtdwYtKRck3AG7Xbb8Dysra1BkIpTIBPEZdsQmAAwSlKCcRO6q1QiJkSkVy6ZLsfR0VHYXJgSJQPg0T0LgwCCFgLbLcGPKT+ggF5Hx91BEGCl30O1ps//4cKCOc/m6Cj6fVJLqpTNc2qtr5nXlmUNoFgZuImfpJSwMjyCZSEMXzDPWVFOIWteisOckyNbPCcmpkxD1HfffYflZX2NMzNzaK1tYJKeYckrIbIJQi4lDhzUuQOFFIcP69frrVVMUIVHcYEwyWnnFPiAanbGxq22sWz/tD2b6TsMH4Y2tKEN2HPpKfyc7sNgZYJ601NpREI0LVimbqSQplJntwE4dhndjk4ucctFi1SlZuZ2IKL25o12x+w2nX4XqbARU8a72hzD6ZO6tv31l+fR7RM+v+ebBGCp4mD54SJGibatnCQYG9c7yp5X53HnNrEdle6gs6y/s2NuN77raVDNmTOvQggLccaBIGwTJqWBMomysYkJLFMyr+KVDaIvCAIkvcD8W1gs1yVkEsIwHCkogspFQR8u4SdUGKPd3UCVmJOSKDaIPs45eAavixL4xBNQ8lxIquqsr6/i4eICbtzULcaffXEe9dGm/lzZQ5hkicI8Aej7vtlZS6USVCOnV9MgNUJ88rwydefOHUwTM3Kj0cAysSNxbgGpNIpX3famCZ/u3buHa1d0+HD0yFEcPKxp+nbtnIewGBok1LLZXUPs6fsn+SY+/VSf/8TMLI6f1tiS6R0NBL72juJUgjn1nPWbCRNa6vM17pmh48uujx7Gr2bP5aKw3X6K3dnwGTDLgJcAXoDPAhwCgibI5uamOV61WkGzqePGXq9jaLKSNM88S8UwPjVrFJ1VKHH+gh5I6xsrBoiysdnB9MmT+rjjJTyILsCm2NF1y9izSxOoTE8eR4tgsq2FEFY7q+klWCSpu0qlgm4nMJNHcYE+oeDq1bJROArjGJWK/v04zHkkGWOwhA2qaMJK8spAksRIM2o3MCO4wtPElOpsy8b69w+x8P0i3ZsevAyRR4rUgKYoL1Gp88HiAkRJozNvfXIX691N3CDOzCNHjsBx9QKZJsqgCIMgMGFarcLR7+vzVyok5GNkfjOrJNi2Y3IKV69ew3nKD+zcNW9ChCSKYdWqpgwaBIEJX+7euY8mTfylpRXsmr+rn1k9xuzsLD67RZRukYfdM3sAEGs3DUHf93H1si5J2l4Z83s1kGliahp+bBl+B6VUQYaPGzEexpgZFxJqUAaPngro3Wdlw/BhaEMb2oD9LjyFn0rM5C4mTDIHhSQPUwqMC5OEq9dGYdmZhFu+u1YqNfSDnjlm1l7NuAOFFIvU+rzw8C7279FJx7X1tqkqLC4uotXSochqeBeTwsL9exq3sGNuNxqH9e40Wh81iU7Xc2Av63W73+/CWmHmWHapguzxRXFsWH57fs+4qCXbyoFIgW8ShUtLSxh1ash2GwYYMBeTSjO5QrMdZTtYmiRGwq21vAL5SopZEnoZa07oigS0wK3f0yFDueQioKSha9l4sKA9C3hlfHXxG4wRc1O1WjWVEUCZ5O7S0pJ5TnEcG2+AKRCfQs7uXBSjySDfGxsbWi8BgxJyY6NjqNdrpuKxsbqKxh7d+rxn905cvabhy6+dfQOH6L76oYazbxAeYffRo1juaDDaxHgFFnlHrufA9/U48SoVrCzpaw6CAF5jRx6y2faApJ2BMysBxvKx+aNTVOXVtKdtz+Wi8FPhwvYFIuMWSFNpCFeEsHNBVIu6CePcfcuITcrlCrqEdOz5fRO3lkol80BTJpCmEk3SmVx4eB91et1rN5CxBHai1JQxb+E7xHFsJv/y8jL+8G0OeGqv0WAbG0OLa5dXpanp///2229x/OTLKFdqdG0q5zqwLXOd3BJIKHwq3re52VmsXN9A5OsBK6VEhdz8crmcURDo6gb1JKggRI2axniniZJtIyLx1I3uukH0xXGMiOStwzCET2I5bqWM3Ts1KGt2fhcm574cmPyZwlGz2TSAoW5709yjXq8Hx6YTYxyplPkiwZg5VpwkSFlehs7+7vs+PC9X64rDCA0qNwshDDDq6NGjuLSqF2/LsnD1qi4vbmx+jT+8Q+cK4IsvL4BDl5iXll8yXabLy8twPWquW1iARX0U7cuXISpTmJjQYcrs7KwZJ45TMpUVPdGLak/ZxH/EVFWFvz1Fn38YPgxtaEMbsOfSU/gp+4EXQWIeogAa0WzG5K4yEAdBRm0FKEoadv0NqELat2RARXm3WpUFkAyI6fgHdu+FiKkDk1fAJDEfyRQ79ugOua+DNdgWx/fLOok1MT4Ly9XHfvj9KiTpK1hWDaMTunqw3FqDQ67svYeL+BQKPoUzNbdsuBVYFMHJ7kEUw6GklV2tGNk8t1KG/eJBPLx5BwCQtjsIW9o78VYjtCiJarklxFko0eNo36fejVWJjShETGIk5WYVrKK9honJcYSh3umCIEBA3afMstEc0wnEsWodLmxEmyTGEkeoEht06od5G3K/byjXGFMIyZvjooYokeiGmbiNQJiRnXILa0QI+0WUokrJ4bW1DYyO6tdexcXqyiKERx5VhWOto3/zxu1F7H3hFADg8MEDOHlC64EceOMMkhuX0CNNh4nmh2iM6te75+chbO0dHJACsdRjo9OLTOv0tWs3sNJaRkq0aSlsCOL6EJZTwCzAKJCrn5CXV89wO//dLQo/Zo8qYz6O/dx3wjiGrmboB+h5nml2LXll2IR0rNQasAWBZ+oNrK0sGnTb2toaWAa4cWwjhJpES4Zj0LFdI1A7NTUF59vLOHn8BADdL5ASG3GtWjaNN1IW1J6UZiAGNJ1apVLBJDU0LeBGPinjGMcIvBOkMaJMuFYIw77sChsqjuAR5b2yGFY7GuTTCwP45ErHcWzo0Cq1KpoU39dG60jA0OvpkEM4tlk8wihCh/4eRQW9y0KpMUo0pXsmc9/Z7MGiZi0muAkFuCVwj9iTmRCYpuvd3NzE1NQMOG0MbrVmaN96vR4WFnTj2/zt2/jge533+fCjj3D8xItYuUb9GhNH8MGHWkr+wMEXUCXeiKSdK39NTE5ik/Irx44dhVt+2YR5YZi3pUspB/ILRi/yGVG4/5z97K+OjIx8Cc1z3iPNSIyMjHgA/hmAJoANAC9ubW396xGtFPvfADgIIAZwamtra+HZnPofb4+LFHvUQvBjOAgmOISwDX+g5ZTQJe7CKElQqVMcW3JRKxNnQqWKfhRjhWLiZq2GlWUdx774yml8fVGXNDud26YBJ+oAlbqe1G65itOnz8Ajhp5ue9OoGkklENKkTGSKMpXdhBB5SVYqCG5jenoWAFA9ehRLRDe+1tlEmXbqg0cOY4ryALAEVo7pXbN5pobgdB/RvP6dKzcuo0M4hTjOSVTdWsWU/Sr1munEjJWNRKZIs+VTCnSp3JgkiclPBHF/gMY86x5U3IJkEpuZR1MqQVDuYHFlFbcz3olEYpUWsmZjFAtLJBU4MwXLspExdXbam2iQRxH6FvYf0jwRN65egaKk84EDh7C8tIou3UO3VMHZnsZAfFAfxZtvvQMAeOnsW0CYUc9HZoI36h6CMBxoxMsWggyhmV1ntlj8qRaFx9k6vwJwYNvf3gLwz0lE9p/TvwGtEPV36b+X8ZQ1JIc2tKE9e/vZpWhra+vuyMhIc9uf/wrAHnr9TwHcgdZ7+CsAX29tbW0BeDAyMuKOjIz82dbW1t88rRP+Ne0HnHiPMMUZYiVNKGDZNkpE4ea6LmoNAu/cv43zX2nwztyub1CpfoT3H2imX2dvGV1qIlpZeIDllv7+7olpfHtZ905YrpeHApYNnOBYphKnaztQRAW+2Qsgsl2HSYDp3Vw4wsi6p5CoeBX0OrqhqNIcRX1Gu9bVKMRqqMurF92riC/pXWtychLdrnaF5+fnIZMY7U39+/cWliG71O5rczSn8lJjxrPAatyIt6SBD2YJ0yAVxQVWpSiET6FQkiQFt5ohorKlnwRgihslKyUE1jY3AABrQQBGXJoPl1ZQIi1MxSz4VC1JEwWZAgG58kmcwBvVz+ngwUO4S0hL2/OMu7+6psubp19+CQCwtDyOvdN6r5zYO4dPzmkg1rkLJXx9UT8zr1wzilCdXneA98O2bTO24jge4BjNcldpgdL917Rf6p/8O9lE39ra+puRkZEK/f3PAfxvhc9lArO/6UWh2ESV/ftxzbJLCOPIcBP4YQRQci9OU6y2dEnxyrWbYEQ3P9Zo4PU33sJn33wFADh07Sa+/17HvkePvQgJPXhrjTo6PU3hVobALGEpVtsb+Kh0DmNjurx1+MBBo5XgBwlqFT3AJRR6PT2oHWkZKLQQAglP9OICzQs4Pa+xFUG3B++QVr+ScynsPfozm+BgVB5c3NjA6tpKrpBkC4wRH4VMY/DZPCGraIglUkJlEgbcHoidwyQ2Ck1hHCGm5rRUygwyoen6iR49lDF6PR8N6nLshxEWCa3YWt/EnXs6YvVjiZTKdi634JT0MGXCAZMMo40mAMArjWN+t77+OIzx5pta9u3evXu4/0CHVbOzs1AADtD5LLc28eY77+nnsTaLlTU9+c9fuGJ4PUtlz5RaeSJRLpcHlLINVoaxR+qW/KnsaecwRx7xt6HA7NCG9hzZL/UU/o8sLBgZGfkzAD36+yaAf7fwuWcmMPu07ZdUJgC9s8lUGVc2iSUcoV+XbAecafd534HDEFLvhr12C9MzO3Dixh0AwNEXX4TnaQq3+/ffw+qc3inGv/kW7xBdvFcpw6WGqu5qH1e++AbH7mhS2V6nhyuXNMjGVgpRVt4KQzDyOmybERU8IJVEgthsCbFKwcmVR7mEcapEhN0AISUQWRgaxuHEYvDGJ1DZqY83fqACz9JJS39zDF0KZRIlC0kzASsDH3GGKEoRUcY/igIEdG1xHBsBn1QpUxJmYDmFqWXBcktYWtV9DUsbG7i3qF/fvv8Qa21CVJZrsIjpKAEHszKKewf9ftd4IVFfAjs0vd7y6jpmH2gWrfn5eaxSuPDB7XtQSsF9QVdm3nv/Y7z7gWbCOnTiDF44dkqfy0oLs2Vi5o4ScNLf9LwS+n3fjDPO+QAKsyiYnHkKf6pE44gO/3/mQzqncK1QffgnAP6vra2tD0dGRt4C4G1tbb05MjLyHwN4Fbr68B8AOLe1tfWzEnJ/8Rd/sXX9+vVffhV/QlM8BgMHI4rtKEpM7OsIDptyDUnYxa1rlwAA4w0XQsU4clhnuT/6+EODnFteXsaDBzqUcOIUyzTwJeeoj2ka9a++voT66BQOHtDaE5VKDUcO6te75mbRo+qHikPUK3qBYkjglYjNmDFw5QJZQ5Rbgk+YA6YAm0KhErPNomAJByFVFUKVIpaJUZLiSQIq+YOlEq1YL2Sc8wHeiixAS2UMPwwNInGz28tVo1NVmAz5Qp3EOYJxJewDguPiFQ1Hvnv/ITaId8KPU5RIa8Hvx3BdvSgH3R4OUIgwPVbHzqkmEl/vVzZP8PJLulnt/Hd3zP2vVOumOatSqcH1quYaFDg6Hb0XLi6tYJR4FirVqgkfk0IOIZEpBBvUK8nCpyIEW4icc8EIAj8lq9fr/8vW1tbcz33ucUqS/wN0UrE8MjKyCa0d+SGASyMjI38NrT799+jj16EXhDXokuQ/+EVnP7ShDe1PZo9TffhPf+Stv3zEZ7cA/OdPelLPkzHFkCYSKtE7nS0ccHKTXddFQECcWrWJuTnddPP93ZuYnqjj/n2dEAsmp/Huuxpw89ZbbyGKdLttvdaAQ4Cf75eWzA5SrlSgmMRXlzSe4c0338Hb770LALj4zTdQtOvY3IVNoJ6N1UVYpPcoXBtIpaYBAyCZRMnL9DFicJnhGYTpPYji1HyGCSANAzgZN0AYwkqzHhMfHmH/FWCadpRShj8gTXVDWsbqFMex0VhUSocaAMC4ZVS0Yt+HH1BiMmX4+KNzJnyIFRAm5FUIF2FEvAuVumlPLlcqaFO1ZaxRxvpmG7ummgCAu7euYGVF9zR89MrH+OADDUoqV+vGG3DcCvwwhk1ErHEiYZEXMrd7j2l0itIEKe3wA3wIGGzcAlDgVmADeIzMa9r+/V/L/tYgGp+VMaXVg7IsexE5GQWh6b6MogT1WhMA8O36JsYbdTBy7Y8cOYarl3QP/id37+Lrr7/WB79/Dw+Ic8BPEgSZArNK0O938NHHurf/zZjhrfc0eGbn3A5Y1PizvrKAtK0HWHN0DEmiY+0gjlAtuWC0eCVKIiXkZLnkGpq2uBOgQnwQsGwoyjtwlepSWwYmAiDo3CwlEWQoSCvvRo2TBJzloBwpYQZ/EkuEBDgSlm3UjtbW28iGaBIpLFKj0qkPP0EYR+Z+SG6DO5lYrgNFOZ208CySOEWjpu9LvVnDeN3DzTu6oenE8aNwBRGbOCWsUyckEyV4VElIUgUwG7D0seMwMLRvDDrsoS8VJrMclLPbltcvLhBFPsY/1WKQ2bAhamhDG9qADT2FJzROdXCzzjOYHUENcGhxlGjXnZmew+rqOmpV/e9Xz7wBdkAzLy08XDYsxf5KhIC0KKO+j82u/vtGew2jkzN4+WUtfvr52CRc0o2IpUKfduCZ3fPwCWDkJwEiYmcaH2ui2+vBITyDVytDZRgGLuATfLhRrUGSNFupVEJK5K6pZABjhvdZcQ6eMU9ZAh4IfIOcm8G2cm2DfuzD930kBGbyoxCK7lm3F2KzRe3eyoJPPA0LSyt46S2N2Yi8KlJpg5EXZlk2QN6FBAdkRifHICgUKXkC7bZOgL7yyiv49stzcMukv8gYaoSzOHbptNGCDPwQfdIVLXt1SJUipnMWJddcj2LFaVRsYuJgP9HU9Fu14aLwhMbU9kGBnPyi0MqmANPHcPy1N3D9qy/w/UONHDx2/BTOvKpLX6dO38HDXTr77Z/7GAcPahHXL7/+ypSqUpXAcSw4RL9eqdfwcFHnJ9y9VUOB1vED00S1srqMA3t1H8PSwkMcnJ/H999/DwCQFjcdhH6vb/gnucqrB9wSYFmuItVqzmZScA5GpTcZc9OQZVs5Y3SslCEPkVKHU2HGh5AILFPvh+V5sBx9/qlkuEDowIuXriAiFz1J9XlxWhQgOFS2OLN8UDMmTIjCLIGgpxeYS1e+g2dXEUK/V2uOGlWuy699h9EmVRJqdQRUSZKMIZUwfR12yYIsSD2bV0VR6F+RV/Fp2jB8GNrQhjZgQ0/hiY2DqVzjQ6rcQWA83yqYZHCJRHVjeQXVWgOzs7rfYH1jFcdOak/hjTdfR5QJu+zZjc/PnwUATIxPYW1Dhw+NRgNpmmJ2Tn8/lgqvvPokI+BjAAAgAElEQVQ6AGC1tYENatetlFxIcvktr4Y2MUsnzMb1u3cxOztLVyANHqFerhnatVTCJCBtYUNQhtyBo5OFLO9GTBWxVheOJaoir3DI2CTdpFQIoxgdYljq9EKUyX3vbHTgcu3dvPPuu/h2mXAatguLxGdSXgLnHIpnNf98B2cQBn/BwVDOqieBj4kpjfO4evUalhfu4NzHOjn7cHEFn37yIQDAbRyCogOkiYLMeBoUg+2WDJw9jmMwXpB1e0bUaH8KGy4KT8EUyyNJxeQjCTBSzhGS9iG3HczO78Ui9epPz+3CCpXXrly7hUuXNMhpIUpxlJBya2urppIxMT6FsckpTJJm5XKri+k5nVN4972P0SC6+PXVFqplIlZpTuDCRd2AdeTAAUAFWKTf3Dkza/gEuCuMqhMAE36AW+CkqsUhwRRDYhiIuam+pIU+kiRKTfghhI2YFrue76PbX0S3q935IJVQ5NqHloPDxzRPRJhyUHURwrJzgVbBoRjLwxeljMIS4wo8E2VVKVLKiVQ8DxtrGwCAjdUlnPv4fbgehUk8gaJy7WuvvYGIuB91CdI29yKJ5UA4lZGgSPzYRMrvI8OvytL+RDZcFJ7YuH7aWT2e6bq/MYp1OZMo1zX8lUuFjc0OhJFdc4xWQLuzhrfffR8A0NlYw4WjGlZb++YrXKFY+93338PX317EVUL0lSoNXL2hEZFM2OjTTm17FQRU6gvSGDv3UH7i0lW8dOogVEJ8Ap0epombIezFcGgiJKmEzLQeFCCyVEksAakMAUycpAgp3xFIBY8WkjCKYTvEGWA7SFLiXuz76Ae+YVLqRgk2etoL+vj8BWwG5Gk4FShCBLbD2HAzyDgegAkzxmBlkGEuDC+nlNLoWcRRavgRvZLA1Wu3cI9KkocO7sP3Sy065wQR3TPbLcEm+LofhkiVhBCZCjQbeM6GSVEN5hKex/j8eTznoQ1taM/Qhp7CE5rBwpvlVQ6+l2XcFUc/0CXBoB9iotkAaOdjTGG1pRF1jcYoIuIlrDfG8Orrmr+m8fY7uBvp73slF+32H7Bnzx7978YUHi7r7Plmr2VOJghi1KnsGfsKFoGP9h05hn2njuDGxcsAgCiW8ImKfbzWMNTpigt0iEPBtktgkrgD4wQ8zRmC0lRljJeaXr2wg8uMhj4M0CIWpHang95qgIU1XXHY6Pfx+VcavBUzDoeqH+ubPmqjuhLgljz4pLdpsRRaPrKY6s/yCxKMvDMGZijolJRGOBipjS/Of4rwrM7XfPH5ORw9dpoemoUSAaEUU0b5ClwjVLO8SJiEjwcyekaMy8/SHqsh6lnb89wQJSSHZERoAiDl0iwUkss8fFDcuJVlx4Pf60OwLCZO4ZBckx/0zWuRKjCabpsbLXikZr26sozp2RmDrpPcw5HjGrNQHZtBFOdU9pkatWdbCP0Mcu3CsnvgNMnKiYTs6AVn387dhuSjF0aGLj2OE1QoLBApgwWFlHIKfhrCp27MTtBHlY7LmDLJwJXWMm7euwMAWNtsY6G1gu9u3gIA3Lj/ABEtHqES6FEiwauPI6G/B2EKh2DFVtKlCUkLcEESkHNu6PsFOBRJN7mlklGuSqIA09MTePXMabrnXYw2dGgX9IRpYpJMl38BzSMZpxFCWrDdSvmRDUs/CB8Ki8KzJFt9HHvchqjnZO0a2tCG9mvZ7z58+DkAyc+t3j/3fsoHS1FCFm6pfPTtDUMf3GIGxQdwhASE4XYZSXbOlm0y+aFQqNWJDdmehFWvm/dOnjiOCrULszSGS25tkvqwMxSikmDUzLPWS1FzBTiVC0XZgUvf/z7ow6MwZ6JaRkToxjJXYFQ9EYJBQuUU5FEEScjDCufgRGHGbAsdAg+tttpYXNM8BVfvfI93b9/GrYe6CazcbEAqEteBMucsoxgW3aMaZxCRbk6SUoFLabwQQACEXITgkBk3AZQRtolZAp8QnVPjY7h+5wZ27NbIxYP79xraNZQ5EuQsy9k9TqnhzckIcsMUYjto7RH2p/YOfon97heF59miKMqlzsaaBtHYaDSwvr5u+A+vXr2KF6lKARRZq/PyIGN5V54QDGESgISc0A678Jq6+pBEEQIqSfadXMUqiWMDZQ6CEEEc5XE8ZxCkQK0YjOr0yvoGvl/RDMq37t/Glxd1heTctevYjGKjkBSmEqnppsyLd0rq0iOgQwGYBqLtmACeX/M2xu5MQyFNU9PJ2Gq1UC6XMT4+TrdJmJCpG4R4FOt3sdKR/f/jsoM/b/YcrmNDG9rQnqUNPYXfiD2KDs517QHBkIx5qOf3MTo6aliPW60W+DtZE1DuKWjPIpcuZ8jEdiWE5cAh1mMhU9wm0ZQTRw7jHiV9gyBAmSoWY80GBJ2jr0Jw1zPue6/nm/MMkxhdkn/vhQGuP9BYgA8++xxf3tPhQ2I5KJVr6BMeQQnLSLk/jr+9fYcugpe4GjxE1vuQeQkAUKlUIDhw5swZAMDlb79Fr6fDpIx09VG/81Pn8Huyv7WLwuPGellO4k8RG/q+P0D3nQFpXKE7/mrEpXjr5h0zQRnLkXZFU5KZi+EKSCRHQrBnLlNYxCt47fZ92FTVePfTz3DyxaMAgLtLy6jRhPF9H47j5OKtUWjQhe12G12Sszt37n0kp88DAL7p9mARghDCQiIVhK3BWElanGDMlBp54TXABvJDKXLkIpBPUv3/OeVZEZGYlVqrnoswCMx7axsbqFMZFI9YnLf/Rvb6l/J6/tbt93lVQxva0H6x/a30FH7Jrs/Ur+8tOI5jJM4rtWpObhprTL5NwJw1AgEBtJuZmn0uR8ZQFLbRiTlB4YNKY1PnZ3YJDoF3Trz+BkDUau999An27N5Nx+XmP0D3MmwQMOnGjRu4OL8HAHBeCEjyQAQsBNRNxJQGNSUhsS05zuDu9COeedFj19eShUyPCCfIMsxBGIYoEyNVp9OBJYTBg7z88su4dUtjJoIofKRE4N+mROMQvPSbNmkmnpQy50uMErQ7m/BokENxnH3rbfOtLHqQYAY8VZxEACCFMn0BUiYmX8BlCkaDvVYto0vKS0mUVyIiP9AgoYypOMm5B8MwhM9JzCVNEVF/BBQHI5ZjziyoovhJkk+uImVNMTzQ50fnywYp0mXBlS/+fbvAT5UQpHHga4Umem9ubgbvvK0JXDJx29+jPU025y/xQ4HZfwLgPwGQAvhfAfyDra2tgN77RwD+GsD/B+C1ra2t//EXX8XfInt0fMpyjsM4NskybglUq1V0Oxo38Omnn+YTQeYS5gow26smDc1/iykOhUxfwEIUZ3X4XEnq4UoLE5O6bMfDCBEh+BJLt04TcFIzJ9HveCXXNEclUADxJVqWY3ICcZwAUkIQ8pCxgeUKjOr/TMHkQbQjQxdAi4DZtR/jvtq2bbAInGv69MxzWFlpaWUv/FDs9VGvtx/792aPc1Vf4YcCs/8TgKmtra1pAC0A/wgARkZGJgEcA/Dv03c+HxkZ+TtP7WyHNrShPXP7RQKzW1tbNwv/fADgKL3+KwDfbm1t/T8A/tXIyMgagB0A/uencra/QduOmPyleYdHfU8muZhIqVRClqS3bQvtdhsXL2rBWtv1wGgXl6lCQmEBkzIjXNb/LsTDQRiiQhyNvu8b6nIFaVqavXoVGyQL3+12DU2b45a0RiX9juOVjQBOJ4zBiSZOMG4o1jOyEoDifMXN4FNF3gHGkYUJjOcVk4FNOX28m1ykTk/TFNyoMKWwhAWf8jWcc7z6qlbo+uSTj7ZVMn54zN+7PY1E42kA/4xe/zn0IpFZJjD73NrPDYxs4GXNMXGUu/lMcFMGcxzHvLZtG5xzRElsjiPJ5Y6iyHzfKeWJRsdxYNMCMT4+jj3z+xDTjBfCNsQoSinDGanPjWDOaQopE/P3kiUQEympxTgUNTfp7+tzSlJleBBr9Wae32AMbrmM4vApEe+CSBLEjLgXeU7uWlw8BSEtzd+YMJJ2xQ9LVigvFhYOwWxAFRKPxXyDHCzHFid4dv+klJAWoIhhqlqt4v33NYdFscnJtnOciOu6CMM8CZkkyZ9M1u1Z2xMteyMjI/8ldFbov8/+9IiPDQVmhza058h+8VI3MjLyn0EnIP9yKy9hPLcCs4+yx0ksKaXQ7/dNJcDzPLO7pwUtwTAMTa9CEARIkgSWY5vjGvWnctm87ve7pvehUq6BU3fPi0ePI4WCT/wAtqUKCkPMtHEzllcftmfioVKzI6jcS0chtzfgsxevvehNgD5vmpMEB5cZupAZTkOlimAjBc5YXkpkqnAu24FXOaPVdnucUC27bs45WLazS67vEzVRdfo+rt+6DQDYs3MWY6TKtbq6qkVvoJ+Z4zjo9TQwqwiK+r3ZL1oURkZGDgD4hwD+w62trbjw1ncALo6MjHwCoAbg7wL4/onP8jdg2xeEYua7VquZZqVOp2MmqOM4htG1CFOWUkLYlinxdTod816jkZOcjI9N4voNXar9/9u7/hhJjur8VdFuRpNhspkMm/WybJYNGLQ6H+ZkbRAhCDmKBSdyOMRCRJEAGcmyguUghBzH8AeRIDKO40TWJbEcY5mLMChxQDnZjnUQJzlZ5CDH5Wwfx3Ecq81mOQ+bYTQZj8eddlOdP6rq1aue7tnZ893OYPqTVjvT0z9eV1e/er/fvn2ruPV2XWj02LFjmGPNT7dabRJzNVPgNBoGwZ+0TKC4sYEXm4V7wSXYi6eCHFXKvrDu5FJKVG3hU935Qe+pItgWs7pbEqiLtBcpCEUhzxJyB8zAMZwicBdmkiTEcHu9Ho4c0WayzXOncd11ulnv0tISqRP1eh3dbpfGOQxDeuYvN1xog9k/AvBKAF8TQgDAsTRNb0rT9DtCiL8DcBp6xnw0TdOfXCriS5QocfFxoQ1mPz9i/88C+OxLIepiIm9VGbdJx5B0wI+zq5uUaLVatG+j0aDVJIoiqv4bRRGpGGEYotvv0So0NzdHxx8+fBjXXqtb1O+/7gBJE/tW30Z+9mZzDufPn4c0j69er1O3JSUVdajivnxNsu9z9+7PegcCCVaZHjFLSR5KRKLDE7dQBwoVU0ciCEDNYBLpl0OPs+eiD7x8mfIrF9Enl+S1LWxKNhSSxJVPS5SigC0ZBNgy5eZDFeHAgQMAgKNHj5L612630Ww2S+/DyxVch84i7yUCivdXSmFpaQkt47rr9XqUxNTr9ZCYaL1ms4m2mXhLS0tAIHHfffcBAFZXV3HHHbrvQL1exwMPPAAAmF9cplZnS0tLWDd9H8IwRL024zpGxeyFHVJzPE4GwFnoc+81US5GSLoSckpHRenrZRhKlvEG1A8hQWg6R+kuTpYpBYBKyBuStXdbpiST/BeQ14uw18neI50r5yW2aoMdhyAIvcjRt5tw7uPHj+Ntb9NdtWZmZtDpdCjUnKJJX4Z4+bO9EiVK7Ag/k5ICwAxr26gS2/3e73ZRDUNadSqVChkKB4MBZkxfRxubAOhVZ/+B95Bx8cyZM9TTAEEAZVajOI5JGtjacmnUKrGlwmw9gxZdx+fyrk2JTuCxxshEW+IDLinY+w0ozBhKQSVMfbCGQla/QP+UUQVs5yZI2HZNUrnAAqUiqERCyfxqyJ5NNGf8swlQhZAJgOFrhGEIpRSpb1K65C4pJVZWdCepI0eO4OjRowCAu+66C0mS4E1v0tWl2+32yzYh6meWKRRh1IPOy55rNpue65GfY8/evTh95jTtd8sttwAA9u/fjzAMyUUZRZGzQ7C6gFGUoGYqKAdBgIGJGmy1WlhZ2YvBQKssi8tLxGA4jTyQJwh8dhErlyDlyrP49yalJJtALANIfj4E1AxFsnvWjWetlV/S55jZHRIZQsqAGs56gUxgjIA9C27nUEHWllAg8LJMxpAxbusCjmN3fdt2bmurQ6pgs9nEvffqehC9ni7pbse50+mQveflhlJ9KFGihIdSUshgKGAph29yq/7mxgZWVlZIZUAQwKaBv1Up3H3nXQCAdrdD0kRY1Zl4NsgpDF2bdxXHLEW6T/QMBgNqfb6wsIDNzU0638C0UbNwMQvZnIL8+yyy4YcIKc2gAiAirUKZ1da2lEuQwIVQQ7n9bKSCUpLUFR3/EDuaYidFSAXS7SRAadx+KzYJv6FrsaTApZ4ocqHc9XqdDI6RSugM9XqdxqZSqeD663Vaz8LCAm666SZSLVZWVnD+fG5c3k89poIppKny4vItbJBLFrzAhRXdeeKLRRzHCE1pscFgQBbjJIk8cVtKPskC6qWok2jMy6okuQRnZmbQaJjOS1Lirvvvp8nz8ZtvRmxe3seePIaWKSSSqADVoGbOa14Y09Q0VgC1WJIh2QogI9g3TAEITPnl3iCCkqBuRVZH1veWMKYApitXMgzPeSw816XUpdEB/eImgROxXXyQQpwMiJsEUlK0okoUekmHndddjwIYpdQvu60/mSkfZ/MgYuWYRRCyOglJ4hWNUcrlbgD8np1XQULCBiEqpej5A0AYuOSsbpIQs93odDBrKk63ul0cvP8QnnxSNwU+ceIETE9e1OtVV0+i2yVa6vU64pjltyTwAtv4HOSRrxUzZ3dms7h4Xa+nosjK3r1Xpo8+epi+5/mC+ZYkccVHqtUqBoMBMQNeZCMMQ6r/V6vViLNrox9oH8AxE6UUPaB+P2ITT2JhToe8njx5ityLdxy8C1dffTXW19cBaF3TdodW0BGKmq4Qm5ubdA2llNHri+9ZxXHhxFDKhTbz9mVKKe9e7D7c5hHHMZLMNb1qRczoxgvHWnDGo++NxRIol7rEmTevR2C3k46fV4g1QxNnXKPqIyoVe79xAyI/Xl+bhUBTtGNE49ntdsnuE8gKBv0+GRoXFhZwy0268GujUcWxY8cBAFe8/vVUj2JzcxMzM+4Fr9cbNAdrtRqzHUUUNs1p8QvvboftmULZIapEiRIXhKlQH3RypeeIGtpDeb9KRCbnXyJBHCkSuWyMOgD0exFVQF5bW6NElziO0els0fm494Bz6kqlQqvGnj1X4YYbbgAAnHr6DHH2arVKzUUALV2Q67HRwNramqFrZkjEty657KqXJx3klTXnKypfrXlwTlFpMmSO57/ZBiwKbv3hEYiJUkiUcvUQMit3XkpxthIyR5FEQbRmjhuVsixlUHiu7HkoXouNUxRHlLo+M+Oe2cCkuduV/uTJk/j6Y7p8/fLyMg4e/Auibe3cGQC6lLwLioq86ty8/ibgnplSiuxT+tiLpxaMiylRH/amjz76KH3fLpSUi8JJkphaATY6zfc5W71tdnaWxPdarYaFBV0e/RvfOIrFxUXKWAyCAEeP6v4E9XodB+/RLqnV1VVKmqlUavRwB4l+gL0ee5DsRbTMYzCIPLuHUkyPZzRnxWouvmdfEHtM9p45uMjOEbMXhqsCYRgOqQOWZj7m2WM488mqCfaY3H4N9n+SeNuyNPPz5mUo8vGzOj2nsehc9jdnU4m97bWqcztWmBuZDMsAqkGIRdOg9v3vfz9m54ztKoo99TQIAqKJd/+anZ2ledrtdqmYDb/GxUCpPpQoUeKCMCXqg8M4CSedTsdzx3H30mAwcK6mKIK9xShKaIXp9Xo48bRubjq3sIj5hSV0TbelY8e+RVFsYbVKQS2PHHkcM6YV+uzsLHkibN4BqRzVqmfok6wKUpEInR/X50sNowx1HLw2QxD4ojTfR+Zsy7t+HrKJVuOoP9njx90/T33IqkRZWhRVsM4vvJo9jt9PrV6n/AbASaVJkiCKIjIw25wXADj5reO032c+8xnKaUmCiFSESqCDp+x+1arzWERRRHOmyubPpDA1TGEn2We1Wo1efCs6c/WB2wSk0ds3NzdJZZhbmCdV4qGHHkK9Xse6+d5qtSiKcP30WSwsae9Brx+RWrC2vk7XbzQa2NjYIHWi2+16GZMd0425Wq1SWK2elNkMTBdObD8nGSZS9DJx0byo7sMom0QWcU6HqQTu+onyi6wkzOKjsxGHn0URXQTLyEYwoqwtoch7wl/+PMaZPV/WM1E1naV5zYQoirTr1cynas09z7BWpSjIMJSU3Hb23GlSAR555BH0Ol3X3RpgXq4+zR+u5uo5xlSg3Dsx93wRX+VSfShRooSHqZAUTKGWsdFqtYjLzi8ueMkpzWaTSmYBwJzpUCSlxAc//GEAwK233ooHH3yQtsuKE+AHgxix0qv7TLOBM6d196V6s0EVgVQgEZjGqxsbG14JtlqtRjH1a2vrlOjU7/czq3Z+joL73QdfzbKrvxedyKSGrAGQn0vx4yV05WToVT+Ji2MQ8pC9vpU0pAzovDIpNnrya1Bg04jr0T3kSAT+MTI3nsJKl3lSzKAfe2K9RbVaRaVSJdWi3W6TOrq8vExduuYaTYpZiQZOXTh06BCuecc7PSMpJcEBJGlsbm5SwFMYZiRD7M4qPhXeB90h6si2+9nHPT8/i40N7RpaXJxHq+UeULvdxjXXXAMAuPPOOynkuFqtkjtpMBjgqquuAgCcXV9DvV4n66+CmyzdQd9r8GpFv/n5ebS7puBJdWYoHJnCmcOQJhGPOpQFrsih+81Mdi7uZq35JNoXeAU4giDwvA9SSioGw4Of7Dns9jwPgz6h72VITDgxjzTltEmV75a0//nLLnPu0dLCr2lpznoc7HYpFd1LGIZDY+PGwvduWfG/Ylr0xQNXno17huomSElv09sbtTqdp1qt4uy501RC75577nG0KdD809W8WUGaEeBPdhz1ofQ+lChR4oIwFZLClVdemT75pG4X0e12vdUpZnUKDh/WodDnz5+nFfzw4cO444478PDDDwMA2r0ucfq1tTW8aVkHLG1tbbFVu4qKCWqyq0nMVhgKP81a/60rm60wFTXsVcgT6/2V0Y8pyBq6inz7RWnRWc9GHoYs9OyaWQNekpNGPXRfgcylJ0kSSl7i8RN8Hy0B+NJNnqSQNaDa8GuYlnfZYLAsnQA86SAb85RHv5R8+7CXJa++g6em8f4UoW/MrFddqPunPvUpOmZpaYnmc7vdps8J6wti2wZaOuM49ip82dD6MAyZdFPx6nw0m82L00tyN3DZZW6w5ufnqQTZnr0r6Ha1WBVFEdkKTp8+TclNi69fxsH77vUmjx0IrhYkiRPbVeAnVMWJP5FsZh+flEq50h5clE6SYSt+vk0gPyjIfs7XiV868hgUAC/3gevXYNv9IiwZl2bmhfdPnm874OdS8GskFF6HMwubEzCIMuMHknmzXgrfwzAc4OS+82jJfDeoUgpghWFU7GwOLviJq1mBx7y3ogjzi0Z9+Kv7KML2qqv24ORxnTtx4403umuGFbJrzC8uYP3cGi14zWaTomWXl5ep3D9nBEmSeAxiXGyrPgghHhBCbAkhTuX89gkhRCqEaJrvQghxjxDinBDiaSHEvrEpKVGixFRgHEnhQQAHARziG4UQrwXwmwA22OZ3Q/d6eAOAXwXw1+b/SLz44osUbx7HMQWFHD9+kmrwX3vttSQdzC7Me2GhOh5B87d+v4/ewPVXsLcYQ5GXIQgCqk0Qx9pa7lZ+5v9XThwctt6b4xMFPoz6PPm81hm95JBBzWI4S46fF973nQQf5ao11sqeEd9JglABlVbjIrJdja1x0v4OmCCfvgv5zhoHOa2WuoDlK2RDqPPuxTaM8AylViULfINs3njpsZCMAl9lyIMNS/ckUpsurhIEio1fyI9z16zUqjQ3FRQ2zjvp+Jwpyvsnd96NG274IACtMlxtDOIbG+fRmG3SnNhsncfevXsBAGfPnkWj4bxc9l3qdrtUm4N75LbDOCXehxrMGvw5gFsB/CPb9l4Ah0zHqGNCiBkhxOVpmj476hpSvgLK+PviSGEQ6YFrNudw/fUfoP3OtzvsGDtZq4jjhF5ShQA2Oz6QwZDurXfKxsG7FzlJWLqyUnC9iyTAy4dZJpIZwiAnyMgiWw6MTxhbjyCQEmHg4uXHCeringkOrkrZ/bLHwd45YxQJf5HNc0mi2LOpZKMaE6ZyhdJVRs67/yE64BhgnEkXz7NpVExtiLyxkQjBX/bR9h3OPIoYEaV9efT4CFwvTAlitopdQ0Gh3XVu6YoMUDUp1o8deZzyHWKV4O677wGg0+6t6/yJJ57A4a98hVK3G40GMZXm3Cysv5zXiahWq+Qxs16PcXChHaIOAPhhmqZPZWIMXgPgv9n3TbNtJFNAmtJKI8MAkbmxxx9/nIyDfBL0+33SkWQQIMkkRHm1EZjRkl5KKNKXlbTlxs2ETfhKH/sDxMJn7bxLMpNklC+ZaM64D1XsfPujovDoGjl2h7yy7aMQFHVfUqyFG9vuJUTlFE71YhVYfYe8OIk8d6TrTp0whh8O1YrQxIxvexll1/B/cy9/Hq15xlw/7oIfn6HXfG42Z7G5qQXrSqOBcxvr9Hus9Eq+vLCI9Y7eriRo1b/++uvxwKFDJEXff//9uP322wEAJ48fx+233gZAGy0tIzDGRQAXWVLIQghRBfBJANfm/ZyzrbDBLIAbAeA1r1nYKRklSpS4RBjLJWnUh0fSNN0jhLgSwD8DsP6SBegmsqsA/hjAv6Zp+iVz3PcAvHM79eHNb35L+sTXdZmr2kwVllfdeOONxOlanTarWdAnMSmKYy94KAxDSmKqVCpk4da6KhdLfQnCqi9DK8JQw1ML25HJT2fy7AOZI4Z0arY65qk5SvornRfUM6Qjj145s/twl2D2mnyb256JIMwR0e0x20k6WXhjnqhCScEi7jvbTJZ+T62Ro12d+YFd3reMNOBfk1f7cuqbX0Gb77/V75HHodVqefO5boLvtra2KLCu19liiXcx5poNCtLLlh1cntcL6549e6iBjVKK3JZbW1tYWVm5NC7JNE2fAUDxmUKIdQBXp2naFkIcBnCzEOLL0AbG/92OIQCAFILEm5W91+B97/uYuak+uWQGgwGFgiqlMLDJKGbi0MOrhFB9p89GkDAAAAiaSURBVJ9mC5ba43lRU60WOP3anyyWeeRnrtmXaBxxNvuykBoqpRebQfur4RoKRf+Lrj/Odu9+E5WrVsTZF12pwnsnA2SSf+2RKk6GEebZRLIvdNZ16Q4IyFC8nVrl7oGrAsPHqWT4eWTP4+j0XaKLS0teODxF0SqFnnEdNhoNnDqlHX31et07fuN8C42Gfslnas7d3mg06PPDDz9Mc2lubo5ckjspRz+OS/JLAP4dwBuFEJtCiI+M2P0xAGsAzgH4GwC/PzYlJUqUmAqM433IazDLf19in1MAH90pEfGLL+Lsmk4o2b9/PxkXV1dXqXruTGOGtvO89Eqlgk6n4zjibNMraGpFdL0aO6u4rZhMQSvbrCRFUYM7CTbKW/Xzzk2rY4akUat+nkEve03vmIyx0DuOmsJmXJpZEX2bJaWoZ+dQIBWvKiXdsyiSAFxnpxyVYeg6TmXIDdBC3nMZHXyVhadmqazU4fbpdHquPoPyS+VRRSaVuKpegwEqVduwR6JWq1GFryRJ0JzRLvp+v4++yTe54oor6J3p9/vk0l9dXR3rXvS1pgBh+Ep864QWmbZ6A9SMqHP06VMYGPdcIEP0zLtSDV0l3F5ngFBWAdvduRfT5E3ihDoLA9rdCBS8XHnuLW+yOGu8FhH15ziJhyPvzI/RCIbhFBZ9co8m3h+BbecqRm7cwQ5Qm6l7SUSez99mExbEUliaA+6u5TDPiUd7Sh4KLP1rFoVZ2+cFgF1LxyIAypWGH+P2eaRjriuTnl9+jUdyw7IwzJDZpZyO7/ph8ChKQKKSKKDvoiDtnAvg9pNQUKaDeIgAyljuEqntYFWb0auArbZTP2YMIzm9tklMpd+PceSoTh84furs9oNElJYoUaIEw1RICs899xwZSlZWVnDWVkBuzJCo2O12XS56gQELMBy/UJQsxoWstnQ9dvyQlT9HgrhY134pGAwGQ9Z4izyRfVSF5nEDrIpUnJ8FjPIY+arMhZ0/r4RbvV7HmTO6srStOjYOpoIpPP/882SVba93qIUa4CK0sg1cSXAdMYpKqcJRLrK+j5qw40zmooc9bciGIFsU2SRGuRkLPRnbYCf7FrkQLzVG2YHGQTb4qSjC0lWj9heaca9jbWphGJIbs16vU6SkLfwyDqZ31pYoUWIimApJgYdKh2GIignt3NracmXX5l2x1VAGhRKAlNKzO41jjBu1Um63fxEN42CnYnTR/heygto+BFkMGR13eO68GAIAfvm3cSyDE8K4z+RC50nefPTVivwckVHqp5SSVGspJancvV6PnvH8/Py29FpMBVN44YUXiPhGo4GuURl456ZWq+WLuyMmKxd58xhEHvICY8Z98EWusyJmo9TkXwvuBsvSnDcWWeYwDrMYNZEvZD9iVtvueemwU9Uw62oucoXy/fPUlCyzze5j1QceCBeGITGInUSZlupDiRIlPEyFpHDZZZdRYFKsEkSGq1WrVeKI7bbLfcAIsSqrPliMqz68VGPWtHkZilBU1HXcIK1xx2yU+jCqJ+S0Y5QRsGilLxqzUYburGRSNId4HxQrHUSRa1XI+01sh6mo0SiE+B8AzwNoT5oWhiZKerbDtNFU0jMav5ym6au322kqmAIACCGOj5PBtVso6dke00ZTSc/FQWlTKFGihIeSKZQoUcLDNDGF+yZNQAYlPdtj2mgq6bkImBqbQokSJaYD0yQplChRYgowcaYghHiXEOJ7poHMbROi4bVCiH8RQnxXCPEdIcQfmO2fFkL8UAhx0vzt30Wa1oUQz5jrHjfbGkKIrwkhvm/+/8Iu0fJGNgYnhRA9IcTHdnt88hoTFY3JbjQmKqDnT4UQZ8w1vyqEmDHbl4QQL7Cxuvdi03PRkKbpxP4AvALADwAsQxdDfArAygTouBzAPvP5VQDOAlgB8GkAn5jQ2KwDaGa23QngNvP5NgCfm9AzawH45d0eHwDvALAPwKntxgTAfgD/BF1h/K0AvrlL9FwLIDCfP8foWeL7TfPfpCWFVQDn0jRdS9M0BvBl6IYyu4o0TZ9N0/SE+fwcgO9C96uYNrwXwBfM5y8AuG4CNPwGgB+kafpfu33hNE2PAsiG5hWNCTUmStP0GIAZIcTll5qeNE2PpGlqEw2OQVc7/6nCpJlCUfOYicGUs38LgG+aTTcbUfCB3RLXDVIAR4QQ3zY9MgDgl1JTHdv8ny08+tLhAwC+xL5PanwsisZkGubWDdDSisXrhBD/KYT4NyHEr+8yLWNj0kxh7OYxuwEhRA3APwD4WJqmPehemL8C4CroLld/tovk/Fqapvug+3N+VAjxjl28di6EECGAAwD+3mya5Phsh4nOLSHEJ6GrVX7RbHoWwGKapm8B8HEADwkh6rtFz04waaawCeC17LttLLPrEEJcBs0Qvpim6VcAIE3TH6Vp+pM0TRV0yfrxS+K+RKRpet783wLwVXPtH1kR2PwfvxfYxcG7AZxI0/RHhraJjQ9D0ZhMbG4JIT4E4D0Afi81BoU0Tf8vTdMfm8/fhralXbEb9OwUk2YK/wHgDUKI15lV6AMADu82EUJXefk8gO+maXo328510N8GcCp77CWi5+eEEK+yn6GNV6egx+ZDZrcPwW/uuxv4XTDVYVLjk0HRmBwG8EHjhXgrxmxM9FIhhHgXgD8EcCBN0wHb/mohxCvM52Xozuxrl5qeC8KkLZ3QVuKz0JzzkxOi4e3QouXTAE6av/0A/hbAM2b7YQCX7xI9y9CemKcAfMeOC4BfhG7Z933zv7GLY1QF8GMAP8+27er4QDOkZwG8CC0JfKRoTKDVh7808+oZ6C5mu0HPOWhbhp1H95p9f8c8y6cAnADwW5OY6+P8lRGNJUqU8DBp9aFEiRJThpIplChRwkPJFEqUKOGhZAolSpTwUDKFEiVKeCiZQokSJTyUTKFEiRIeSqZQokQJD/8P+ECBU9nqqSsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "temp = img\n", "temp = temp * 2\n", "plt.imshow(temp)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For more on image manipulation by `matplotlib` see: [matplotlib-images](https://matplotlib.org/3.1.1/tutorials/introductory/images.html)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Part 3: Building an Artificial Neural Network\n", "\n", "https://www.tensorflow.org/guide/keras\n", "\n", "`tf.keras` is TensorFlow's high-level API for building and training deep learning models. It's used for fast prototyping, state-of-the-art research, and production. `Keras` is a library created by François Chollet. After Google released Tensorflow 2.0, the creators of `keras` recommend that \"Keras users who use multi-backend Keras with the TensorFlow backend switch to `tf.keras` in TensorFlow 2.0. `tf.keras` is better maintained and has better integration with TensorFlow features\".\n", "\n", "NOTE: In `Keras` everything starts with a Tensor of N samples as input and ends with a Tensor of N samples as output." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### First you build it ...\n", "\n", "Parts of a NN:\n", "\n", "* Part 1: the input layer (our dataset)\n", "\n", "* Part 2: the internal architecture or hidden layers (the number of layers, the activation functions, the learnable parameters and other hyperparameters)\n", "* Part 3: the output layer (what we want from the network - classification or regression)\n", "\n", "### ... and then you train it!\n", "\n", "1. Load and pre-process the data\n", "2. Define the layers of the model.\n", "3. Compile the model.\n", "4. Fit the model to the train set (also using a validation set).\n", "5. Evaluate the model on the test set.\n", "6. We learn a lot by studying History! Plot metrics such as accuracy.\n", "7. Now let's use the Network for what it was meant to do: Predict on the test set!\n", "8. Try our model on a sandal from the Kanye West collection!" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# set the seed for reproducability of results\n", "seed = 7\n", "np.random.seed(seed)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Fashion MNIST \n", "\n", "**Fashion-MNIST** is a dataset of clothing article images (created by [Zalando](https://github.com/zalandoresearch/fashion-mnist)), consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a **28 x 28** grayscale image, associated with a label from **10 classes**. The creators intend Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits. Each pixel is 8 bits so its value ranges from 0 to 255.\n", "\n", "Let's load and look at it!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1. Load and pre-process the data" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAI/CAYAAACf7mYiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXecVcXZx3+j0YggKFWqCNagBBDEgoq9RGPvNb5qikaNicaY6Bt9E2ssMUZNMEYTG1EhihULCIooRaSIIlWR5gqIKPbz/rF3h9883DOcXfbu3t3z+34+fHjOnblzzz0zc+7Zp7okSSCEEEIIkSfWq+8TEEIIIYSoa/QAJIQQQojcoQcgIYQQQuQOPQAJIYQQInfoAUgIIYQQuUMPQEIIIYTIHXoAEkIIIUTu0AOQEEIIIXKHHoCEEEIIkTu+U53OrVu3Trp27VqiUxHFmDt3LioqKlxtj1suc/n55597+b333vPyZpttFvTbeOONveycKyrb8ZYtW+bl7373u0G/zTff3Mvrr79+dU+7xkyYMKEiSZI2tT1ufc3n119/HRxXVFR4uVWrVl7eYIMN1vmzPvvsMy/zPAPherFrolQ0hr35xRdfeHnlypVB2/Lly73Me4TnFQj3Ztr+A4BPPvnEy+utt/pv75YtWwb92rSp9e2RiVLszXK5z5aSr776ysu1sc9rg6xzWa0HoK5du2L8+PE1PytRbfr27VuScWtjLrmMSk1/dKZPn+7l8847z8vHHXdc0K93795e3nDDDb38ne+ES3jatGleHjp0qJe7desW9Lvkkku8vOmmm1b3tGuMc25eKcatr725ZMmS4Piee+7x8mmnneZlfuCsKZMmTfLy22+/HbQdffTRXq6rm3A5782szJkzx8svvfRS0PbYY495mR9STj311KBfnz59vMzz8uijjwb9nn/+eS83bdrUy6ecckrQ75xzzsl07rVNKfZmHn4zFyxY4OUOHTrU45msJutcygQmhBBCiNxRLQ2QyB8xLU+a1ueNN94IjgcPHuxl+1chq9ZZBX/ZZZcF/ZYuXZrxjFezzTbbePnNN98M2q655hovs3biwAMPDPr98pe/9PKOO+5Y7XNojPA8Pf7440Hbv/71Ly8/9NBDXrZmDdbiscbGmmHYRPP+++97+Ygjjgj68To69thj418gZzz99NNevvnmm4O2Jk2aePnLL78M2jbaaCMvz50718snnHBC0G/x4sVeZnOP1c62b9/eyy1atPDyI488EvS75ZZbvLzffvt5+dZbb4VIZ5999vGyNT+2bt3ay4MGDfJyVvMca3kAYO+99/byqlWrvNylS5eg37PPPutl1vqVC9IACSGEECJ36AFICCGEELlDD0BCCCGEyB3yARJRYtFdK1as8DJH/Fh/G/YjatasWdDGPggcymxD0znc+uOPP/Yyh+Da98XOfeedd/Yyh+6OGTMm6Ddy5EgvDxgwIGi77777UsdvzPAcsi8HAFx77bVe/uMf/+hlG7XFfiPs52Mj8jbZZBMvsz/IIYccEvSzvkN5Z9asWV5+4IEHvGz92Nh/49tvvw3aOFS9c+fOXm7evHnq5/Kes3uY38d+X9ZXaNddd/Xy/Pnzvcz+eABw4403pp5HHuH543QUAPDBBx94mdeAvR8fc8wxXub72zfffBP0Y/8w3rOc6gAoT78fRhogIYQQQuQOPQAJIYQQInc0KhMYm1qAdBOIVdO9/PLLXj744IMzjc8qQavCzYo9X6austmuC0ceeaSXOYtzu3btgn78XawqNS0Ls+3H14oz0dp+ae+JwWY4Vu0C4bmPHj06aOMkjttvv32mz2pssPkKCNXh5557rpf/8pe/BP04M3fMBLbTTjt5+Uc/+pGXOSwbqL/sweUKm4di14bNJja7Nu9NvsdtueWWQT82g/IY9h5m10qxsYEwszCHaU+dOjXo98QTT3j50EMPLTp2nuBklZzgEgjvmZxSZNGiRUE/3qfsyjB58uSgH7sr8HzZLOHljjRAQgghhMgdegASQgghRO5oVCYwG8XAKtyZM2d6+a677gr6sQmEvdatOYQjh2JmLza92HPittgYMdNOfTFhwoTgmM1enGnUFshkOOoECKMTYhEpfK342nCkioUz29r6UBxd1KlTp6KfY7GfxesorxEpfB2BMPpkiy228LK9PjzvH374oZdtZlpeVzy2XWNZzZ154YwzzvAyZ3+25jA2V1vXgLSaapzFGwjnj7HRYjZiMw0enwuy8j4FZPaydO/e3ctjx44N2vi30BaGToP3ojX/c80vvm9zweKGgDRAQgghhMgdegASQgghRO7QA5AQQgghckej8gGKhVi/+OKLXn7uueeCfpzllEM1rT1z+PDhXj777LO9HAv7TgvzBsLstda/JKu9vC4ZMWJEcMzXisNf7Xdhfx5rf77++uu9zNWieU6AsBox97O+Quy3wD5ANlPwxIkTvcxVpq2PBId42u/Fle3z6gMUW98fffRRahv79my++eZetnuOfYViWb4bQtqIuoT9FTmz8mOPPRb069+/v5etXxXPBYdYWx8g3jPsN2nnkvcSh84vWbIk5VuE/iWcZVysCafisPdF3h/s52rn0oa7V2H9Ydnnjuc1liW8HJEGSAghhBC5Qw9AQgghhMgdjcoEZtV5zLhx47xss8iyupDlAw44IOj3xhtvePmSSy7xct++fYN+XGzOZgh+/fXXi57TbrvtFvSrUluXUzj8I488EhyzSYKvmw0lZ1W4LZ7JpkQ2MdqQ+zPPPNPLf/vb37zco0ePoB+b4vjatW3bNuj3i1/8wsu33367l1mda8ezhf24wOeMGTO8vM022yAvxLKv8/qw65jDm2vyWdbkFUu9kHfOP/98L99yyy1BG6cqsOZfXu9sko+ZOXge7HjcFjObcLFjzszf0MwrdU0snQfvP3YNYHcCAOjdu7eX+XrbFATWxFaFvb+XO9IACSGEECJ36AFICCGEELmjwZvAYmpxjvYaP368l60q9dNPP/UymzJYBoB+/fp5eauttvKyjTAaM2aMl4cMGRK0sWqSIzUGDRoU9Ksy55VTZk0ujgeEkVqsYk0regiE6m3LgQce6OVmzZoFbVx49E9/+pOXuSArAAwbNszLrHJn1S4QRoHxnNjrzZFfNgqMv/+rr77q5TyZwOza57nnyBFrAuNryW2xjM5ppmpgzUKeeYfXPq/vV155Jej329/+NnUMNntxdKXN5s6Z9HkubT+OAE0zodi2ww47LLWfCGFzls3izfuKTdO2H7sUsJnSzhebunjPx+a1HJEGSAghhBC5Qw9AQgghhMgdegASQgghRO5oED5ANa30fPnll3t54cKFqf3Y7yNWNffll1/2MvsUWd+jPn36eHnrrbcO2nj82267zcuzZ88O+lVlGbbVtuuaKVOmeNmGtaaFOVt/D/YF4IyylmnTpnnZXnueP/ZbsGuDbdrcxj46Fradc8ZpIJ59mH0fRo0a5eXTTz899bMaG7Gq7Cxb34Ca9GNfFtuvnNJFlAM2DLoKG/bcrVs3L8+ZMydoYx8uvg9ZXzjux/Ni/fi4anxsLrt06VL03EUcvj/bVC/bbbedl3m+7P3TpgGpIuZTxOshloqmHJEGSAghhBC5Qw9AQgghhMgdDcIEVtNCh5tttpmX2YTCpgsgDONjFaAN8WXVIZt17PmxqYxD4oFQdbh48WIvH3TQQSnfon657rrrvGzDWjlTbCyUnK+bVaWyKZGLZy5dujTox/PC182Ox5/FGU9t5uHBgwd7edmyZV62a4PfZ9v4nGzm6rxgzRccOs1mqZhpK1ZQNW3vWxOpqBk8D/Z+x6YNvkdaszzvM95/MXNIbM5t1naRDS4qbEkrXhoLW+e9Z03dfMz7nH9zGwLSAAkhhBAid+gBSAghhBC5Qw9AQgghhMgdDcIHqKawL0rMH4F9O9iO2qpVq6AfhxayfdyGEsbSwfP72A4+f/784l+inuEq9ex7AwAzZ870Mpe4sD5AnArAhtD279/fy3w9bD8+5vmzYZtpYdM2TJrLoXDpCi6LYj/LznOHDh28fMQRRyCPxHwI+Jrb+YztxzTY78D6ANm1KVbD19fOQ8eOHb08efLk1Pfx9bZjcBkSbrPlSfg+y75CFRUVQT9bebwK64eSFuovwutbHdjvh2Xrs8XXnu+LtsxUuSMNkBBCCCFyhx6AhBBCCJE7GoQO0ZoeWDXLqjkbxslZfVmFa8MzOYyT+3GYNxCaedg8Zk0+PJ7NhrpixQov77jjjl62ppeq8PD6rgb/s5/9rKgMhOHj7777rpfvuOOOoN/IkSO9bDNB8zXYdNNNvczXEKhZleFYhmFWEfO89uzZM+j3wAMPVPtzGzs879a0yNecVeg1rRLNJhU2gVgVP+8TNr3U1BSQF7p27eplO5e8B3nOt9hii6Afm0M4lYUNieZ+fA+293eZttadrKljbL+0/Wv78X7mNvubWe5IAySEEEKI3KEHICGEEELkjgaha7TqN1bVsgmMs/sCYfZnLhRnI7N4DDZFvffee0E/zjrMmVGtypYjk+xnccTDueee6+VJkyYF/arU/TUtBFsXsIp755139rKN0HnxxRe9bOeSryNfexvxYSNPqrDXJ61IH38OEM4lm0w46k0Uh+fXznVNVe9VxMzdjDXXtGjRwssye2WHM3fHsjOnRWEC6VFg1gTGxVCtuwJjzd+i+mT93bD9+L4bi6LleWZ5yZIl1TrP+kYaICGEEELkDj0ACSGEECJ36AFICCGEELmjQfgAWX+QtCrDO+ywQ3DM/gnsl2PtmWz7Zhum9SXgEG4+J5uNmH1ZrB28c+fOXuYQ64svvjjot8suuwAor7BCay/m781zYv07uHp07NrH/EfSwjNrSppvCYfiW2J28No4p4YCf1d7Terqc61Pl0gnzX8OCP082E8SCPd0rMo37xl+j/V/bNeunZfZH6ic7nGNhZr6AKWFt8d8hdifkqslNASkARJCCCFE7tADkBBCCCFyR62ZwFhFFit0yP1YdZZVTRvj4IMPDo45CzMX4ouFWbIa2JreONwzzQwHhOcbKwLJxQc5jLdcsWYenj+me/fuwTEXyMtqzsyaoTQrsezfTGwe7FqOhQ03ZmJmr1i4dG2+JzYXseKfeSR2PTgzPWd7BsJ7Jmd4tvA9kzNyc4Z1IH2v27m06UeqUIbo7MRMYLECz2ljZE1FIxOYEEIIIUSZowcgIYQQQuSOGusUY9E8ta2qHDVqVHD86KOPevnll1/2Mmc1BcKCpRw1YtV5fL48hv2OPAabw+x4sagGNr1wvyFDhgT9DjvssNQxyoW0orSsOgfCaDy+bkBoRuOoMquaTYtIyJo5OFY8k8fIq1mrOsTWfto82evK85Q1kiymkudj3mPKCh03A7L5qkePHkFbly5dvMz7xV7TxYsXe5nNXLZoKr+PTW/t27cP+n3wwQep5yvSmTFjhpetiT9rYeLYvTWtH/9+cqWDhoA0QEIIIYTIHXoAEkIIIUTu0AOQEEIIIXJHjZ11svpKLF26NDhesGCBl9lmya8DoU8M9wNCnxK2Z1rfGw7d7NChg5etDZt9T9iebStdsx2cq4Z/8sknQb/Ro0d72drfOcya/V/Gjh2LhkZaOLr9zrGMybFso2n9asOGzefEPigxf4k8ZXuOEbvGWdMVZM1UW5P3Zw2lF+G9yqavYB8evmdyZncgvP8tX77cy9Ynk/2D7P2e4XswZ+Zv27Zt0E/pDkKmT5/u5U6dOgVtfO35d8zC98LYHuN+/Du5aNGioN+YMWO8zL+Z5YJWjRBCCCFyhx6AhBBCCJE7amwCe/XVV4PjK664wstc6I5VokB61ldbhJJNbFblyio3VtPZ8GtWuQ0ePNjL/fr1C/pxSCaremNZLTmL88qVK4M2Vj9asxyrH7loakPLoFkdWN1t5zktBDpmWqkJ9v1sfuQ2m6larEltFEDNavpMM6nZeeJz0hymm4fef//9oN9bb73l5W7dugVtnBma3Qm22mqroB/fx2bPnu1lW0CV77MxOIM/F4y+8MILg34ye4W88MILXrbmZ14PMdNhVhN2WtFUuzbuuOMOL8sEJoQQQghRBugBSAghhBC5o9omsCpV8wUXXBC8zmaOWDHQtCzJnGUZCM1Z1rTFcMG9efPmBW2XXnpp0TFYLQeEmUjZBLbPPvsE/ThK4t133/WyLRTI5hWrjmfVIV8nG+HQEMgaFRWLGOSMpbxWYiawmJo2rc1mRmUzasy0wigKrJJYhuc001YsMit2XWsS/cf3BC7EmyfSzEPPPvtscPy9733PyzZLO187vrd27Ngx6Pf22297mdeDjURit4F27dp52d4/2XTGWaH5ngsAW2+9NcRqOJLYVmPg+1rW6K4YvBd53djIaY4CK0ekARJCCCFE7tADkBBCCCFyhx6AhBBCCJE7quUDVFFRgXvvvRfAmv42HELJYZE2S7K191ZhfS/Yjm9tyWyDXrVqlZfZrgwAp59+upf/+9//etlWWp8zZ07Rc58wYULQb8SIEV5Oy4QJhP5M1veEYTut7VcVrhp7f0MhLXM3EPoMxMIz0/x02N/K9uM5sn4m1kZehU3bINaEM6fb+UzzL7Cvr6s/lZ0/Hs/6sojVsB8OAPTs2dPLdi753mN9NJk0v7nYHmZfSxuaz75HaX5IgHyALJxKxaYgyBreHrtnpsHrhn+PgTAzNK8h+5tZX0gDJIQQQojcoQcgIYQQQuSOapnANthgAx+ubc1SbOpi9VaXLl1S+7Eq3WYJbdmypZe5KJ8dg1Wptsgpm1eOPPJIL++4445BP1YdsonOquk4izGbXmwoMBeesyastFBvayKoKgAbUz03FLIWzq2JmjbNlGXHiJlgeC6tCjftPXkmFlJbExV6VmJznZbZW4Qmfk75AYTmQs7ADITzzHs4tkdiKVDS7mW2aCqbTdjdgSsMiDBTNxBeH5tWha99WjUGINyzWdOS8NgHHHBA0O8///mPl9mlpFyyQksDJIQQQojcoQcgIYQQQuSOapvAqkxfVr3ZuXNnL3MklVVbshmpTZs2RWUgVL9a1Sm3sQrXFiVldXyrVq28zAUAgVD1yyY760nPn8Xna1XzrI63baw+ZlVvixYtgn6TJk0CEBZPbahkzS6a1WSS1cQRyyLMbazebwzXu9TEIhPTVOixLM41wa4V3nN8/xFhlJW9b/O91M4r3+/4PsauCxY2y9h7X1rB2i233DLoxxmf+T0cGQwAS5cu9TK7TOSFN954I7Ut9rsT25c857weYhnfee+98847QT+ev+nTp3tZJjAhhBBCiHpCD0BCCCGEyB16ABJCCCFE7qiWD9DGG2+MXr16AQjDygHgn//8p5c7dOjgZa6gDoSh6uyzY+3PbLO0Nme2H/N4NiMp2yk51NKGgrJNlG2ddjz2X0oL+7f9WAbCEHm2nXKoKrA6q7XNdFxO1CTMuaa+IGl+PzH/olgYPJ8H28uz+ivlGd6rsQzbtR2OznNmfRJ4n8yaNcvLvXv3rtVzaIjwfczuP74vWv83vu/yfctee75/8n3R+qHwfZKrvPft2zfoN2rUKC/zvdrej9nfKI8+QE888URw3Lp1ay/b3w2eM54v6zfLe5avt+3HGbp5ntmv1X7ulClTinyL+kUaICGEEELkDj0ACSGEECJ3VMsExlx22WXBcZVpDAD+9Kc/edmadjh8nM1DNhsoq2ptGHxaOGUs228s3JPNbbHxGG6z585qYA7VBEL1I6sLuSghAJxyyikAgFtuuSX1HOqbrJmbWX0eyyLL2HDdNPOHVenb96WdH587j5fVpJZnFixYkNrG85EWEg9kzxidViDX7k1Ww7MpQITZ7e29j+/HU6dODdp4r3KaDjsGX/uYWwO7K3BR1h/84AdBP/5d4DFs5uO0Iqx5gU29QPi7Y01RaSlhbL9hw4Z5+dBDD/VykyZNgn5sLrUZxNP6TZs2LbVffSENkBBCCCFyhx6AhBBCCJE79AAkhBBCiNxRbR+gKpu8tekfcsghReUXX3wx6Me+Q1yF3aY5Zxu/9cvg8MxY2C1XxGU/A1vJnm3TbM/MGhLNPi5A6BNkfVT2339/L2+//fZeLpfU4KXGXg/2v+H5s/34OM0vxI7BWD+TtHB8hcGvHd4vNkUFX2e+lnZesvpdcTgv97Pzzr4nXM5GhOWI7Lpnf5Dly5cHbXy9ObWJ9e3hkkFNmzZN/aw0rA8Jj8friccGgIULF3p52223zfRZjQn20QGAkSNHetnuN94vsXI/af48sXJPsX58r9hxxx1TP7e+kAZICCGEELlDD0BCCCGEyB3VNoGlhRmnsc8++wTHY8eOLdrv7bffDo5ZbWurss+fP9/LW2yxhZetKcpmoRa1S9awcFafc6VnIFSZ8tqy64zV7txmz4GPs1awZhQGv3Z23nlnL8+YMSNoYzMKq78trKLnecp6jdn8AYRrIo/mkBiffvqpl23KDhtaznBlcL632vBzvldzWD1/ru3Hsg3nTkt3YNcGh33nkbPPPjs4Puecc7xsTWBs6rSZvJm033ebWoL3Oa+NFStWBP34+IILLkj93PpCGiAhhBBC5A49AAkhhBAid9Q4E3Rts91220WPmR122KHUpyNqEVaX2qJ6bJrijLXWFMURJVnNWbEipxwJyBlvrTo+7RyA6puDGwtsRjnttNOCthEjRni5oqLCy9YcwmaUWMFfnjeez65duwb92NRuzTx5h83OW265ZdDGZi4Lr3eOHLKmTY5gfeCBB7xsTWX77rtv0bHtvuL7Bc9lt27dgn5777136rnnEc6ubSsLMLZ4N7NkyZKir9uM0bxueI9as+Szzz7rZXZXKRfyeQcXQgghRK7RA5AQQgghcocegIQQQgiRO8rGB0g0PLJWg+/Tp4+Xe/ToEbRx5eeYbw/7CXC20liV97QQeyD0O2GfAw7xtuTV58fC19j6gxx88MFF37N06dLgmH0KOAu8nc/NN9+8qJw1xF6pC4Dbb7/dyzZTL++r448/Pmhjfzj233j//feDfuxX1Ldv30zndPTRR6e2HXvssZnGECGcadmGwY8ePdrL06dP97Kt1LD77rsXHfu8884LjtlXiNcNV4FoCOiOLoQQQojcoQcgIYQQQuQOl1Y8smhn5z4EMK90pyOKsEWSJG3W3q16aC7rDc1n40Fz2bio9fnUXNYbmeayWg9AQgghhBCNAZnAhBBCCJE79AAkhBBCiNxRFg9AzrkjnXOJcy69/kXYf65zrnWR11cW6x8Zp1r9I+Oc4ZzrsPaejRvnXCvn3KTCv0XOuQ/oeMO1vHegc+6JlLa7nHPfS2m70Dm3sXntN865k51zR6S9T6wdzWe+cc59U5jrac65N51zFznnyuI3I89oX9Ye5bKYTwTwMoAT6vtEasgZAHL/AJQkyUdJkvRKkqQXgDsB3Fx1nCTJl+sw7llJkrxlX3fOrQ/gQgC2+NMBAIYDOAJAg9yY5YDmM/esKsx1DwD7AzgEwP/aTs455ZOrQ7Qva496fwByzjUDsDuA/wE9ABWeVEc65x5xzr3tnLvfmaxmzrkmzrlnnHNnFxn3YufcOOfcZOfclZHPv9E5N9E594Jzrk3htV7OubGF9w51zm2W9rpz7hgAfQHcX3gCb1IrF6YR45zbi/5iecM5t0mhqVmx+S6sg74FeaVz7irn3GsAfovKB88RzrkRhfbmADYEsDWAHwK4ofA53SPzOtI5d4tzboxzbqpzLj0bolgDzWfjJ0mSJQDOAXCeq+QM59zDzrlhqPwRLHrPdc41dc49WdAgTXXOHV94/Vrn3FuFvn+qty/WiNG+zECSJPX6D8ApAP5RkMcA6FOQBwL4GEAnVD6ovQpgQKFtLoCuAJ4HcBqNtbLw/wEA/g7AFd77BIA9i3x2AuDkgnwFgNsK8mQAexXkqwDcspbXRwLoW9/Xspz+Afg9gF+ltA0DsHtBbobKjOSx+fbXtzBnx9FYcwG0puOjAFxVkO8BcAy1xeZvUEHeE8DU+r5+5fZP85m/f1X3U/PaMgDtUKn1ng+gZeH1ovdcAEdXzUWhXwsALQG8g9VRyJvW93dtqP+0L9ftX71rgFBp/nqoID9UOK7i9SRJ5idJ8i2ASah86KniMQD/TJLkX0XGPKDw7w0AEwFsh8onVcu3AAYX5PsADHDOtUDlhnyp8Pq9APZMez3ztxTMKwBucs6dj8pr+nXh9dh8V/ENgEcjYx8E4Gn7Yob5exAAkiQZBaC5c25TiKxoPvMDa+GfS5KkqsZJ2j13CoD9nHPXOef2SJLkYwArAHwO4C7n3FEAPquzs88X2pdroV4fgJxzrQDsg8qNMBfAxQCOr1LJAfiCun+DsHbZKwAOpr7B0ACuSVbbRbdKkuQfGU5JSZFKgHPuXFLFdkiS5FoAZwFoAmCsW+38HpvvKj5PkuSbyMftDOD1GpymnXuthRQ0n/nEOdcNlfNYVQjqU25GkXtukiQzAOyEygeha5xzVxR+iHdG5Q/sEQCeqbtv0XjRvqw+9a0BOgbAv5Ik2SJJkq5JknQGMAfAgAzvvQLARwBuL9L2LIAzXaV/EZxzHZ1zbYv0W69wDgBwEoCXC3+hLHPO7VF4/VQAL6W9XpA/AVBlXxWGJEn+SjfGBc657kmSTEmS5DoA41H512JN8dfeOdcDwNu0cX3bWuYPAKp8EwYA+LjQXxRB85k/XKV/5J2odBMo9qNV9J7rKqNjP0uS5D4AfwLQp9CnRZIkT6HSubZX3XyLxo32ZfWpb+/9EwFca157FJUPI4PX7L4GFwK42zl3fZIkl1S9mCTJcOfc9gBeLSiIVqLS12iJef+nAHo45yag0i5aVdb2dAB3usqwv9kAfrSW1+8pvL4KwK5JkqzKcO555kLn3N6o/OvjLVSqUnet4Vh/B/C0c24hgCcR/jX5EIBBBRXwMUifP6By044B0BzAmTU8l7yi+WycNHHOTQKwAYCvAfwbwE3FOkbuuVuh0kH2WwBfAfgpKn8sH3PObYRKzdEvSv1Fcor25VpQKQzRaHDOPYdKp/iF1XzfSFQ6Eo4vyYmJGqH5FKL8aEz7sr41QELUGkmS7F/f5yBqD82Wyz2nAAAgAElEQVSnEOVHY9qX0gAJIYQQInfUtxO0EEIIIUSdowcgIYQQQuQOPQAJIYQQInfoAUgIIYQQuaNaUWCtW7dOunbtWqJTSefrr78OjlesWOHliooKL6+//vpBv4022sjL6623+lnPjvfpp6sTmjZt2tTLHTt2DPrxGHXF3LlzUVFRUSzb9TpRX3OZdyZMmFCRJEmb2h63HOfzk08+8fJ3v/vdoG3DDTfMNMYXX6xOWvvZZ6srJmy22WbreHbrjvZm46IUe1NzWT9knctqPQB17doV48dXL4TfRpkVr1wRZ8mSMH/hiy++6OVBgwZ5edNNw7Ii22+/vZf5Brxs2bKg36uvvurlXXbZxctXX3110K9Jk2yF3vk71+T7Mn379l2n96dRk7kU645zbl4pxq2N+UyLCK3pGn7ppdUJYLt37x60derUKdMYc+bM8TJ/v2OPPbZG51SbaG82LkqxNzWX9UPWuSxJHqCsDwCsvfnzn/8ctD3//PNe/vzzz4M21tJ8+eWXXh43blzQb8iQIUU/d4MNNgiOWdPz2muveXm33XYL+rVs2dLLe+21l5d//vOfB/3K4a9TIaoL79uYtnP+/Plevvvuu4O2G2+80cusqa0N+JxOPfXUoO26667z8gUXXJBpvG+//TZ1fCFE40c7XgghhBC5Qw9AQgghhMgdegASQgghRO6o81pgs2bN8vKhhx7q5c033zzoxw7N1meHo73Yudk6Ja5cuXKt7wFCP6IPP/zQyzZajCNSnnvuOS+/8sorQb8f//jHXj7qqKMgRDmS1Qemd+/ewfG7777rZd4TALDxxht7mfe09eNjPzne6wsXhvUVV61a5WUOQrDj/epXv/IyBy/su+++Qb8HHnjAy/b78vWQP1A61lk+7brF/D9jJZhq4nQ/ZsyY4Jj9N9955x0vb7PNNuv8WY2Z2g6EyMopp5zi5Ysuuiho69Onj5f5fmN/x2uCdrkQQgghcocegIQQQgiRO0piAoupy37zm994uX379l62oeNsfrLjfec7q0+bVXZs8gJCFRnLbPICwkSIbG7jzwHCxIqs9rXj/fWvf/XyAQccELQ1a9YMQtQXWUPdd911Vy9PnTo1aGvXrp2X7drnvcptdi8tWrTIy2z2srm2OGEim714L9pjvnc8+OCDQT9Opvjf//43aOPrUZu5vPJE1mtVk2s6cuTI4HjKlCleZrMsAFx22WVe5rkcPnx40K82zCjlQtY1G+vHx9wvaz6/r776Kjjm31Oer2OOOSboN2PGDC/b33Hep7W9F6UBEkIIIUTu0AOQEEIIIXJHyaPAbFQHq76bN2/uZas6Y5U5q62B0GT1zTffeNnWAuNjVm/bCBIen/vFos/YlGXV8Xx+jz/+eNB20kknQYj6IqZCHjp0qJfHjh3r5c6dOwf92Pxr9y2PnyYD4d5n9bqNTEsz2dk9zOPzvu3SpUvQ79lnn/Xy008/HbQdfPDBqeebB7KaOezr9r6bxr/+9S8vc8mh0aNHB/1uvfVWL3fo0MHLb775ZtCPI7o4UggAbrnlFi/36tUr0/k1dNLMV7F+/Ptp4b1oI6LZVM397G/mqFGjvHzkkUd62dYC3G677bzMLiQWO/66Ig2QEEIIIXKHHoCEEEIIkTv0ACSEEEKI3FFyH6Bly5YFx+wDxLZjm1GW/XKsjZnDa9NCV4HQNsl2T2vPZGJ2VPZL4ozRrVu3Tj0/rmoPyAdI1D0xPzmGs5bzmv7kk0+CfrEs7ewTFNtz3JY163KsX9p9wIbp87kfcsghQRv7K3IWa3vuNqRfrGb69OletteNw9jHjx/v5aVLlwb9Tj/9dC/vtddeXrZ+PjwGy0DoYzJz5kwvb7XVVtHzbyxk9WGL3Q+4LeZ7w3vv/fffD9p4j22yySZetr5HN954o5c7duwYtJUyJYU0QEIIIYTIHXoAEkIIIUTuKLkud/LkycExq0XZHGbDX/nYhplzaGT37t293LVr16AfF2bksL2mTZsG/Vi9x6Y4zlwJAMOGDSs63vLly4N+nMmSQ+KFqA/S1NyHH354cMzmIU7zMHfu3NR+1iyVpiqPhdvWBPu5rBrn72vvK3xPsPcVNtGccMIJRcdrzGQ1L9i0JFyIlE2HLVq0CPqdeeaZXr755pu9bE0eXAxzyZIlqefHodMTJ04M2rhYNc9zXkxgWQsdWxYvXuxlNk1+9NFHQb8JEyYUfY81e7Zs2dLLvDY+/vjjoJ8tZF5XSAMkhBBCiNyhByAhhBBC5I6Sm8BYlQwAe+yxh5fvv/9+L9uCi1zMjlWdMaxqdtWqVUVla5birLJsHrMRW9dcc42X+/Xr52U25QGhmn327NmZzl2IuubVV19NbbNRmUxMnR7L/szEMtVmIWsRR3uuHKVms0mPGzfOy3zfyktWaGum5GvH1yBWdJrv47Z46d/+9jcvP/PMM14+8MADU8+pbdu2qW1sHmNTCwB88MEHXr777ru9vPvuuwf9dthhh9TxGzKxuZw1a5aXL7zwwqAfu3Nw1Na0adOCfuyG8tZbb3l54MCBQT82b/I9xRahjUVmZ6UmZnZpgIQQQgiRO/QAJIQQQojcoQcgIYQQQuSOkvsAXXLJJcEx2yL33ntvL/fu3Tvot2LFCi9bHyC28XNV6VatWgX90jLWWps+j8fhedYviUMo2X+JQ4bteVhbZ96paZXiNH+Emmbp5TDRrCGiFvYn4c9tKD4jnMoBCLMmx64jz2EsEzSPEbPPx8LW09ZLLDSd14QNdWc/BJsO44EHHvAyZ6bNC7HUAoxdNzxHL774opdPOeWUoN+dd965rqcYwKHZ/HsBADvttJOXOSu09W2z4d2NhVjmZk4dc8899wRt9je0urRp0yY4Zj879rc6/vjjg37sUxS793NbrFJDVqQBEkIIIUTu0AOQEEIIIXJHyU1gNsTxhRde8PKjjz7q5eHDhwf9uCDe7bffHrSxmYoL3dnwzDRTCavpgVBFyuo2q8LlsMBrr73Wy9bMtdlmm3l5yJAhQRtnTbWhm3kgq3nIqjfT3pdV7WnX0B/+8AcvL1iwINMYlpiauVx58803vcwFfYEwcy+rrnl/2DZrYkorvGpNW9wWC51PK4QYK3zMa8L24+LMdt/mvchp1r3J90EA2HPPPYvKFk5Fwusma7oE24+L1/I9FwhdIw4++OCi7wGAefPmpX52HrAmL95HvJez3uvYrQUIf+N5jl566aWg369//WsvZy3QaqmJOVMaICGEEELkDj0ACSGEECJ36AFICCGEELmj5EbvSy+9NPxAsrNz6Nv2228f9Hv88ce9fNVVV6WOz7ZJa9NP8zOwtv40/yBbMoPD6vv37+9lrnILhHZQW304j34/MdJs/Fn9MTh0GQAmTZrk5YcfftjL1leFwzVPPPFELz/44IOZPhcIw8avv/56L//ud7/LPEZdw2vd+uUw7E9nw6N5zmwaAm7j8a0vDvsX8PixMPiY/T+tnw2p5fuF/V7z589PHV+kk3UuGW6LzWsM9mGzqUjS1qH1E82731fM1zLm98P7nq/haaedFvTjezB/FvvuAqF/mE2zwHDZjXPPPTdo47IbWZEGSAghhBC5Qw9AQgghhMgdJdf/HXnkkcExh8FPmDDByxyqCAA//OEPvcxVfwGgS5cuXmb1qw1vZ7VaLBMtq/C4krtVAX7yySde5vDJm2++OejHbbYiMme8ttmvGyuxUNa0ENh33303OGZVKlcxt+kTunXr5uVOnTp52Ybuzp0718tPPfVU2qlHeeihh7z82muv1WiMumbixIleZhMekB5mbsPgWUVtzcRpanM7z2mZva1ZivdtLAN42v62r/M9wWatZTMKzyebu8WapJmw7Ou8bmL349j9guG1d++99wZthx56qJdPOukkL1tTWczckgdqmrU+LXs+X3cgDH3nSvOcpgAInws6d+4ctNlniCo4pQUQukNwpYYY0gAJIYQQInfoAUgIIYQQuaPkJrDp06cHx2xi4uipXXbZJej3yiuveHnKlClBG6vtYpEGaRlmYwU50yIa7PmyWrVXr15Bvy233NLLVp237bbbpn52ORIrGsomFGsmYWJqVlaLXnbZZV4ePHhw0I8LV7Zv397LO++8c9CPzaCfffaZl21B3Q8++MDLl19+eer5sfnVntNFF13k5bffftvLbNoFwsKM9Q2vfbsP2GSRNfOrHYPfxxmjrTkkzbQV25uMXVNc5JIzWtuoHzad2e/IY9xyyy1erk5kYLmTNcN6qYlF6qX1s3AWY+tOMH78eC//+Mc/9vKsWbOCfrvtttvaT7aRkdXEGLtXZF03/PvHLiRLly4N+h122GGpY7Rr187LvGdt1mn+XciKNEBCCCGEyB16ABJCCCFE7tADkBBCCCFyR8l9gKzNle2977//vpdtNuVYODqHMrJt0mb1TPPniVWcZr8R+7nsD8LnZ/0M2L+EfVwAYNGiRV7mkO1yImb7ZWJ+PwyHOHJ1YCAMXeQs2T169Aj68dx+/PHHXl6xYkXQj8Na2W+IfQKAcL1xyOQNN9yQOt6OO+4YtLHPCPu72JD7csKGATNp1Z/tPPOaiPlvMDFfvazEQvN5n/H+tqH+nM3dnhOPyfPZmKgvn58YWTNBc5Z3APj+97/vZc7mDgBPPPGEl5999lkv2/VgfTTzQE3WQFrY+9p48803vdyzZ08vL1y4MOjHKUXsPf2KK67wMv/W7r///jU6J0YaICGEEELkDj0ACSGEECJ3lNwEZk0oXJSSzRrWbMCmKKt+Y9U1q+DtZ6WFcNt+aQX8rLqU21q3bo00OMTPZqxdsGCBl8vVBMYq0qzq6VtvvdXLd9xxR9C2ePFiL1uV8w477OBlXg/8ntj5xcyZPK82669Vs1Zhw2KHDh2aeh5/+MMfvPzXv/7Vy1tssUXQ77777ksdo665+uqrvWxNvHzM5j0bssrhx1nD1msD3uvWBMbrlM/dZodnEyDfY4DQrP3f//7Xy+USOt6Y4LmM3WOuu+46L9t1+JOf/MTL//73v4M2XqOHHHKIlzkDPJDdjJ8X0kLk7e9YWqFxu1e4QDn/xlfnvvHHP/7Ry/wbfOyxx2YeIw1pgIQQQgiRO/QAJIQQQojcUXITmI20SDNRcNE0ICxaGDOBxdTRWTNBp6n+rdqPP5ezU7JZDwjVg3YMzoZZLnCBTAB47rnnvPzOO+942UbGsDmPvxdH2gBhUVKO4ALC623bGDZP8DWNmTPZ/GHXEEd38fzZoqacXdQW/uzYsaOXt9lmGy9b08qgQYNQLsyePdvLrJ4Gwrlg86816fH3q0sTGBPbw7wWrQkslkWezTJdu3Yt+h5RO/A90pqlfv/733uZ93rbtm2DfhxRuvXWWwdtPO98n2qIJi9e67xmY3vP3u9qGsWV9v60PdG3b9/gmLM1czReDOt6wvuS70UxN5SsSAMkhBBCiNyhByAhhBBC5A49AAkhhBAid5TcB8jCNl22I9pM0NaPIo00nyL7WWw7tbZ/Ps5apZj9J2Lh97Hs1PXJkiVLcNtttwEAhgwZErSx/1Us+y7b2Tnrsr0enL3TzhH79rDvkPWd4rXCvkj2s9iPheeBv5Mdg23OXEkcCNeD9VNjvxMev9z8vDgzOZ+ntaGnZUG3c5aWYR1ID6O1oc7Wzp8Gj89jxMJt2ZfMrln297LzxHv1vffey3R+5YK9r2RNX1Hbn83zYueY9/r06dO9fPHFFwf92J+OqwXceOONQb+YbxZnjWa/t1133TX1PaUmlk4hVqG9JmlJapuYD9FRRx3lZc72DAD//Oc/i77H/gbz+Pbez76XvXv3XvvJVgNpgIQQQgiRO/QAJIQQQojcUXITWNYQUmtesGowJi2rszU3pYXLx86Jx7BqZf4sNiXYsG82w1jKpchiq1atcOqppwIA+vXrF7S98sorXp46daqX582bF/RjE8KyZcu8bEOP+Zpa1ScXmK2oqPByzOzCqnX7WWmhobYIKJvs2ExiVcy8Vmy6Az4PVu/b8PIf/OAHXr7++uuLnl8pGT16dNHXY2YpNoHZ780Zea2JKU1dnzVdRU3ha85za9cRm2PtPYa/Z20Ub61LYqaRWLh0bVz7NLcB3hNAaIq96aabvLzPPvsE/TgVxcMPP1yjc+LvFTunuiSWtb4m8/D2228Hx3fffbeXrVnRZsKvImaK4t8qew/43e9+5+UPP/zQy9adIo2YSS2W9qZ79+6p76tJSg5pgIQQQgiRO/QAJIQQQojcUedRYFlh9ZtV76ZlxoyprWMqxrRiqNaUsXz5ci+zCcxmIeUIBGsiqK/MucWoOhcuSAoA/fv3L9rfmvbmzJnj5ZkzZ3rZZnblTKzWBJg2l1YNysUNuagevw6E5kiO6LJmSlaFx9TibBaKzR1HVLEJBqj/TMK26GkVdn2nZZnldQ+EJoWY2TltX9ljPr/YNebPtdc0zWRnvzubaq2J236XxkJtr79YNFPMFMcZnjt06ODlyZMnB/0GDx68jmcYrj02rdd1JugkSbyZPpa1ntcem5cA4K677vKyjZZm+H782GOPBW2c0T/tHOw58j7iaDwgNE0+9dRTqefEv5OcfT9meuM9CoTra8CAAamfJROYEEIIIUQG9AAkhBBCiNyhByAhhBBC5I6SG73ZXwMIw1BjPjtsO7R2fLYzx8Lp0jJtWlthWsh9zH+Hz71Lly5Bv/Hjx3vZ+lmUSybo9ddf3/vF2CrnCxcu9HLMrtqyZUsvDxw40MvWzyfNBwVI9+uwa4PHTAuJB8KweH4PrzsgDN2MVQ/nc7frhDMn8zq3viS2mnpds9deexV93fqGpPkk2LngaxLzI+Lx7bXjY/YNsNc/LcTajsfnFMtUzePXV1bdUhDzy2EfrsWLFwf9eK/zHo6R1afof//3f4NjXlPs9zN06NBM48VSo8Qy7rMPUF3jnIve/4oxceLE4JjnLHaPbNu2rZc5vQgADBs2zMuHHXZY9HyLceKJJwbHBx10kJdjoem8t7OyaNGi4Jh9KnfbbbdqjxdDGiAhhBBC5A49AAkhhBAid5TEBMZmiVj2y+bNm6eOwarqWHgqjx9Tn2cNr42Z19JU+l27dg368XnEVPDlgg3btsdpsJkyZlpg85MNpU+7HtZUmFawNvY+ni9riu3YsaOXeW1YNXvse6WtG3v9OOS3PnjyySeLvm5NvHzMJsJ27dql9rP7Km3t22vHprM0sxkQXuNYP563WEbntDkrdtyQiJml3nrrLS/bcGa+B9sC1DXJmszZnseMGRO0sUk6LTt5jJjJNta3Pgvbrly5EqNGjSp6Hsccc4yXec2yWdLCqT1s9QQ2N9l70AUXXODlmAmMOfzww708bdq0oM2G2dcmXMwYyL4OFQYvhBBCCJEBPQAJIYQQIneUxAQWKzzKKnI2Q1hiWV/TVJ9WBZYW+WXfn5ax1n4um+I4cshmgo6ZwMopE/S6wirXmLe/VdWKuuWZZ54p+ro1LbNZitf3HXfcEfQ7+eSTvWxNmFx0lte+NbdxW2yvp73HRhryMavQbQQcF/S12cHTsJFT1iRYCqruE1kjrmJRYLUdORPj7LPP9vKMGTOCtieeeGKdxo5VBLDwWrFFQ+uSL774ArNnzwYA/PjHPw7aLr/8ci/zvmEzom3jiDJrzuT3xQqKXnLJJV4+66yzgn6//vWvvTxixAgv77fffkE/m4G/NrEmQOu+kEZNMp5LAySEEEKI3KEHICGEEELkDj0ACSGEECJ3lDwTtLXLsS0yFh6cNZtrWphssfdVkbWacczGzH4GPXr0CNpiFeobkw+QaBhw6gG2p9uw57T9cuSRRwbH559/vpcfeOCBoI19h5YuXerl9u3bp54TY/08eG+y/4PN7M3v69+/v5c5/BcAXnrppaJjF/vsKh5//PHgmP1cSkV1/Rli/fmec8ghhwRt7Ddy6aWXBm0nnXRSps++6qqrvMz+ZhdeeGHQb8cdd8w0Xm3Avwu2unhd0qpVK5xxxhkAgL///e9BG6cn4HO0+5ArwPO65wzfANC6dWsvWx85XgM33HBDURkA2rRp42X267zyyiuRBv/GxVITZMV+r6y+ejX5bGmAhBBCCJE79AAkhBBCiNxR5yYwVsXFikRySC6r5YBQjR/L3ppW0DFWhJXPz6rp04prxsL57fnFCvoJUQp4D7KJKqtq2XLttdcWlWNYlTyfB+85e7/gYw6lj2WRz0osizVn5uVCkkDpTWCffPIJRo4cCWDN9AF87+NixDbzL98/+buwDAAzZ8708o033hi0cegzF9ocPnx40O/Pf/6zl7mgata1UVNiZj++x9uCvfWFrRgwduxYL3NBbVvgmdMw8Pfi8Hgg/L2KXRtOSxK7Nmx6i5kvaxJ+bn9b2dxmM0GnpZ2w9xS7trMgDZAQQgghcocegIQQQgiRO/QAJIQQQojcURIfoLQSFJZYimu2EVpbH4fDfvTRR162qf2zhrQzbGO1fgaffvqplzldt7U98rlbnx9r3xWi1PzjH//w8pAhQ7zM6xmo/XBWxu6RmtjrawP2w+CK90DoE8X3nN13373k58V8+eWXmDt3LgD4/6tYsmSJl9mPiu+JQOjnwffBzp07B/1OOeUUL/fs2TNoe/75573Mld2nTJkS9BswYICX2Y/I+i/xfbHUfjnsU3LggQeW9LOy8pvf/CY4fvDBB73MZS3sbxX/TvJvkr2G7Itjf3fYv43Ht/6wvKZsigtmXe8Vsd9j+3uf5gMU8+XNijRAQgghhMgdegASQgghRO4oiQmMs3BaNWhWs9Qxxxzj5RUrVgRtHBbPnxULied+sarxrM6zJrUWLVp4uW/fvqmfxepoe058HkLUBWza4Wrotko477OsWYBjxFJP8HEsjDatzard+TgWVn/QQQd5+a677graOLXFD37wAy9zhey6gLMHZ4VdAQBg/vz5XuaM3Pw6EF4rXhtAaPbitWGzSfNasSY2pi7D0dkEdtNNN3mZK7DXNTaUnK89Z9C+4oorgn7jxo3zsv0trG322GMPL++9994l+5yY2YzXHZBeMaIm4fdrnMc6jyCEEEII0cDQA5AQQgghckdJTGCrVq3yckz1bYueMdZjviHBqjn7/WPfWYhSE8s4yxEg1lTCcPSYzUDMsJq7tqPKYrCZ2Zqxe/XqldrGJrDzzjuvRGdXGlq1ahU9zhsc7dcQ5pJNsyxbZsyY4eUJEyYEbZMnT/YyF7kFQjMo/z7ZKgZ33nln0c+1biPrup9j5tBLLrkkON52222L9rPuNTVBGiAhhBBC5A49AAkhhBAid+gBSAghhBC5oyQ+QFyleJtttgnaOEyyf//+qWPEQuRrI/ytlHBY6Jw5c4K2nXbaqa5PRwgP76sbbrghaON92759+9QxyqW6dhqx+wOn0OBQaSD8XnXpsyRKy//93//V9ynUGvx7an9bTzzxxJJ9bm3/5sbG22+//TKNEUt7kxXtciGEEELkDj0ACSGEECJ3uKxFQgHAOfchgHlr7Shqky2SJGmz9m7VQ3NZb2g+Gw+ay8ZFrc+n5rLeyDSX1XoAEkIIIYRoDMgEJoQQQojcoQcgIYQQQuQOPQAJIYQQIneU7QOQc+4b59wk59xU59zDzrmN19L/HufcMQV5pHOub92cqciCc+63zrlpzrnJhXlNTwJV/bEHOueeqK3xRBztzcZLKfZpljnXuigNms84ZfsABGBVkiS9kiTZAcCXAH5S3ydUhXNu3TMw5Qjn3K4ADgXQJ0mSngD2A/B+/Z5VJc65kiQDbeRobzZCynmfiuqj+Vw75fwAxIwGsJVzrqtzbmrVi865Xznnfh97o3PuROfclMJfq9cVXvupc+566nOGc+4vBfkU59zrhaflv1XdUJ1zK51zVznnXgOwawm+Y2OmPYCKJEm+AIAkSSqSJFngnJvrnLvSOTexMEfbAYBzrqlz7m7n3Djn3BvOucMLr3d1zo0u9J/onNvNfpBzrl/hPd0i45xR0FwMAzC87i5Do0R7s/GQtk+vKOyhqc65v7tCGt/CX/nXFeZkhnNuj8LrTZxzDxW0DoMB+JTbzrk7nHPjC1qJK+vjS+YIzedaKPsHoMJf6AcDmFKD93YAcB2AfQD0AtDPOXcEgEcAHEVdjwcw2Dm3fUHePUmSXgC+AXByoU9TAFOTJOmfJMnLNf0+OWU4gM6FTXW7c24vaqtIkqQPgDsA/Krw2m8BvJgkST8AewO4wTnXFMASAPsX+h8P4Fb+kMID0Z0ADk+SZHZkHKDyh/L0JEn2KcUXzgPam42OtH16W5Ik/Qoavyao1CpU8Z0kSXYGcCGA/y289lMAnxW0Dn8EwPV/fpskSV8APQHs5ZzrWcovlHM0n2uhnB+AmjjnJgEYD+A9AP+owRj9AIxMkuTDJEm+BnA/gD2TJPkQwGzn3C7OuVYAtgXwCoB9UTm54wqfvS+AboWxvgHw6Dp9o5ySJMlKVF7XcwB8iMoftDMKzUMK/08A0LUgHwDg0sIcjASwEYAuADYAMMg5NwXAwwC+Rx+zPYC/AzgsSZL31jIOADyXJMnSWvuS+UJ7sxES2ad7O+deK+y7fQD0oLcV2797ArivMOZkAJOp/3HOuYkA3iiMw3tY1CKaz7VTzv4Pqwp/6Xmcc18jfGjbaC1jxCq4DQZwHIC3AQxNkiQpqALvTZLkN0X6f54kyTcZzlsUoXDtRgIYWdh4pxeavij8/w1Wr0cH4OgkSd7hMQomlcUAvo/KdfA5NS9E5XroDWDBWsbpD+DTdf5S+UV7s5FSZJ/+GJV/3fdNkuT9wh7kuS22fwFgjQy7zrktUanl7ZckyTLn3D1Y+zoR64DmM045a4CKsRhAW+dcK+fcdxGq7orxGirVcq0L/gInAnip0DYEwBGF1wYXXnsBwDHOubYA4Jxr6Zzbora/RN5wzm3rnNuaXuqFeHr4ZwH8nGzTvQuvtwCwMIVi3/4AACAASURBVEmSbwGcCoAdXpcD+AGAq51zA9cyjqh9tDcbOCn7tOqPhwrnXDMAx2QYahQK5knn3A6o/MEFgOao/MPjY+dcO1SaT0WJ0HyunXLWAK1BkiRfOeeuQuXNcw4q/0KM9V/onPsNgBGo/IvzqSRJHiu0LXPOvQXge0mSvF547S3n3O8ADHfOrQfgKwDnQrVc1pVmAP7inNsUwNcAZqJSLZv2I/l/AG4BMLnw8DK30Pd2AI86545F5ZwGWpwkSRY75w4D8LRz7szIOKKW0d5sFKTt0+Wo9POaC2BchnHuAPBP59xkAJMAVM3hm865NwBMAzAblaZNUTo0n2tBtcCEEEIIkTsamglMCCGEEGKd0QOQEEIIIXKHHoCEEEIIkTv0ACSEEEKI3KEHICGEEELkjmqFwbdu3Trp2rVrSU7k22+/DY4/+OADL3/6aZizrlWrVl5u06ZNSc4HAJYtWxYcV1RUeLl58+ZebteuXcnOYe7cuaioqIgljasRpZzLUvP556vzH65YsSJoW3/91amB1ltv9fN9s2bNgn4bbLBBic4uzoQJEyqSJKn1RduQ57Ohor3ZuCjF3tRc1g9Z57JaD0Bdu3bF+PHja35WEexDzuWXX+7lMWPGBG2nnXaal3/2s5+V5HwA4OGHHw6O77rrLi8ffPDqnE8XXnhhyc6hb9++JRm3lHNZat55Z3Vi52eeeSZoa9mypZc32mh1UtLddgvrpnbs2HGdz4NTSBRyLa4V51xJ8tY05PlsqGhvNi5KsTc1l/VD1rmUCUwIIYQQuaNeM0H/5Cc/8fJLL70UtLFJzJqYWDt0662rC4J37tw56Lf11quzgLdo0cLLS5eGNTBZw/Tll1962ZpX2rdv7+U77rjDy8OGDQv6DRo0yMvdunWDyEZWjcpPf/pTL7/++utB29dff+3lL774AmmcddZZXn7zzTe9/NlnnwX99txzTy/feOONQVuTJk28/M03q0tRsRlOCCFEeSINkBBCCCFyhx6AhBBCCJE79AAkhBBCiNxR5z5AL774opfnzJnj5d69ewf92P/Ghsh///vf9/KHH37o5VmzZgX9OLKMIzYmT54c9PvOd1ZfhtatW6ee05IlS7y85ZZbenn58uVBv1/+8pdeHjp0KEQ2svoALVq0yMubbbZZ0MY+XBtuuKGX7Rzdd999XuawehseP23aNC/zOgFC/zP+XPYNEkIIUZ5IAySEEEKI3KEHICGEEELkjjo3gT333HNe5gyZNmSZTRFfffVV0MZmKjZLsAkFCEOT2ZRhTRScJXiTTTbxMmejBoCNN9646Gd16tQp6Mfmu5dffjloGzBgAERx2NTJWZyB0MT03nvveblp06ZBPw6DZxOozQTNpjM2xbLZDAjn+Re/+EXqudvzFUIIUd7ori2EEEKI3KEHICGEEELkjjo3gS1YsMDLXFA0ZgJjU5btyyYLa+ZgswljM/WyyYozAbPJy47PJg97fhzBJBNYHDYx2Wg/hqMH2bTFJsvYGHYt8Bi8nqy5tWfPnkXfA4TRaJtvvnnqOcg8JoQQ5YfuzEIIIYTIHXoAEkIIIUTu0AOQEEIIIXJHyX2ArD8E+9twhXaWgTA7r4X9NNj/ZuXKlUE/DolmXyHr58HnyO+x587v22ijjVLPj32AZsyYkdpPhNfKhqAz48aN8zL722y66aZBv3feeafo2NafizOIM+yXBgCHH364l4cPHx607bTTTkXPyaZjEEIIUX5IAySEEEKI3KEHICGEEELkjpKbwDjLLhCalVatWuVla3rgTL3WZPXJJ594mTNB21BnNkWwSc2aKDjknk1gth+bVDi02ZpXGJtNWoRkLYA6YsSIoq9bE9j+++/v5dmzZ6eOzSawXr16eXnSpElBP15TRx99dNC2xRZbFD0nm2ZBZGfu3LnB8fz5872sFBJCiNpEGiAhhBBC5A49AAkhhBAid5TcBLZw4cLg+Lvf/a6X2YxkzU1sXrCZljn7L7/PRoGxaYs/i18HQhMbF0q1pgyOUmrfvr2XbYZgPo9WrVoFbWx6adOmDfIOzy2bMy1szuJs3WPHjg36tWzZ0su8NmyU4cCBA73MZpYTTzwx6Hf11VennlNW852I8/DDD3v58ssvD9oOOuggL7O5c4cddijpOd13331e3mabbYK2nXfeuaSfLYSoG6QBEkIIIUTu0AOQEEIIIXKHHoCEEEIIkTtK7gP00UcfBcfsO/Pxxx97edSoUUG/k08+2csdOnQI2tiviCt5s/8OkJ5Z2PqacD8Og7f92rZt62X2PbHVvrfffnsvc+ZrAHj77be9LB+g9JDx0aNHB8dLlizxMvt/2PW1bNkyL3MqBZv5mTM3z5w508s8d6L6cJoL3hc2HcT5559ftK1bt25Bv8mTJ3v5nHPO8fKYMWMynY/1C7z77ru9XFFREbRxWo5mzZp52d5/GiuxtB8xbr31Vi/36dPHy3y/BMJ7Jt/7evbsGfTr2LFjps/NyjXXXOPlHj16BG0//OEPa/WzRMNCGiAhhBBC5A49AAkhhBAid5TcBGZND5zFmbP72n4TJkzw8p577hm0sVqcQ2OtyYvV8Rz6bjNGs9mLM0bb8HYOzefsz6+99lrQj8fo1KlT0Pbmm296eY899kDeSVOzcxgyEKrneb5smgE2g6Zl+Lb9mGOPPTY4vuiii7x80003pZ67QuIrSSsEu3Tp0uCYi9Z27drVyzGzCd8j7PrYe++9vfzEE094eejQoUE/NnPZ/Xf66ad7udRh9uWITTeSlpbi+eefD45POOEEL7Npy157zrLO98/bb7896Mdm0H79+nmZiw8DobnaZhB/4YUXvDxv3jwv8/wDMoFlxe5rXgM8X927d099XzneF6UBEkIIIUTu0AOQEEIIIXKHHoCEEEIIkTtK7gN01llnBcdcrXv58uVe5lBKIAxX5dBxANhoo428zH4/1reHw3C53IW1Z/IYbJtmfyUAeP31173M6futbwiH9d55551BG5cCySPWzyAtDH748OHBMfv68PXlshhAOM9paRCANcPnqzj11FNTz+/www8P2h577DEvl6N9e11g/zn73WLfNW0+d9xxx+CYS5ZMmzbNy5y6AAj9PnjOfv7znwf92Nfu+9//vpd/+ctfBv3Yt4dTcljSfM6ANUvpNCR4XoHwHml9fqZPn+5lvt9x6RgAeOqpp7zM82evU5cuXYp+li1Tw8fvv/++l8eNGxf0Y38je+7HHXeclzltyowZM9BYqQ1/Gy45dNVVV3mZ/fQA4KWXXvLyYYcd5mX2mVyX80jjtttu83KvXr2CtgEDBlR7PGmAhBBCCJE79AAkhBBCiNxRchOYhUPJhwwZktqPVdU2KzCru9PCbi2s+rVqYDbLNG/e3MvWTML9WIX/hz/8IdM5iLhKlNMb2LDWLbfc0suc/ZvNoQDQuXNnL7M612aXtdm7q+D1CQCvvPKKlzk7eWMgZg5Juz61xQ033ODlfffd18tsVgTCjMxsQmnXrl3Qj1Xje+211zqfH6/ThmDysvdBPmY5zUQJAM8880xwfPPNN3v5vPPO87LN1p1mVlq8eHFwzNeUTddNmzYN+vG65HQVdr3y2rDpK3j9shmNM8UDa5rzypG037jqmKbZNYBNzo8//njQj82FzJQpU4JjTh/A19T+Vtck1QunwAGAn/3sZ0XP44gjjgj6yQQmhBBCCJEBPQAJIYQQIneU3ARm1XdppiirZuaoEVZ1AqGqj8ew0RocGRBT6fP7eGyOCANCVWoMG+nExFTQeSA2Dxz5ZdcDR8+xOtfOORe/ZFOZLWjJWYX5s957772g3+WXX556vmeccYaX77nnntR+dUXVXoupwnk/xuZi0aJFXv73v/8dtD399NNefvHFF6t9ngDQv39/L3PEDo8NhHs4zTQChFFKMRMY700uxgyEa4czBi9YsCDoVxXpZCMQ6xN7n+W55evGGbgBYNttt/XylVdeGbRxJC5nxWdzNACccsop1T5fjgB+9tlngzbOGM1mbGsq46zDtpIAm994nux9pS5MYFVzEys2G9uzNYmksvexyy67zMu8HtisDITRXuzmsckmmwT92HTG1Rhs9m+uksCRvHYeONLbnvvuu+/uZXaNmDp1KtYVaYCEEEIIkTv0ACSEEEKI3KEHICGEEELkjpL7AFn7JfvAxHwQrN8Pwxl+ufK6zQbK9v40vyF7HjyetTnHMgunjdfYMgTXBJ4H6wPFfjqcDdxm+WTfBc74befE2qqraN26dXA8a9asoufHaRCA0LfHhsiPHDnSy1yB/NBDDy16DnWFXd9Z1+CFF17oZc56bq8Jh71yiCqwZmXvLPztb3/z8oMPPhi08TVm+7/N0n7vvfd6mX31OPM8EPp8rFixImhjfzK+l1h/ha233hpA6DNUV6Rl+7X3Up4/ni9OFwAA++yzj5effPLJoI2vN/v5sL+VJe0aWthv5Pjjjw/a+Jj9PP76178G/Z577jkvs18gEPpt8f3CZhqvC6rmKes+tPuX11lFRYWXra/M0qVLvfzuu+8GbZwehDOls78VEN4LeS/b67bffvsVPXd7P+b9xvvSVm1gH0/O8A2EPlyHHHKIl22aBfZTy4o0QEIIIYTIHXoAEkIIIUTuqPNM0Ayr26y6lFWato1V0qwetKGxbM7i91gVI4/P4a9WnbfNNtsU+RZrUhtF6RoTsdB/zqLNKlJWkQOhCjfNHAasabbMck68HqwpgdcUm+uAMAs1F4S0ppWTTjop0zmtK9VVtVt69Ojh5fvvv9/LVSafKrbaaisv27DXSy+91Ms2xDYN3pusngdCNTxffw6NBYDevXt7mVNo2CKOO++8c9HxLHxPsBnh27ZtCyD7WqsJVWsya7bfO+64Izhm8xXP68CBA4N+bEaybS+//LKX2fQQuw/y+cXCvrPeI9ksbtMR8O+HNYnyHuR7iXWtsOkxSon93UkL/WZTFhCma2BzkDX3s/nRXvvvfe97Xh41apSXOTQdCDOsV61zYM17GldjYKwZivczpz6we4d/x216CU67wIVy2cwLhObBrEgDJIQQQojcoQcgIYQQQuSOejWBxfjggw+8bKMw2LTFWPVbWhFDa+ZIM7fFosXYu92qA7MWaG2sxK6bhaOsWFVts25zJBKbOGbOnBn044gXNn/YiJ2sBS7ZJGpVzhxBU5Pop9okSRJvDrQqZFYbx8wNZ599tpc5GsuaRq644gov77LLLkEbZ/Xl8ex8jh071suc7dfu7Z49e3q5X79+XrYqdDZncbTe+PHjg358HqySB0IzK69hmy24yhxUSvN2dYvR2nsQmwTZNGLNmVx02n7PPn36FG3jiB1L1kz3sWvHa2jQoEFePuigg4J+XITVRnlyFn9e//b8Sm0CW7p0Ke677z4AoXkYAM4880wvc+STjbpkMxV/T2vO42zYNpKKzWocYWvXA9/vuACu/U1Ly7hvqyDY4rNVLFmyJDhm85W9N/NnTZw40cu2YHZNkAZICCGEELlDD0BCCCGEyB16ABJCCCFE7qhXH6CYHfjVV1/1srUJcugz2+qtbZrtmdxm7cDcj30LbKVx7sc2TGt/53NqzNXfs2alZYYNGxYcs28B+wDxtQbCMEwOebVh07w25s2b52Vrm+bP4vONZa/t1q1bcPyPf/wjtW9d88UXX/js1ra6Ns9TrKI6+xSwL44Nded+NlXEOeec42X2O7CZevl92223XfA9GPb7GDdunJc7duyINDhseI899gjaJk+e7OV99903aOO1yHufK6YDq9dLOaW4sCHBab4XNnsup3Kwmc457Jwzp8fg67Zw4cKgjeeFfTyt7yZ/7qOPPuplm1aBsxNbnzD+zeC1Zv3jYvu9NmjevDkOPvjgop/Fc5a1sjn7Idp75Jw5c7xsP4v3Fb/PjsH3SZ5Lnjv7Pr5/2t9q3vfs22Tni+8psX3Fv+N2LU+YMCH1fWlIAySEEEKI3KEHICGEEELkjno1gcVMJRzeHDNZscnDmsDSwttjZilW/XMopR2PsxFzuChQXqrxUlKT78kh1EAYqs4hmTZsmueFwx85Wy0QZqnl9TVixIigH68HNgVZU03aOcSIZcAtFeutt55XI7NJCQivCWefteG2rFLmEF0bKsuq9gsuuCBoO+KII7zM+yJW/JALN1ozzJQpU7zMZktrKuPxeQ5tUUgeY/To0UEbm1PZVGgzEFdlyC2V+WTlypV+XQ8ZMiRoa9++vZf5u9h7FZuVeN1asyeHGE+fPj1o43XMKQKeeeaZoF9aAVRr2kozNVtzCK9ffo+9J7z11ltetvuWj9ksY8Ov/+d//gelxDnnP/+EE04I2uzxusLf2f628n7h62HvVWn3OPubyWOwXJ+/fTYbeBakARJCCCFE7tADkBBCCCFyR52bwNIKT9qIK85qaU1bsYJ7TJp5zKqueYy0IplAqOpjE5ilullcGwOxgqIcvTNp0qSgjTOWcj9bDJUL4nExTqv25EyhHFkwYMCAoB9nIuZ1YqOaeK1xRtkY9aEGXm+99bx5gyNsgDAai6PpWrZsGfTjyCGeF2t64EyyXMQRCM1ebL7iiB0gjGbhbLzW3MQqeY5YsiYwPua1aDPicpSLnc9FixZ5OVZYssrcVKp93qRJE5+h2c4lH3ORVi5iCYSmMr6GtqglZ+C115TNY3wNuIAxEJqxOcrK3tMZHs9eX143PEd2vnifxUzXXAjUXs/TTjst9X21wfrrr+9Nzfba8zGvS2tu4t+rWD/G3oN4bnkf2THsb14Vdo7Sfnft6zwey3at8VqJfS8ew5rVuXhrVvL3Sy2EEEKI3KMHICGEEELkDj0ACSGEECJ31LkPUJrt0NpHuQKuDV3k8F32AbFZKG323yqsbZrPid9j7aj8PluFnGHfgPoIia5N0my4QPg9Y/4Qv/71r73M9mcgvB7cZm31HPrO/WyWXrb3c1g3Z4UGwirYHBpu7c/sE2T9WMoJ9jWwc8H7JZY5nf1yeP+xLwgQhh/bNcF7lcPn7Z5L89mxvl8cEs2+TOzjAoRzyN/L+hqwH4n1gWJfGc46zGMDq33LSpXlff311/fX4fjjj8/0Hnuv4+/C4eh2Lvna23swr332sbH3sOXLlxcdz1Za533L68FmZ+bxuF+sSridC17znCLAZu23a6CU2LQT9ljUPdIACSGEECJ36AFICCGEELmjbExgNtSW1bGxkD4OhbP9WG2bFk5r38dZptkkAIThiGnqYSBU1VoTQTkWR7Vzwt+Hv2fWsN8bbrghOOaQ87322itoGzNmjJf52tiQV1aF8/nZgovWXFrFXXfdlXpOHJpv1dL8WTakupxwzvm5steOUzbwfNqCmVzwkFMIxEJbLXy92GTF4dZAuIfZjG3H5vFioc48b7xO7frg+4zNnsymM74ncNi/Hb9csPcVzq7Mck1ChYVorJTfThZCCCGEKDF6ABJCCCFE7qjXYqiMjbTImrE2Zopis0nMBMZjcASCjTrg9/F4bDoAgNatW3s5lqm6XLCmQ5sNuQobacJZgP/yl794+eabbw767brrrl7mbLsAsNtuu3mZszjbDM9p5omYOeLxxx/38mGHHRa0PfXUU0XfY8fj+YtlguZ+9R3pd9RRRwXHbFbi4qB2Lth8OHv2bC/bYpW89m1Wdb5GvP84kzcQRtSxqdmacjjai9+T1Qxl1yx/R7u/2SwXM8cKIRoH0gAJIYQQInfoAUgIIYQQuUMPQEIIIYTIHWXjA8Qhs0Boj7d+Buxzwxlrrb2ffTHYD8JmpeWQX/YBsmHwPAZ/lvWlYB+ghsgjjzzi5R/96EdetteNfUEY6zMxbdo0L++0005B2+TJk73cvXt3L0+dOjXol5YR1l77oUOHetn6/TBpWcItvIZsZluG10a5pTpgfxnOnG2zaDdGYj5FQoh8Iw2QEEIIIXKHHoCEEEIIkTvKJhP0nDlzgmMbospwEbxu3bp52RY+ZNhsZotactg3j81ZoYEwFJtNHjZkm2kIYfA2W+7FF1/sZTY/sqkwhjUv8by8+uqrQdsuu+ziZQ69tp/F4ctc3PHII48M+h1xxBGZzjEt1N+aTNh8ZAt1Mg1hnoUQQqxGGiAhhBBC5A49AAkhhBAid+gBSAghhBC5o2zC4K3vBZediPnisK8QV4YHQl8RDrO3afnt+6qwvix8jlx2I1b6IFY5u1zgkhFAeK0233xzL/P1BMLrwyHx9juzH431lRk3bpyXO3Xq5OW+ffsG/bhMxty5c708ZMgQpMG+R7xmgDXLO1SRthYAoF27dqltQgghGhbSAAkhhBAid+gBSAghhBC5o2xMYDYsmc1N1izRtm1bL7N5xZo5+H08nq0u/9lnn3mZTSPWXJNm6rLV5ZmsVavrk9NOOy04/s9//uPl6dOne5lTBADpmbZjoeRNmjQJ2vh9s2bN8jKHvQNhhu4RI0YU+RZrYjOIM2lpFux7OAN1LA0AmwNjnyuEEKI8KP9fZyGEEEKIWkYPQEIIIYTIHWWjq58xY0ZwzCYPa65YtmxZUdmayj766CMvr1ixwsszZ84M+i1evNjLkyZN8vKuu+4a9GMTEJvH0rIKNxSsWeqFF17w8vz58718zz33BP2efPJJL3OUViySKiu20OpTTz3l5YEDB67z+FtvvXXR13ndAWGm8R49eqSOV24FUIUQQsSRBkgIIYQQuUMPQEIIIYTIHXoAEkIIIUTuqHMfoLSwcJv5t6Kiwssc9g6E4e5t2rTxsvXDWLBgQVF5p512CvpxxuB58+Z52Ya9b7zxxl5mXyHOlmxpCGHwMTg78+9+97ugzR5XYf25uMo7+2wBYUoC9rdJ89GpLbjifb9+/bxs1xqfX6tWrVLHU+i7EEI0LBr2r7MQQgghRA3QA5AQQgghcoez2Y6jnZ37EMC8tXYUtckWSZK0WXu36qG5rDc0n40HzWXjotbnU3NZb2Say2o9AAkhhBBCNAZkAhNCCCFE7tADkBBCCCFyR70/ADnnWjnnJhX+LXLOfUDH0RoTzrmBzrknUtrucs59L6XtQufcxua13zjnTnbOHZH2PrF2nHNHOucS59x2GfvPdc61LvL6ymL9I+NUq39knDOccx1qY6y84Jz7rXNumnNucmHf9q+FMUc65/quax9RPTSXDZ9SzCGNnfqb2xCp9+QlSZJ8BKAXADjnfg9gZZIkf6qFcc8q9rpzbn0AFwK4D8Bn1HQAgOMA3ADgCQBvres55JQTAbwM4AQAv6/fU6kRZwCYCmDBWvoJAM65XQEcCqBPkiRfFB5mG3ZxvJyiuWz4lPMcOue+kyTJ1/V9Hky9a4Cy4pzbizRDbzjnNik0NXPOPeKce9s5d78rZC/kvyiccyudc1c5514D8FsAHQCMcM6NKLQ3R+Ui2RrADwHcUPic7s65Xs65sYWn6aHOuc1o/Fucc2Occ1OdczvX7RUpP5xzzQDsDuB/UPkAVPX6wML1WmOeqE8T59wzzrmzi4x7sXNuXGEOrox8/o3OuYnOuRecc20Kr6XN3xqvO+eOAdAXwP2F+W+S9lnC0x5ARZIkXwBAkiQVSZIscM5dUZizqc65v5t9eZ1z7nXn3Azn3B6F15s45x4qzMdgAP7aO+fucM6NL/xVmzr/Yp3RXDZ80uZwrnPuysL9cYoraOidc02dc3cX5vcN59zhhde7OudGF/pPdM7tZj/IOdev8J5ukXHOcM497JwbBmB43V2GjCRJUjb/UKkx+FVK2zAAuxfkZqjUXg0E8DGATqh8mHsVwIBCn5EA+hbkBMBxNNZcAK3p+CgAVxXkewAcQ22TAexVkK8CcAuNP6gg7wlgan1fv/r+B+AUAP8oyGNQ+VcI1jJPcwF0BfA8gNNorJWF/w8A8HcArvDeJwDsWeSzEwAnF+QrANy2lvmLzWvf+r6WDeVfYS9OAjADwO10TVtSn38DOIyu740F+RAAzxfkiwDcXZB7Avia9m/Lwv/rF97fU3OludS/as3hXAA/L8g/A3BXQb4awCkFedPC+5oC2BjARoXXtwYwviAPLNyDdwMwAUCXtYxzBoD5vIbK6V+D0QABeAXATc658wFsmqxWpb2eJMn8JEm+ReXEdy3y3m8APBoZ+yAAT9sXnXMtCp/1UuGle1H5sFPFgwCQJMkoAM2dc5tW4/s0Rk4E8FBBfqhwXEVsnh4D8M8kSf5VZMwDCv/eADARwHao3JCWbwEMLsj3ARiQNn8Z5lVkJEmSlQB2AnAOgA8BDHbOnQFgb+fca865KQD2AdCD3jak8P8ErF4He6Jy3pAkyWRUPqBWcZxzbiIq10APAPLRKwGay4ZPZA6B4nN1AIBLnXOTUPkQuhGALgA2ADCoMOcPI5yn7VH5R+lhSZK8t5ZxAOC5JEmW1tqXrEXq3QcoDefcuQCqzCGHJElyrXPuSVT+pTHWObdfoe0Letv/t3fm8VJVV77/LYc4REUZVAQZHUAQMCDGIc4haqI+h25j0kZjdwbzYtR0m2jSpt9TE/WZl2jSsU1iXmxMiDGx7eCMAzggqKhMoqgoKKIiiESMJAj7/VF1N7+9uGdT93KHqnt+38+HD6vq7Dp16uyz9zl3/dZaey2a/02rQwhrM183FsA5rThMX0SptEWVzKwHKpPjcDMLqPyFF8zsW9UmuX6aCuBYM5sQqn9C8K4BXBFC+HkLD6m0fdHRVMfWFABTqhPmV1D5y39MCOE1q8T2bU0faboW/HWwQZ+Z2UAA/wJg/xDCCjO70e1LtCHqy8anmT48s7qpub4yAKeEEObzPqr9/BaAkah43lfT5jdQ6bf9sD5Wsmg/BwB4f5N/VDtRtx6gEMLPQgijqv+WmNngEMKcEMJVAGag4gloLe8B2B4AzGwYgOfpASluCyGsBLCiSdsGcAaAh2g/p1X3cQiAldX2ZeVUAONDCP1DCANCCLsDeAXAITV89nsAlqPisvXcmiHHuQAAIABJREFUC+Bsq8QXwcz6mNnOzbTbrHoMAPA5AI8W9d9G+jX2v9g4Zra3mbFHbhSApklwWbXfTt3wkxvwMIDPV/c5HJWbLgDsgMoEutLMdgFwbJscuNgA9WXjU9CHuUrU9wI4l+K69qu+3w3AG1WP/Rmo/EHbxLsAPg3gB2Z2+Eb2U9fUrQeoGc43syNQeXqdh4pkdWAr9/ULAHeb2RsA7gRwD227GRXX3zdQGexnArjeKmnzLwP4IrVdYWaPoTKwz27lsXQVTgdwpXvvVlQeRn6/YfMNOB/A/zOz/xNCaPIaIYQwycyGAphWHVurUIk1Wuo+/z6AYWb2FCrxRqdV3y/qv6L3b6y+/wGAA0MIH9Rw7GVmOwA/rcq/HwJ4CRX3+7sA5qASe/BkDfv5DwC/NrPZqEikTwBACGGWmT0D4FlU+mlqW/8AEVFfNj5FffiZgvaXAbgGwOzqw8vCatvrANxqZn8HYDKcFyeE8JaZHY/KffTszH7qmtIvhWFm96ESfPtGCz83BZWA7RntcmBCCCGEaDcayQPULoQQPtnZxyCEEEKIjqX0HiAhhBBClI+6DYIWQgghhGgv9AAkhBBCiNKhByAhhBBClA49AAkhhBCidLQoC6xnz55hwIAB7XQoojkWLlyIZcuW2cZbtozO6sv330+Lgi5fvjzaW2yx/nLcfPPNk3ZGa6d++GHxgsIf+cj6hY//8pe/FH5mzZo10d577703dthtxlNPPbUshNCrrfdbj2OTz3muPxuVrjA2OQnmb3/7W7Ltgw/Wl8D66Ec/Gu0tt9xyk7+Xv4u/BwC6deu2yftvDe0xNutlXK5bty7afL79ud92222jzWOU50sgvQa22ab+1oyutS9b9AA0YMAAzJihsjcdyZgxY9plv53Vl08+mdZRGz9+/fJfPXr0iPb226fFmPnhaNmyZdH2N9J+/fpFe+bMmdFeujStm/j2229He/LkyTUde1tgZrmqrK2mHscmP9z6mxr3Z3vis1z59WabbZoDvLPHJt/U/G/JbWP4QeTVV19Ntj377LPRPuCAA6K96667bvTYNsaiReuHwbx585JtxxxzTLRrfVDm3wu0rm/bY2y257hsyW9etWpVtLlf2QaAESNGRHurrbaK9htvpGXydtlll2iPHDmy8Ht5vHXkHz219mXp6wCJjmXKlCnJ67lz50abB8grr7yStOMBzA9AO+20U9KOb7Q77rh+bdqePXsm7RYuXFj7QYsEntTuvffeZNstt9wSbX6wfOutt5J2q1evX1roq1/9arSfeeaZpB1P8s8991y0hwxJV8K54YYbos2TuJ90+bV/OGo0rxQfb603w6985SvJ67/+df0SfXzDA9I+u/baa5v9XiD1Duy33/oVELx3gR96+aHH/7Fzzz3rC/O/++670T7hhBOSdqecckq0W/sA2Mjkftf8+cmSXHjvvfei/cILL0R79uzZSTueP3lu5X4A0vHL42jUqFFJu3ofU13zyhBCCCGEyKAHICGEEEKUDj0ACSGEEKJ0KAZIdCg+C2zgwIHRfuedd6K9++67J+1Y0+esLY5h8O04Bqh79+5JO/4cxwPVQ8ZGPcBBqn//93+fbOM+XLlyZbKN4xL4nHMWkd8/x4X52C+Gg445pgEAPvvZz0ab4xO+/OUvJ+0uuuiiaPv4hM4K2GwttQZ0X3zxxdFesWJFsm233XaLts8C4zHI/ewDYvncn3POOdE+8MADk3YcOMvf6+PzOKaIs5I4vgxIg7YvuOCCZFsZl3hasGBBtBcvXpxs69+/f7S5//z8yX3Ec6HP4uSEFY4P8gHf7ZUo0FbIAySEEEKI0qEHICGEEEKUDklgokPhFEwgrcfDqe5eKuPXO++8c7RzBQ5ZJvEucf7cww8/HG1JYBXOOuusaHvZhNNjvbTFUgzLSL5cAUufXNbgqKOOStrtsMMO0f7zn/8c7e222y5pVyRf3XXXXUm7iRMnRvuxxx5LtjWC7MXkUr1ffvnlaHOpCS8tswTifz/vs0+fPs1+BkilqD/84Q/RZvkKSKUu7te1a9cWfi/bLJsBwJw5cwr3wZINb/NSTleCpSiWsoC0xEHfvn2jfdNNNyXtbrvttmgfd9xx0T766KOTdkOHDm32u3x5ES6FUI8FE+UBEkIIIUTp0AOQEEIIIUqHJDDRobDcAaQyVS67iDOK2KXtpS3eB7v0vdueJTAv8ZSVX/7yl9HmKsA+S4fPfy77iPvGryXE67Sxa9xLn9xvOSmDX2+99dbR7tUrXQ6IZbRbb7012caVhRuB3HIiDzzwQLS5j/i8A+m5yq2xx+O0d+/eyTaWsW+//fZo+6rALHGzNOKvIV5nimU+P9b5mnrkkUeSbYcffnjh5xoZPh8scwLp+eVlgIBU+mQ586WXXkra8VqKnBW4ZMmSpB3LxyyBciYakMptp59+erPvdybyAAkhhBCidOgBSAghhBClQw9AQgghhCgdpYkB4vTM66+/Ptk2bNiwaHMa7oknntj+B1YyfGwPxxNwLACvFg2kcToct+Ap0vt9Si63899VVq677rpo8/nxKcYMx2v4zzG5qsuMj2vh7+b4BN+O03w5lsWvks6xQj4FuNFigHLwNc3n2sdY8Tn154rh8+YrRvO55/IEuXYcv+NjgHh883zBFb6B9JriVH8gjQHKxUo1Ghz3w7E3QDrH7bHHHsk2XvV97Nix0d51112TdpzGznFV/BkAeOKJJ6LN8UVHHnlk0o6vm6lTp0Z7r732Strtt99+6AzkARJCCCFE6dADkBBCCCFKR9fxDW6E6dOnR9svpPjkk09G+6c//Wm0zzvvvKTdNddc0+Lv9S7nyy+/PNqcavzzn/88aeelhUaGU5k5DRlI5Ud2x3vJhKucvv7669Hm1E8grTDLLmGfys3VS/3ijiKVQ7yUwf2ZkxZzKfLcv0XVo4FUvuBtPmWbj5clFF99ltv5qrWc6uurDjcanI7M59CXI+B0dC8t83jkPspVVefv8u1YDuF2XqLi64u/l4/V759T8bsyPA9yRXy/zY+jcePGRZvnSC5b4Nux/OylLe4z7n9e0BpIK8Xztefn3D333DPavsp7eyIPkBBCCCFKhx6AhBBCCFE6Gl4Cq3WhO45A79atW7KNJTHOHrj22muTdmeccUa0R48eXfhd7Irk/QHA8uXLo81VWc8888yk3WGHHVa4/0aD3aLbb799so0r9bIb28sufK7Yvevd4gcffHC02X3urw1293elSrEt4eyzz05e87nk8/3aa68l7diF7rNIONOH+zC30GatC1QWLXDpYenmzTffTLZxJXJ/LT700EPR5qq1jYCXtlhGYNmZzw2Qysl+oVQeIywd5ipG+3HLsLRVa59z5peXV/h4fVXkrgSPSz6/XjpkucnPizy38jnt379/0o77ljO/uHo0ADz77LPRLqrc7V/nsjMXL14c7SFDhqCjkAdICCGEEKVDD0BCCCGEKB16ABJCCCFE6Wj4GCAfW8CwZvzKK69E22uMrE1zfIOvpjlmzJhon3rqqdHu169f0u5HP/pRtAcOHJhs45gJ1uZ79OhR8CsaH67i7GMQOBaE4xh8O4754Cq3Pl2Zq6MOGDAg2j4dmvu5K5UcaAnnnntu8nrSpEnR5vPv4wm4n3yZB45L4DiP3DjlbbmK0dxPHO8ApPEqnJrvKwTzb/Hf9fDDD0e70WKAfFoxx3DxGPNlI3iO3HvvvZNtPOZylcF5/xzbUWv1bz/+eKw+/fTT0fZ9ztchx112NThurajcA5DG9nTv3j3Zxvc4HgP+vN1www3N7sPH0jE8V/hYNJ4P+Br18zuXhFEMkBBCCCFEO6IHICGEEEKUjoaXwHLVZidMmBDtHXfcMdo+BY/ddJym7qvcsov47rvvjraXAYYOHRptTgsG0sX92E3NaYAAMHz4cHQV2DXr3dgMu0+9q54rObNrnfsVSN3CXOnXS4zc57nU3a6MX4CQr0FeGNSnHw8aNCjafkFGHiM8Nr27viiVml31QDoG+TP+OmI5mV33ffv2TdrxtgsuuCDZtv/++zd7TI0AS0VA8TXNcw5QXMUZKF6w1M+5OXmzqF0uDb6oYrSXazicwI9vHvsshTciPH+y7Vc04LnQ9zP3Gd+T/D3uT3/6U7S5hIs/h3wfy6W3s9zGEtioUaOSdjmJrT2RB0gIIYQQpUMPQEIIIYQoHXoAEkIIIUTpaPgYoBzf//73o83LX/gVyYtWMGa91W/jMuxeA+cS+z6FmPVt1th5tXoAOOaYY9BV4PPj09EZ1o/9ciWc+s7stNNOyWteAoBXGPaxKty3fkkEAdx6662F2z73uc9F26/CzTE8HPfj40aKlrDx7XjM5eJV+LriWKZ77rmn4Fd0LTiN2MMxHz5ekctB5FKYeWz6dPai1PdcnA+nvvv98XHwsfvlLjjezO9j5syZ0W70GCCOt+H5zccA8TafZu5j65rw96ejjz462nyP8+14bPNcmvtejjfy7Xgfvi9rjTFrDfIACSGEEKJ06AFICCGEEKWjISUwdpGxe4yrPQNpah2nTHppi129OVcct2MXvk859VU4i/bB7v5p06YVfqbR4fOYK1vA27zL1qfFN+Grdc+aNSvaLIH5dE92K9e6MrWoUDQOgFSKypU/KKoK7PuC5ZWcDMPHkVutvGjfQL4idb2zYMGC5DXLSCxX+JIGe+21V7T92Cw6j7nzxp8p6mN/fP4aYimHt/l2/L3+mObPn1/43fWOT2HnkA2Wjvz9jseYLw9SdG37exeHAxSNPaB4vPlriKUzrmjt27E0y6VogLQESlsjD5AQQgghSocegIQQQghROhpCAvMR6JwZwO68Sy+9NGnXq1evaHO2g3fn5VzrDLv92IXrs4h4m8+s4N/Crt4pU6YUfm+jw33ks3dYmmL5xGcXFWWPsQsfAKZOnRptdv2zBAqkVUm9a13k8VmURRRlegHFC9/68ZLLFmJ4/7lq40xOjm00lixZkrxm+TFXIZjnUi95FcmAtY6XWs+vr5bPsgxnefprg+dtL5H7xWEbCX/e+dpmqciPQ38ei6hVsspl7PL55nHp5/cXXngh2pyd6fuSx6yvCi0JTAghhBCiDdEDkBBCCCFKhx6AhBBCCFE66jYGiHXFnBZ5++23R/vGG29MtnGKNOulXqcsSqvPteP4Eq+9ss6eW2mc9e2XXnop2XbvvfducNxdAa9vsx7N59THI/i0zib22Wefwu/idEofP8LxYY2W8tzZcCq1H5tF8QU+7q7WFGt+zbEQPg6FY4VqjYXoSvj0dh9j0UQuBs/D557Pdy4Wi7f5uY/7j8e6L3nB4zEXz8W/0VdF9jFRjYTvO+6joirZANCjR49o+1TyolIFfrzx+eax7fuSx1uu7ATHLPGc6yv9F614397IAySEEEKI0qEHICGEEEKUjjaTwNj1WWR72EXuZYicLHHFFVdE+7LLLov2kCFDknbsmmMXbi7tMne8RYsxejciu3p9+m+R3MYuYWB9RWOfttqI5NziRQvp+fTMogVL999//+Q19wX3l++HokX6xMbhiq5cXgJI02jZne4lq6IFND1FEqkfF3wcXF6iLPhSITzmiqrxAmkf1VpB2/cXfxf3s5/TGG7nxzrPEbUuoOnnlUYubeGvbf4tfO697MlzWq6Pcvcufs3791Ik30P5eP155+/i9Ha/eC/Ld5LAhBBCCCHaET0ACSGEEKJ0tJkE1tYLCU6cODHa3/rWt5JtvNDdyJEjo52rasluce/q5XbsssvJcrmMlJy8UrSIqs+maXI/NrIrt4lcBglnNaxYsaKwXVG2V1F2GJBeDzn3vrLAKhTJsx52k3uZgxeZ5b7xrvYiqTnnQs9Jqfw6J73U+hsbAZ89xbCMwLLXqFGjknbcR16WKKq4n5NNODuoKBMNSOc7Pzb5d+2yyy7R9jIM/67cwtV8HHx89YqXKfna5vGRk+5zldd5XvSyIpMb55ydzPvz45KlLb7P+muI9//aa68VHlNbIw+QEEIIIUqHHoCEEEIIUTr0ACSEEEKI0tHulaB9Rcr7778/2jNnzoz2HXfckbSbO3dutP2K35z6zNqmTwVlfTOX3s4Upbp7WI/2Wjzrr34ffEz8XV4vb2rX6HEKQL6PeKVfXsHZn9Pdd9+92X379PiiCqW5UgU5HVxsSFFMApDGnnBf5NK0eR9+HPD44T7z/cnXS1da5T0Hx8x5+JwWxWsA+Tgdbps7p7XOrUXp1z5uhMcjVxL2MS+80riPbeJ9Ll26NNp9+vSp6Vg7E98n/Fv4N/sxsOuuu0ab759AGgObSzMv6mc/R3LlbV7RYMaMGUk7rvjM8Vw+3oyvIR8D1Z6UY6YQQgghhCD0ACSEEEKI0tFqCWzKlCnJ60svvTTanMbG7kcA2G233aK9atWqaPsUx0984hPR9jIQuwR5W85Nx5/x7biKLLsfvYuRUzdzlWw5tdRLBEUVUPlcAMCBBx4IAPjd736HrsTbb7+dvC6SEr1bnBe2zcGuXt6fLzPAbuAyVg5ujlpTxHMLF/LYYgnMX9+8/1yphyJJ2n8vb/MVcou+t9F59913o+3PB89PXKm3f//+STseI16u533kZK6iSsUen5pd9Bke+5yKP3z48KQd32f8nM7HxDJaI+BT9YtKp3CKud/mq0kXzXH+3PD55jHrF+Xm8833u1deeSVpx+VLxo4dG+177rknabfvvvtG219rzz//fLT9ag+bijxAQgghhCgdegASQgghROlokQS2Zs2aGL19zjnnJNvYJcaZPWwDqZuVI8S9CzO3EBvDbtpcpk8OlqL4u7xrlt2ILJVx9pI/Dr/wKrsmcxLNoYceCqB4EdBGgvvBZwMtXrw42rmsOJ8JWAS7hVki8OexrSuXlwmWUVhmBtKKrnxefX/ytqKMMCCdL3KVj/naqXVRz0YnJ+sXzTOf+tSnknazZ8+OtpdeeB7LVVXn/fNnfF/y53h/Xr7j4+DfuOeeeybtbrnllmh7ibUok6wR8HMkz598rg855JCkXdF9DCiWmb3syeMyN454/zzP+j5i+FnAy3fcX34+bs+sMHmAhBBCCFE69AAkhBBCiNKhByAhhBBClI4WxQC9/fbbuO666wBsmKbM8Ty1Vprk9HOv07Lu6bexRsgapq9iyXE1vL9cyihXG/W/kdMu33zzzWhzBU4A6N27d7S91smxKHxMrKMC6zXWrl7Vtkif96mQ3bt3r2l/ffv2jfZzzz0Xbb+aMevbjbBCdEdQFPPh+4LjS3wMAZ/LXHp7UVq1H3M8RrjPfHxfLkal1mNotFiwXKV6/m3czsckcmyWH2O1xgBxPAi38zFbvm+b8HMk74PnXB/zwunXPsaM4zV9Cne94+O5+LfwPJaL2crB9z++b/vv5lgkvlcDwOuvv97s9w4aNKiwXa9evaLtY7b42vBV/3MxwJtK1767CiGEEEI0gx6AhBBCCFE6WiSBmVl0p3rpgqUjds15uYndmywj5dzRXr5gNy7vz7sAi1ItvazErlp22XnX6eGHHx7tyy67LNr33ntv0o5/S66qJ7sBO3IBuM7E9xHLKXxN+fPGC+7l2HnnnaPNFUS9xMivG2GBxM7ES1l8ffuxVKsUlVuolina5uUfvna6QumIWshJkTxn8vyWk8B4PgbSMcdyiK+0zWOOt3kph/uFF8l+9dVXk3YsbfEc6SVKPl6uJAykv9+nldc7/l7IY4WlKF/dmceAl4h5HBUtGO1f5xYf5nbcX1725Mr/LHNxVWggvZZ9SZj2HM/yAAkhhBCidOgBSAghhBClo0USWO/evXHJJZcA2HBRywcffDDa7Jr0UebsSmMXnnfhsmSVW6SPbd+uSB5j96tv981vfjPa559/PmrhpptuSl5zFph3HbILmt3PRRkSXY2ca5bdoD7rwLvTi+CMEv6Mvzb4fOeyaUQ+a9JLKkVZW56iisFe5uB2vD//va2p/NvoWWB8DXtZauXKldHOLbrMvzlXkbloQU4gvRew7Pzxj388aVcklXmJlauL87H7bFt+7RfJfPHFFwuPt97xcySfH5aY/CoLM2bMqGn/PHb8uedxxOPDh4OwxOivKYbv8Sx17r333km7hx9+uNnjAzYMX2hL5AESQgghROnQA5AQQgghSocegIQQQghROlod/PCTn/wkec3xLNdcc020x48fn7TjNPMVK1ZE21d75NQ3H//BaXL8vT4Fj7+LP/Ov//qvSbvvfOc72BR4RWUg1Tq9nstxLlwZ86233kraNenWRRVzGwmOLfCpm/z7OF11t912a9V3DRgwINqs/ftSCoxigCoUXWstWU27aGV3H19TlC6fWw2eycUu8BjrynDsRS4Og8/v448/nmzjOJLFixcn2/ic8v59n3Bf8P78WOd98Gd8Jei5c+dGm1Px77vvvqQdz/c+BorjSPzc2sj4FHGG57hcejv3n78/FcXw+bIkPFfzePMxvxzLyfdqTp0H8lXjfUxQWyIPkBBCCCFKhx6AhBBCCFE6Wu379+nd7CK78MILm7U9nDr/9NNPJ9vYDbpo0aJkG6fFsUvQu8q+/vWvR/uiiy4qPI4icpWlmSuvvDJ5zVWxcwvbsRtw9OjRze670VJzm4Ndn97lyjIVu7S9i7RWONWWz50/j/y9/phECqdUA7WnrbPt5bWiBWi9657d9fy9OZe5Xxizq7J06dJo77HHHsk2niM5rdynkrM87edPljm4v3xfFkncubHO23zJC5ZcWdbx6ez8XfPnz0+28XXT6HMoz4v9+vWLtk9NnzdvXrR9ZewiadqPN97Gfe5DCFhWLFqZwe+Df0cu7CC3ekJbIw+QEEIIIUqHHoCEEEIIUTr0ACSEEEKI0tHqGKCieJiWcOSRRzZr1wu1/sYzzzyznY+kseGYjKLYDyDVqTmOKtfO6/usVee0aY47yKXIl4la0+Bz579ozORWfM9p/Bz3kbuOimKPujJF8XNAeu0vW7Ys2r6/OIbSp63zuMiV4+B4o4EDBxa2Kxrfvr+4PAhfT/74cvFG/PsbrcwFx2wBwGuvvRbtUaNGRdvHxi5cuDDaI0eOTLbxGOPz4c89n0cuReKXj+J23Jc+Lom3ccyavw75mPwyW+0ZoykPkBBCCCFKhx6AhBBCCFE6Gss3KBoeruzqYXdpruIpu229e5SryrJb1Usz7IKVBJbHS2C1pplzCYiczMWpuL4vuK9z/cT9y677Rl/xPQdXz/eyCVdE5zIGXl7g6sxedua2fH591X6WoliK4zR6Dx+vb8ffxf3FFfaBVAb1kijPMzlZrh4ZPnx48pqPnyste1nqxBNPjLavhs7jgOdFPz5YOuTx60th8EoNPD/4+ZjncZZifUmDk08+Odr+Ws6FTWwq8gAJIYQQonToAUgIIYQQpUMSmGh32JXOmQBAungiV5TNyR05Cayo8qiXPljGyS0kWSaK5CF/fthtzm5tAFiyZEm02V3vs014HyyBeamSpTO+dvz+WCbgKvKcoQTkJdhGY9iwYdH28hUv0Pz9738/2j4jimUUHotAKk29+OKL0Z44cWLSjuU27r8XXnghacfnnvt83LhxSTvuW+4/f3wsy8yYMSPZxpXkDz74YDQSvjK2f92EXz2ByS0gmlvcmPuPpSg/z/I+eN72FC2A6+VMrmTO8lp7Iw+QEEIIIUqHHoCEEEIIUTr0ACSEEEKI0qEYINHu8MrExx9/fLKNYwG6d+8e7SOOOKJwf7kK3bzaNevKPhaEq81yLEWZKaqYe8wxxySv77333mhz9VkgjQni2AAfR8TxBZwS6/uWY7U4psivas6p2IMGDYp2Luan0VPiOV3629/+drLt0UcfjfYJJ5wQbU5tbi2XXHLJJu+jLeAYoPPOOy/Zdsghh0S70SpB5+D50sf5cNykj8spKiviU8x5vPH+/DnkuE6eS318Eccv8TEUxTUBG8b3tcWqE0XIAySEEEKI0qEHICGEEEKUDsstcrdBY7O3ASzaaEPRlvQPIfTaeLOWob7sNNSfXQf1ZdeizftTfdlp1NSXLXoAEkIIIYToCkgCE0IIIUTp0AOQEEIIIUqHHoCEEEIIUTrq4gHIzE4ys2BmQ2psv9DMejbzfosWdWpp+8x+zjKz3dpiX10VM+thZjOr/940s9fp9aYXJxFtzqb0mZkdbmZ3FGy7wcz2Kdh2vplt69672Mw+b2b/o+hzon0xs++a2bNmNrva/wdk5uETzOyigv0cbmYHtf8RiyLMbFczu9nMFpjZPDO7y8z2auE+djSzr7XXMXYUdfEABOB0AI8C+GxnH0grOQuAHoAyhBCWhxBGhRBGAbgewI+bXocQ/gYAVqHDrkkz6zoV0tqBWvqslfv9pxDCPP++mW0O4HwA27pN4wBMAvA/AOgBqIMxswMBfAbAx0IIIwAcDeC1ovYhhIkhhCub2c8WAA4HoAegTsIq1T9vAzAlhDA4hLAPgO8A2KWFu9oRgB6ANhUz2w7AwQD+EfQAVP1LYYqZ/dHMnjez35or3Wpm25jZPWb2pWb2e6GZPVn9i+V/Z77//5rZ02b2gJn1qr43ysymVz97m5ntVPS+mZ0KYAyA31b/Mmq+5KZoFjPbw8zmmtn1AJ4G0NvM/sHM5lTf/0G13RZm9i597rNmdgPZc81slplNpvY/MrMnqv31T9X3jzaz+83sZgDPdPgP7oKY2WHkGXrGzJqWc96uufFbHddjqvYqM7vUzB4H8F1U/pCYTP24A4CPANgTwAkArq5+z+DMOJ1iZteY2WPV62Jsx56RLkdvAMtCCH8FgBDCshDCkuq2c6vz5xyrevCt4hH/96p9Y3UcTgbwewBfBXBBtQ8/0Qm/pewcAWBNCOH6pjdCCDMBPGpmV1fHyxwzOw2o3J+r98amPj6x+rErAQyu9uPVHf8z2ogQQqf+A/APAH5VtR9D5a8MoPKXwkoAfVHTvYHdAAAgAElEQVR5UJsG4JDqtoUABgC4H8AXaF+rqv+PA/ALAFb97B0ADm3muwOAz1ft7wH496o9G8BhVftSANds5P0pAMZ09rlslH8A/heAf6naewBYB2D/6uu+1f7tCWBLAA+h8tfnFgDepX18FsANVfs5ALtU7R2r/38NwEVVeytUHnb6ofLX6yoA/Tr7PDTSP+6zZrbdDuDgqr1dta9y4zeOl+oY/Hva10IAPen1yQAurdo3AjiVtuXG4y+r9qEA5nb2+Wvkf9U+nQngBQDX0TlfCODcqv01Go9n0Vx6Y3X+3Xxj15H+dUhffgMVT65//xQA9wHYHBVv0KuoPPhuAWCHapueAF5C5b46oCuMq073AKEif91ctW+uvm7iiRDC4hDCOlQG4ADa9icAvw4hjG9mn+Oq/55BxaswBJW/ID3rUPmrBAB+A+AQM+uGyk30oer7/wng0KL3a/6VIseCEMKTVfsAAA+Gyl+ZawBMwMbP81QA46tenqZrehyAL5rZTACPo+KybboGpoUQXm3TX1BupgL4kZl9A5Ux0rRgUW78NrEWwK2ZfR8D4G7/Zg3j8XcAEEJ4GMAOZrZjC36PIEIIqwCMBvBlAG8D+L2ZnVXd/F/V/59C8/0LAH8IIaxtz2MUm8whAH4XQlgbQngLlT8890flYecHZjYbFYdDH7RcLqtbOjUGwsx6ADgSwHAzC6g8fQYz+1a1yV+p+VqkxzsVwLFmNiFUH0951wCuCCH8vIWHpKqQnQOvoFe0QuU6t21rsr+EyoPTZwDMMrMR1bZfCyE8wDsxs6Pd94kWYmb/E5VzDgDHhRCuNLM7ARwHYHr1HAP58dvE6o3cHMcCOKcVh+nHssb2JlDtoykAppjZHABnVjc19XFR/wIab/XEswBObeb9onn38wB6ARgdQlhjZguRzr0NTWd7gE4FMD6E0D+EMCCEsDuAV1B5Gt0Y3wOwHBWXrOdeAGdX44tgZn3MbOdm2m2G9RfD5wA8GkJYCWAF6dNnAHio6P2q/R6AprgHsWlMB3CEVTKQtkBF6nqo6kVYYWZ7WiVQ+iT6zKAQwnQAlwBYgcpfKfcC+Fp1HzCzvRWf1TaEEH4W1gdDLzGzwSGEOSGEqwDMQMXj2lriWDKzYQCepwekuG0j4xEAmmIYDgGwstpetILq2GEP+ii0fnkHzZWdy4MAtjKKmzWz/VGZN08zs82tEgt7KIAnAHQDsLT68HMEgP7Vj3WJfuzsLJjTUQmmYm5F5WHk9xs234DzAfw/M/s/IYQmrxFCCJPMbCiAadW4y1WoxBotdZ9/H8AwM3sKlXiF06rvnwngequk474M4Isbef/G6vsfADgwhPBBDccumiGEsNjMvofKX5sG4PYQwp3Vzd8GcA8q+vQ8VGJ7AODHZjaw2n5SCGGumT2HSszPzOo1sBTAiRDtwfnVyXEtKv1yN4ADW7mvXwC428zeAHAnKv3dxM0AflmV2k5F8XgEKg9HjwHYAcDZrTwWUWE7AD+tyogfohIH8mVUPK4t5XYAf6wG054bQnik7Q5TbIwQQjCzkwBcY5VSBatRieU6H5V+noWKt/RbIYQ3zey3AG43sxmoyNjPV/ez3MymmtlcAHeHEC7shJ+zyWgtMCFEXWJm96GS5PBGCz83BZVA2xntcmBCiC5BZ3uAhBCiWUIIn+zsYxBCdF3kARJCCCFE6ejsIGghhBBCiA5HD0BCCCGEKB16ABJCCCFE6WhREHTPnj3DgAED2ulQinnvvfeS13/96/r6aj17brAYcZvx9ttvJ6+32WZ9GZntttuu3b6XWbhwIZYtW1ZUpKrVdGRfrlu3LtqbbVYfz9wc+2bW5qe3kKeeempZCKFXW++3s8ZmraxZsyZ5/e67cVk3rF27vg6ij0ncfvv1pUY6aszVSlcYm2I97TE266Uv33nnnWj/+c9/jvaHH36YtOPxx+Nyiy3SRwUei7vuumubHWdbUWtftugBaMCAAZgxY9MyS1tz45k8eXLy+uWXX472P/7jP27S8eS47rq0xuKIESOifcghtdRq3HTGjBnTLvtti76slQ8+WF8WiR8iOxMe+H5wtydm1toCclnasz9bkihRNKZff/315PUdd9wR7RUrVkTbPygdccQR0c6NuaJ5xR97Wz7sdoWxKdbTHmOzXvpywoQJ0X7ggfXF8ZctW5a04/HHD0re0XDwwQdH+8IL668EUK19WR9/jgshhBBCdCB1UweI/woEgFNOOaVw25Zbbhnt2bNnR5tddkAqt7AMw+5Az5tvvhntpUvTwtG8v623Xr8cyhNPPFG4P5F6ff72t78l2/h89+nTJ9o5rwN7lFavXl24bfny5dHu3r170q5///4Qm07Oo8Jenl/84hfJNu6PXr3We6p5nAKpF/aFF16I9tlnp8Wda/XsdJb0KURbUGs4wU477ZS8Xrly/Uow3bp1i7aXr95/f/2ybR/96EejvWDBgqTdpEmTon3JJZdE28/HTD2OPXmAhBBCCFE69AAkhBBCiNKhByAhhBBClI4OjwEq0v4uuOCC5PXzzz8f7T333DPZtvnmm0f7ySefjPbuu++etOP0+WOPPTba06ZNS9pxjMqqVauizSm4/ntffPHFaN94441Ju7POOguieb7yla8kr++5Z/1i3zvuuGO0fQzQVlttFW3OVPAxI3x9cf/7dkuWLGnJYZcaP2b5XPptt912W7THjx8fbZ/dxfELHHfQo0ePpN3gwYOj/eCDD0Z79OjRSbuRI0c2e3z1UnZBiLYgdz2/9NJL0fbzHY8XLkGxyy67FO6fY2o55hVIYygXLlwY7Ysvvjhpd8UVV0Sb5wp/fJ01TjU7CCGEEKJ06AFICCGEEKWjU9Pg2Q02f/78ZBu72HxFZk6bZTcdp8kCaRrflClTCtsVFcLzbjlO4e7du3e02c0HSALLMXfu3OR1URVRrvYNAG+88Ua0Wab06ew77LBDtNltWy8FGBsRL0fm3NWc+s5lCLj/AGDgwIHR5tTZhx56KGnHpRFYtvzJT36StPuP//iPaH/kIx+Jdr242ltK0znvyHThXNHIXAozz8F8fn271hSrrMfU6fam1uKdr7zySvKa09F5HgTSQqRcBJbLhgDpPe4vf/lLtH14Ce+DU+7vvvvupB2n3F900UXR9uOws2TrxpgNhBBCCCHaED0ACSGEEKJ0dKoE9u1vfzvaXvJgNzZnAAFpNhZLG96dx2uZsGziXYz8etttt422ryzNrno+BpbaAODWW2+NNle0FmnlZyCtCMzn0Utj7MIdNGhQtL20xdcN21OnTm3lEYuWSA9DhgyJNlds9+OgqKo6r/0FpC55rgjvpVSudJurLN0oEljROZ8zZ060+fzy/Aa0bp2yXD/ntvFc2Jr9t/Z7uyq538wV0O+7775kG6/X5dfueuutt6LNIR9+MVSWnHnNTX998b2Q522/YDFXgJ8+fXq0//u//ztpV7Rqg9/W1jTGbCCEEEII0YboAUgIIYQQpUMPQEIIIYQoHR0eA8T6HldkZg0fSHV8HwPEcPyOj8Xx8SbNHQMA7Lbbbs3uz8cU8edYA/Xtfvazn0VbMUApfjV4jh/gODCO3wHSiqX8Ga9hF8WWeF190aJF0dbK8G3Hc889F+133nkn2nvssUfS7tlnn402xw35WEBOxeUx56u0c7xfLgaoEdKq161bF3/3LbfckmybOHFitEeMGBFtHyfx8MMPR7tfv37R5irAQHrefMV9Lj/C59TD++S52h8Tx1TyvrkCPJD2WW7u5/7z8wrPC3xN+ZIqHFNTr0yePDnajz76aLR9f/F54/gwIL038tzqxwBXzz/44IObfR8AFi9eHG2OKfLjkudtnhsuu+yypB2n8CsNXgghhBCiHdEDkBBCCCFKR4dLYOzeYnfeF77whaQdL3Kac5GyW9VXdOYUa06h5SrO/nO8MKN3xbELnvfnU3e927rs8HlbunRpso3d8yxt+cUz2YXLqe/eRe7TNZvwi2xyVWFJYBVYHmI755L+1a9+lbzu27dvtIcNGxZtL0XxGGT3upc02f2/zz77FB4Tp9X+8z//c7S9lJpbyLVeWLlyJW6//XYAwMyZM5Ntl19+ebQfeeSRaPOiwkAq/44aNSravnowSyV+kWhOpeY06mXLliXtuHQIS2W8oDWQjkFux6n9QDq+ee73Y51lPq46DqS/mSVWnt+BdFHreuWmm26KNt+rvOzH+Gubzx3Ps/6c8v2Urw1f6uCLX/xitF977bVo+1UWWMLmitEsh3Um8gAJIYQQonToAUgIIYQQpaNTK0Ez48ePT15z9tQDDzyQbGP3Jmdg5RZYY/erdw+ybMJyjZfUOGPi4osvjvY3v/lNiGI4G8ifU3aL+kwDpigbhF39QNpH/F2+srTPOhTpuCha4BIAHnzwwWg/9dRTyTaWL/j8+33wYo3cFyxbA8Dxxx/f7DbOQvGvzzvvvGhfe+21STs+jloXnexottxyy5iZ6qWHGTNmRPuJJ56INi866V+zVHTYYYcl7bjCup+DjznmmGgvXLgw2v6YTjvttGizxM3yB5DOA7zNyyEHHXRQtHne9vIKhyH4eYWvL878YtkQSKWceoXDAXhc+jls8ODB0c7NpYyXnPk1f5cfGyxv8mdYKgXS0AWW1Fg260zkARJCCCFE6dADkBBCCCFKhx6AhBBCCFE6OjUGiGN0fIwAr6jO+jMA7L///tFm3dNXkWWNn/XMXHVYZt68eclr1lU59VPkYe3fr97u092b4P7y5Kr58jb+Ll8l3KfyipTcCt+PPfZYtH2JCo7V4viS4cOHJ+3mz5/f7DZfxoDjBjgt26dzc1o9x4HxtQekcUR+Hqh1VfP2ZvXq1fH88DkE0tgJPm8LFixI2vGcOXv27Gj7kh1cLd9X6+bUcl7lm0tXeLjswO67755s4/mUf5evpM9wJeGm0gDNbfPX10svvRRtLqniY2Ny310v8FzF90kfb8MrGviYSY7T4evc3/uK7pO+nARfh7zNV4Lmiu977713tP1553IEvsJ1eyIPkBBCCCFKhx6AhBBCCFE6OlwCK6ow6yUPdtOx6xtI3eRF1WuB4qqv3vXN38378O0ke7U9XHbAL+DHsLzJ7lzfJ9x/uUVTc1VUy0qtC4WyxMS2h2UTlisA4NVXX402p0T772X3P6c9e8mcj4P71ldSPvLII6NdrxLYFltsEaU6Xzmdyzmw7OV/C3+u6DNAWkF7zJgxyTaWOUaOHBltLoMApHLkvvvuG22WnoA0vX3KlCnR9jLq008/HW3uE3+PYJnPL3LKEgvv398jiiT4eqIopd3PYSxn+nsmy1S58AIOGyhKiff7Y9tLWzy/89jm94FUEpUEJoQQQgjRjugBSAghhBClQw9AQgghhCgdHR4DVBRbkIs5KFoGAUg1XJ8Gz8skFKXE5/bny6sXUa8l9esF1qp97AafY44Z8Rox6/icTsnLAQBpCXzuB/+99RLvUU9wHAmfHx9fwTE7AwYMSLaxlj9w4MBo+3gQ7ps33ngj2hxDAqRxKLwsgo/p4nRbjnnxK41zDFC9jtO1a9fGVcv5HALAJz7xiWjzCvA+9mLo0KHR5jHhU6fPP//8aPvYHo6/4uWIDj744MJj4v4/7rjjknazZs2KNi9/cfrppyftipbg4DgkAJg+fXq0fbkDZp999ok2rwwPbBibVo9wyYhevXpF29/vGH9P4rZ8j/NjgOfJXJwkj7+iuEu//6JyM0A6Tg8//PDCdm2NPEBCCCGEKB16ABJCCCFE6aib1eBz7mifHs1pd+yKy6VRszvPu+JYhmEZQGnvbQOXLfAVRZlc2jrLoNxHfsVplsr4evASWE4GLStFLuqJEycmr9kNz3IkkI4ldruzDAGkadp8fXgpg8cgS9o+NbhJMgJSyYdTgz21StwdzYcffhilKpb9gDStn1P//dzHK4XzOWAZCgCOOuqown2w9PLDH/4w2n5evOmmm6LNEphfaZ2ljcmTJ0fbX0Ms5/3xj3+M9rvvvpu048rVXjJfsmRJs/vz12Gtq6Z3JH4M8Pjgas9eAuM5jccDkJ4fHh/+vPE+eM708zHDkpqXzXgffI/39/unnnqqcP/tiTxAQgghhCgdegASQgghROnoVB9wrZVnPewyZVevd82y245lk1zVad7WrVu3mo9JFMNuVi87sIs0J4FxZVN2A3uKKrv67/XSmSgegz4LjMctV/QF0v7s379/tL18wbIML6Dos7ZY0uTj8zIBj1Ve+NYvrsqyQS67tDPZdtttMXr0aABppWYglX14AdiHHnooaccSI2d6+Sywq666Ktr+fFx99dXR5sy6a6+9NmnH2WIscU+bNi1pd/zxx0f7G9/4RrT9NcTXBmd+eamMF0flbEEgXRyVZRkvAX784x9HvcFV0oHiFQ08PPd5OZPn1pz0y+M3typC0Wc8/F25LDD/mzsKeYCEEEIIUTr0ACSEEEKI0qEHICGEEEKUjk5dDb61lVg5dZG1Ta8xsh7NsQAccwAUry7utU1ejXqnnXYq/N56rTDbWdS68jrr1rm+5HPPqxe3xzGViaLq2HPnzk1ef+xjH4u2jxt54YUXos191rdv36QdjxGO8+Bq4J7dd9892osXL062cZwZ/w4/hl988cVoc5xIPbHZZpvFOKa777472TZs2LBocwXl5cuXJ+34NZ+3CRMmJO04lX7RokXJNo6PGTx4cLTPOOOMpN1//dd/RZtjRfg6AdJV4zkWi+dVIL02+Hfst99+STve5vdx7LHHRvvXv/51tH3ady4upbPwcVo8L+YqK+fSzHkccJyrj4ctOh9+f3we+fh4bgbSeC4uR+D3lyuP0p7IAySEEEKI0qEHICGEEEKUjrpZDNWn2bHL7le/+lWyjd12nCbrFwTkfbDt0wA5fZAlMF9F9uKLL4729ddf3+y+xYZwf+UW8ONrw0tU7GZl2cWny/N3sRTi0+NzxyFSScHLUuyi92nrLGdx6vTLL7+ctGNXO5ck8ItTcgo+Syg+vZ37/fnnn4+2H5u8KGu9SmCrV6+OVZi9jMS/Z968edHmBUmB9HqfOnVqtEeMGJG046rAvEApAPTr1y/av/nNb6LNFaKBNL2d++XRRx9N2vEYHjVqVLS9jM2Vxnk+vvPOO5N2e+21V7QvuOCCZBtLsXxt+PuPl1LrAV92IleFmSmSyoDiedGPj1rDN/geyvv2pWhYKsuFv3A5m45Ed24hhBBClA49AAkhhBCidNTNaoA519sDDzyQvC6q3Oxh9xtHmXs5hOU3trmiLNB5C7Y1OtxHXupktyi7Y71ExdkFLK3kpLJchkdRxWhRgc8rZwoBwLhx46LNFYeBtN8484ulaiCV0V566aVo+ywdrjLMlaW93M3zBy946bOjcouj1gtbb7019txzTwAb/k6+9rkyMi9ICqTnYOjQodG+/PLLk3YHHnhgtP25ueuuu6LNsoyvusyyFy9Y+9vf/jZpd+KJJzb7Xb4KMMtyb7zxRrRPOOGEpB1fa7fddluy7YADDoh2U1VtYMPK2iyj1Qs+o437nPEZV9yu1mw3Px/zvTV3T+ZtvA8/b48dOzbaXL3dz9u+UnxHIQ+QEEIIIUqHHoCEEEIIUTr0ACSEEEKI0tEQMUC+Mia35fgSn97Ouidrjr56Le8vp4H6FXaLYE1UKfIp/hzyOeZz5dOc+/TpE21eEdtrybyP999/v/A4ak0tLSu33nprtH0aPJ9zf44ff/zxaHMVY9+O40i4vMTvf//7pB2nSHMMnk+bPfroo6PNleJff/31pB3HEdUrIYQYo+bT2zm2Y/LkydGeMWNG0m633XaLNsflDBo0KGnnU9oZHptHHnlktH1MGMcH8dy67777Ju04HoRjm3zcCMd98fzOFa2BtKq3jwHiYzrppJOi7eOIfMp5PeDjvvj8cJ9069YtacflA3y/cno63598bFBRTGausjTfM/2xN8WyAel142OUOms+1t1ZCCGEEKVDD0BCCCGEKB2dKoHVujAqp0ICqdTFrjSftl5UAdTLUnwcRRUzgdSFJ5mrdopcuEDal1yqwLtE2aW/8847R9tLKyyxcf956U1p8Hm4OrOXwHhx1N69eyfbnnnmmWhzX/sKsSzLcDqv7yd2qfPY9K57TqXnatJehmHZpF5Zs2ZNnPM4JRxI5xouLeB/J39u/Pjx0fbhBN27d4+2r8jMFaR5LHGKOZCmknN/nXvuuUk7ljBzi5yyLLVw4cJoP/jgg0k7XvDUV8zmtGqeq72MVo+LofLYANLrnufFIUOGJO169OgRbR9CwHJZrjJ20X3N3+OK5DE/r/L8wFXYffma3D5qDT1pDbpzCyGEEKJ06AFICCGEEKWjISQwL3MUufN8FljRd3n4u3PHwbIAZ6H4ipwihSWwXNYB96XP8tl+++2jzRKYd5cWXVNeUuO+FBvC58dn2rHszAuPAqlUkhtzPFa5Xa5SeG5scuYQyxw+Y8lLA/XI5ptvHiUsv1gnV1AeM2ZMtFkiBoAFCxY0u23AgAFJO5aYfHbsEUccEW2+Brz0whV+WVLzchvvg+WaRYsWJe14Hyxn+mrBLNFxVWwAOO6446LNC6PydQIAn/70p1Fv+Ouc5zje5qurF1VnBtLxlgvfyK2swBQtLu7v1dzPfH1xpiaQyn5LlixJtrVn5qY8QEIIIYQoHXoAEkIIIUTp0AOQEEIIIUpH3VSCzsFVgIFUP2T90WunHD/Ato8H4c/lYg5Yi2XdWzFAefic+pidogqgPlbDxy404dOEOT6lqPopULvWXVZYhz/ooIOSbZyWOmfOnGQb929ubDJF4xRI+41tX6KCv5dTrDn1GkhjFHy8gi+j0Zk0xVj4KsnTpk2LNqf0++ub42W4ErIfR4899li0fSo9v+bj+OUvf5m04+uhZ8+e0fZj+Jhjjok2xy9dddVVSbtnn3022l/60peiPXLkyKTdFVdcEW1fKoXvERxHxZWJgQ1jxOoBH8vKfcvzli9BwXNprtwIjxU/joq+N5cGz7avBM33xqFDh0abq8QDaQmGFStWJNsUAySEEEII0YboAUgIIYQQpaNu0uA97OrzbrWi9Gbv9sulQdfyvd49yMfLLtfBgwfXtG+xofTE/cJudu8G9os4NsEps0DqdvdpoiIPlx7g8+jHKadY+7Ti1pCTwBh2yfvqsCxl8HzBi6QCwKRJk6LtJZp6kcC23HLLmP7tqzOzjMDjxaeIcxr4YYcdFm2u1A0ABx54YLT9GONSCPxdXkbjdHc+p16+4wrPXE182LBhSTtOneZ9v/LKK0k7nne9BMjXA98HfFVz/q56gSviA+nx8zn1oSEsifp9FFVu9tJW0XflFgbnfeQqPPN140MheB++BEp7Ig+QEEIIIUqHHoCEEEIIUTo6VQLLZYZwNk+uejC7Pmtd2C7Xjrd59yB/l5flRDHsLvVSZFF1UC+BFckTXuZiFzy7Y3MuV1GBJQp2r8+fPz9px33oM1G4MjRXbPcUVV+vNdvEZ3BxhWQ+hl69eiXt2K0/b968ZBtXHe5MVq9eHc/5zTffnGzjqs5cHZ2zrwBgwoQJ0WbJ0md6sazkq06PGzcu2iydcZYdsKGs1ITP5uEFa1l64qwvIB3r3G7mzJlJu9mzZ0fbZ4Py9cFziV8Md/r06c0ee2fi5z4eH1xN2y/syufHS6d878rdd3PHwfDcyvO7/15f8bm54/G0haxeK7oLCCGEEKJ06AFICCGEEKVDD0BCCCGEKB11Wwk6V0W2KFU9FyvE5CpB57RSjkHg1WtFHq7I7PuEU235fHN8A1BcsTQXg8JxAP57c/p2WeHYjtdeey3aPj2aq+nedtttyTaO6eJxmos74HY+NoA/x6nevvQEHxNfOz4mgeMVao0Z7Gg222yz+Bs4DgdIYyM5ldyv5H7AAQc0u43HG5Cmi/vSAlxFm2PtfPkAhs+9T2/neddXbmY49Z1Xq/cp1v369Yu2j0viNHBOv/Yp/H4V+XrAlw9g+Bz4PudtufmN51J/L+Qxwe1yqywwfrwV7S8XC5q7vtoaeYCEEEIIUTr0ACSEEEKI0lG3OgC7xLw7j93Atab0MbV+Juci92mXtX6u7AwcODB5zenpXFqgqPKzx1dD5ZRa7md/DUnC3BBOg2fJgyUJIO0n7/LOVZBmcmmwDLvN+TNnnXVW0u4zn/lMtD/5yU9Gm2UST63V4TuadevWRWnKp/HzeLn//vujvd9++yXtxo4dG21OkX/kkUeSdlyqwMtjnMbOC6r6BWZfffXVaHOYAKfsA6k8xhKrl3L4N/J16FOqWb7yJRd4sc2jjjoq2pxGDqQSW73gSzywNMnbuPQDUHsl81orrxeVqsjtw8uofA3xWPZ9zpIl39/bG3mAhBBCCFE69AAkhBBCiNKhByAhhBBClI66jQFivF7Iq8W2ZkkDr3uyNsmphD7tkr/Ll55nWhOX1JXhcvs+XZVXc+c054MOOqimffsYD+4z1pJ9/EA9av+dDcdR8Hn1mjz3kz+vtS5xsfPOO0d7yZIl0c4tbcJj7sc//nHS7rvf/W60R44cGe099tgjacdxMx256nRL2HrrrbHPPvsA2DAehGPZ/u7v/i7afq7iZT64VIQvG8Hn6o477ki2cfwRx4H5+Mfhw4dHm5eu8MvP8HXEsXv+mPi7eG721wbHEfH1BABDhw6NNi/x4VeUP+2001Bv+PsTx05xvJXvc44B8suT8PgrKikCpHF2RSvIN/e6Cd8PXGaB+6TWFe/bG3mAhBBCCFE69AAkhBBCiNLREBIYu8g9uSrDRdSa+ufd9ux+5u9tyf7LCKer+jT4XXfdNdovv/xytEeNGlXTvkeMGJG83mmnnaLNko53F3/qU5+qaf9lgtPb2XXtV/Vm6chLkOyiZ6nMn39OR37nnXei7SVS/m4ef96FXpQS7Vey53T5WtOGO5ptttkmrusltnEAAAd5SURBVNruV29vT77whS902HeJ2mEJjCUqXw190qRJ0fbyLoeRcPkHPy6ZWkM5chWeeU4/7LDDou3LkvDnfKmC9kQeICGEEEKUDj0ACSGEEKJ0dKoEVquLjTMLgA0rYDbhF1Hj1xxZ7qPMixaO81Vuc+5CRllgKSw7sN0WsFsVAKZMmRLtXLaD2BB2k3O1X87UA4C+fftGe8KECYX7mzVrVrS9jM1SFy+aefzxxyfteMzlFtrkbC/+zMknn5y04+MYPXp04bEL0Vn4asqLFi2KNktgPpyAZX1f8ZvvZbwPX5G9aPHSXLY1b/PSG2fz8oLFPrOUZfBly5YVfldbIw+QEEIIIUqHHoCEEEIIUTr0ACSEEEKI0tEQMUB+xW+uPsvp6D5WgVNluaKq11hZ92Q9k9N4gVS3zK0GL1I4rdGnL9cKn3uO2fLxW0VxPz5+i9MufaXxssLxVNdcc020/Xi5+uqra9ofVxlmO4df1bw18DXg5w6eI3jVeCHqBR8nydXLOWbHV10+55xzmrXrkRNOOCF5zfPzKaec0mHHIQ+QEEIIIUqHHoCEEEIIUTqsJVWLzextAIs22lC0Jf1DCL023qxlqC87DfVn10F92bVo8/5UX3YaNfVlix6AhBBCCCG6ApLAhBBCCFE69AAkhBBCiNLRcA9AZrbWzGaa2bNmNsvMvmlmDfc7yoaZ9aj220wze9PMXqfXrcuNF3WNme1qZjeb2QIzm2dmd5nZXi3cx45m9rX2OkZROzT3zjKzp83soI1/StQbGpfrabgYIDNbFULYrmrvDGACgKkhhH9z7bYIIXzY3D5E52Jm/wvAqhDCD937hso1ua7ZD7b9cegaaSeqffkYgP8MIVxffW8UgO1DCI9kP5zuZwCAO0IIw9vjOEXtuLn3UwC+E0I4bCMfE3WExmVKQ3tOQghLAXwZwNetwllm9gczux3AJAAwswvN7Ekzm21m/7v63kfN7M7qXzJzzey06vtXVp+IZ5vZDwu/WLQZZrZHtQ+uB/A0gN5m9g9mNqf6/g+q7bYws3fpc581sxvInlvtz8nU/kdm9kS1P/+p+v7RZna/md0M4JkO/8Hl4QgAa5omWQAIIcwE8KiZXV3trzk09rYzsweqnoU5ZnZi9WNXAhhc9TzUVoFRdAQ7AFgBZPsOZnaJmT1vZveZ2e/M7F867YgFoHGZ0KmVoNuCEMLLVQmsqSzmgQBGhBDeMbNxAPYEMBaAAZhoZocC6AVgSQjh0wBgZt3MrDuAkwAMCSEEM9uxw39MedkHwBdDCF81s74ALgcwBsBKAPeb2WcA3JP5/L8BODyE8Bb125cBLA0hjDWzrQBMN7NJ1W0fB7BPCOHVdvk1AgCGA3iqmfdPBjAKwEgAPQE8aWYPA3gbwEkhhD+bWU9U+msigIsADA8hjOqg4xbFbGNmMwFsDaA3gCOr769G8303GsApAPZD5V7zNJq/JkTHoXFJNLQHiOA1Ne4LIbxTtcdV/z2DyuAbgsoD0RwAR5vZVWb2iRDCSgB/RmUg32BmJwP4S4cdvVgQQniyah8A4MEQwrIQwhpUJM5DN/L5qQDGV708Tdf0OABfrE7YjwPYEZW+B4BpevjpNA4B8LsQwtoQwlsAHgKwPypj+AdmNhvA/QD6ANil8w5TNMMHIYRRIYQhAI5BZcwZivvuEAB/CiF8EEJ4D8DtnXXgYqOUclw2vAfIzAYBWAtgafWt93kzgCtCCD9v5nOjARwH4AozmxRCuNTMxgI4CsBnAXwd6//CEe2L77PmWOe2bU32l1B5cPoMgFlmNqLa9mshhAd4J2Z2tPs+0T48C+DUZt4v6t/Po+KZHR1CWGNmC5H2sagjQgjTqh6BXqjMo831XW2LPYqOROOSaGgPkJn1AnA9gH8PzUdz3wvgbDNrCtzrY2Y7m9luAP4SQvgNgB8C+Fi1TbcQwl0AzkfFHSg6nukAjrBK1tgWqDyMPlQNjF5hZntWJc+T6DODQgjTAVyCSlxCH1T6/mvVfcDM9jazbTr0l5SbBwFsZWZfanrDzPZHpX9OM7PNq+P3UABPAOiGimS5xsyOANC/+rH3AGzfsYcuNoaZDQGwOYDlKO67RwEcb2ZbV+fXT3fO0QpC45JoRA9Qkw69JYAPAdwE4EfNNQwhTDKzoQCmVTy1WAXgHwDsAeBqM1sHYA2Ac1DpzD+ZWdNfLhe09w8RGxJCWGxm3wMwBZV+uD2EcGd187dRiQV6FcA8AE3LuP/YzAZW208KIcw1s+cA9AMws9r3SwHE4EzRvlTj6E4CcI2ZXYSKvLwQlT8utgMwC0AA8K0Qwptm9lsAt5vZDAAzATxf3c9yM5tqZnMB3B1CuLATfo6o0DT3ApWxdmYIYW2m756sxovMQmU5iBmoxPWJTkLjMqXh0uCFEEI0Bma2XQhhlZltC+BhAF8OITzd2cclBNCYHiAhhBCNwS/MbB9U4kb+Uw8/op6QB0gIIYQQpaOhg6CFEEIIIVqDHoCEEEIIUTr0ACSEEEKI0qEHICGEEEKUDj0ACSGEEKJ06AFICCGEEKXj/wOY7eP4wcBAPwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# get the data from keras - how convenient!\n", "fashion_mnist = tf.keras.datasets.fashion_mnist\n", "\n", "# load the data splitted in train and test! how nice!\n", "(x_train, y_train),(x_test, y_test) = fashion_mnist.load_data()\n", "\n", "# normalize the data by dividing with pixel intensity\n", "# (each pixel is 8 bits so its value ranges from 0 to 255)\n", "x_train, x_test = x_train / 255.0, x_test / 255.0\n", "\n", "# classes are named 0-9 so define names for plotting clarity\n", "class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',\n", " 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']\n", "\n", "plt.figure(figsize=(10,10))\n", "for i in range(25):\n", " plt.subplot(5,5,i+1)\n", " plt.xticks([])\n", " plt.yticks([])\n", " plt.grid(False)\n", " plt.imshow(x_train[i], cmap=plt.cm.binary)\n", " plt.xlabel(class_names[y_train[i]])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEeBJREFUeJzt3W1slWWaB/D/RXkvr+WlUynQgsQsvixjTnDVzUajTmTF4HwYA4kEk8l0PoxxSfiwBj+MXzYhm2VAk80kzEoGk6kzEx0XYnQdNRtxzGRiNQYZYRaBCgi2vNsCpVCu/dCHSQf7XNfxPOec57TX/5eYtufqfc7dE/8855z7TVQVRBTPmLw7QET5YPiJgmL4iYJi+ImCYviJgmL4iYJi+ImCYviJgmL4iYIaW80Hmz17tra0tFTzIWvC5cuXzXpvb69ZP3funFmvq6tLrc2aNctsO3nyZLPe19dn1s+ePWvWe3p6UmtjxtjXnoaGBrM+Z84csx5RZ2cnTp06JcX8bqbwi8jDAJ4HUAfgv1R1k/X7LS0t6OjoyPKQI9Lhw4fN+nvvvWfWd+7cadatkKxdu9Zse+edd5r1/fv3m/VXX33VrL/zzjuptfr6erPtE088Ydbb2trMekSFQqHo3y35Zb+I1AH4TwArACwFsEZElpZ6f0RUXVne8y8H8LmqHlLVfgC/BrCqPN0iokrLEv55AI4O+flYctvfEJE2EekQkY6TJ09meDgiKqcs4R/uQ4VvrA9W1W2qWlDVAj+gIaodWcJ/DMD8IT83AzierTtEVC1Zwv8hgCUi0ioi4wGsBrCrPN0iokoreahPVa+KyFMA3sLgUN92Vf1z2XpWY958883U2pYtW8y2kyZNMuv9/f1mfeLEiWa9s7MztbZ69WqzbVdXl1n35mWMHWv/L9TU1JRamz59utn2lVdeMetbt2416w8++GBq7YUXXjDbRpBpnF9V3wDwRpn6QkRVxOm9REEx/ERBMfxEQTH8REEx/ERBMfxEQVV1PX8tO3jwoFlvb29Prd1+++1m20uXLpn1a9eumXVv3fv8+fNTa9OmTTPbekTspeHWXgLe448bN85s680huPvuu836sWPHUmsbNmww227evNmsjwa88hMFxfATBcXwEwXF8BMFxfATBcXwEwXFob6EN7STZRcibyjP2x7bG06zhsRaW1vNtt6yWq9v3lCgt225xRvqu3Llilm3liPv3bvXbPv666+b9ZUrV5r1kYBXfqKgGH6ioBh+oqAYfqKgGH6ioBh+oqAYfqKgOM6fePLJJ826tT23NwegsbHRrFvHWAP+0lfL+PHjzXrWI9S8JcPeEeBZeH+bdbR5c3Oz2XY0jON7eOUnCorhJwqK4ScKiuEnCorhJwqK4ScKiuEnCirTOL+IdALoATAA4KqqFsrRqTwsX77crFvbRO/cudNse9ddd5n1q1evmvWLFy+a9YaGhtSaNxbuzVHwjgf3+matuff2Euju7jbrHmvL9E2bNmW679GgHJN87lfVU2W4HyKqIr7sJwoqa/gVwO9F5CMRaStHh4ioOrK+7L9XVY+LyFwAb4vIflXdPfQXkn8U2gBgwYIFGR+OiMol05VfVY8nX7sBvAbgG5+aqeo2VS2oaiHLJphEVF4lh19E6kVk6vXvAXwPgL0lKhHVjCwv+xsBvJZs3TwWQLuq/k9ZekVEFVdy+FX1EIC/L2NfatrTTz+dWtu6davZduHChWbdeztUX19v1q0181mP6PbmIHh9t9p7++57fT9//rxZX7FiRcn3HQGH+oiCYviJgmL4iYJi+ImCYviJgmL4iYLi1t0Jb0jLOi76gw8+MNs+++yzJfXpOm/7a2trb2tZKwBMmjTJrA8MDJh17/4nTJiQWvOOLvd47R999NFM9z/a8cpPFBTDTxQUw08UFMNPFBTDTxQUw08UFMNPFBTH+RPWOL6nqanJrC9atMisHz582Kx722dPnTo1tTZmjP3vu3ff3lj6lClTzLp1BLj3nHuPzW3hsuGVnygohp8oKIafKCiGnygohp8oKIafKCiGnygojvNXgaqa9d7eXrPujdVfvnw5tWbNAQCA/v5+s+7NA/COALfU1dWV3BYA5s6dm6l9dLzyEwXF8BMFxfATBcXwEwXF8BMFxfATBcXwEwXljvOLyHYAKwF0q+ptyW0NAH4DoAVAJ4DHVfVs5bqZP2ttuTcOP2/ePLO+Z8+ekh8bsPfG9/rW19dn1rO2t84F8OYQnDp1yqw3NzebdUuWcxpGi2Ku/L8E8PANtz0D4F1VXQLg3eRnIhpB3PCr6m4AZ264eRWAHcn3OwA8VuZ+EVGFlfqev1FVTwBA8pXzLIlGmIp/4CcibSLSISId1n5uRFRdpYa/S0SaACD52p32i6q6TVULqlqYM2dOiQ9HROVWavh3AViXfL8OwM7ydIeIqsUNv4i8DOCPAG4RkWMi8kMAmwA8JCIHADyU/ExEI4g7mKmqa1JKD5S5L6NWS0uLWR8YGDDr3pr7s2fTp1gsXLjQbOuNZ58+fdqsz5w5s+T79/YC8PZBiDAWX0mc4UcUFMNPFBTDTxQUw08UFMNPFBTDTxQUx0qqYPLkyWY96xbW1rJbbzlw1iW93lCfNaXb27Lc4w2Bko1XfqKgGH6ioBh+oqAYfqKgGH6ioBh+oqAYfqKgOM5fJG+82+ItPfV2OPKWvnpj7ZYZM2ZkeuxLly6Z9cbGxtSat61bfX29WadseOUnCorhJwqK4ScKiuEnCorhJwqK4ScKiuEnCorj/EXKckT3119/bdatrbcB+5hrwN9e2+LNMbh48aJZP3/+vFn35glYvL0Ijhw5UvJ9c9tvXvmJwmL4iYJi+ImCYviJgmL4iYJi+ImCYviJgnIHO0VkO4CVALpV9bbktucA/AjA9QXZG1X1jUp1shZkWc/vjaXfeuutZn3BggVm3RqLnzhxotm2q6vLrHvj9N4R4Nbje/MfmpqazPqXX35p1slWzP/RvwTw8DC3b1HVZcl/ozr4RKORG35V3Q3gTBX6QkRVlOU9/1MiskdEtotI6ftIEVEuSg3/zwEsBrAMwAkAm9N+UUTaRKRDRDq8PduIqHpKCr+qdqnqgKpeA/ALAMuN392mqgVVLXgffBFR9ZQUfhEZ+jHs9wHsLU93iKhaihnqexnAfQBmi8gxAD8FcJ+ILAOgADoB/LiCfSSiCnDDr6prhrn5xQr0ZdR6//33zfrixYvNepax9KlTp5pte3p6zPq5c+fM+uTJk826NU/g+PHjZluPN0ehu7s7tTZ37lyzrbeXQJZ5H7Vi5P8FRFQShp8oKIafKCiGnygohp8oKIafKCjuX5zIMrRz9OhRs+1nn31m1hctWmTWva29ra27b775ZrPthQsXzPqhQ4fMunc8uLdsN4spU6aY9fb29tTa+vXrzbajYSjPM/r/QiIaFsNPFBTDTxQUw08UFMNPFBTDTxQUw08UFMf5E1nGdd966y2zvnTpUrPe19dn1qdNm2bWv/jii9TavHnzzLb79+8363V1dWa9ubnZrO/Zsye11tjYaLb1jh735hhYW3sfOHDAbLtkyRKzPhrwyk8UFMNPFBTDTxQUw08UFMNPFBTDTxQUw08UFMf5y8AaywaAO+64w6x7ewn09/eb9cuXL5t1y9WrV0tuC/jzI0QkteYdH+7tk+DNf7Dq1twIgOP8RDSKMfxEQTH8REEx/ERBMfxEQTH8REEx/ERBueP8IjIfwEsAvgPgGoBtqvq8iDQA+A2AFgCdAB5XVXuD+RHs8OHDqbWmpiazrbde39t/3huLt9bcX7p0yWzrGTvW/l/EG+fPMgfBO/77q6++MuvWXgYnT54sqU+jSTFX/qsANqjq3wH4BwA/EZGlAJ4B8K6qLgHwbvIzEY0QbvhV9YSqfpx83wNgH4B5AFYB2JH82g4Aj1Wqk0RUft/qPb+ItAD4LoA/AWhU1RPA4D8QAOaWu3NEVDlFh19EpgB4FcB6VS36ADYRaRORDhHp4PssotpRVPhFZBwGg/8rVf1dcnOXiDQl9SYA3cO1VdVtqlpQ1cKcOXPK0WciKgM3/DK4LOtFAPtU9WdDSrsArEu+XwdgZ/m7R0SVUsyS3nsBrAXwqYh8kty2EcAmAL8VkR8COALgB5XpYm2wlpd6w13eUJ23ZNcbKrSG465cuWK29XjHg3tDgQMDA6k173lpbW01697229Zjnz9/3mx75swZs97Q0GDWRwI3/Kr6BwBpi7IfKG93iKhaOMOPKCiGnygohp8oKIafKCiGnygohp8oKG7dXSRrTNrbettbmnrx4kWz7o3Vjx8/PrXmHbHtzVHo6ekx6944/4QJE1Jr1hHaAFAoFMz67t27zbq11NqbY+DNbxgN4/y88hMFxfATBcXwEwXF8BMFxfATBcXwEwXF8BMFxXH+Ip0+fTq15q3H93Yw2rt3r1n3tt+ePn16as3rmzdO39vba9a9+7eO4faONn/kkUfM+owZM8y61TdvHD/r0eUjAa/8REEx/ERBMfxEQTH8REEx/ERBMfxEQTH8REFxnL9I1lFj3nr+WbNmmfVz586ZdWv/eQC46aabUmveOPzMmTPNen19vVn3/vYsvKPLvb4PnjczPO/vOnHihFm/5ZZbzPpIwCs/UVAMP1FQDD9RUAw/UVAMP1FQDD9RUAw/UVDuOL+IzAfwEoDvALgGYJuqPi8izwH4EYDrA+AbVfWNSnU0bxcuXEitefvye2vHPX19fWbd2rffW5duzV8A/L0IrOfFu3/vsQ8ePGjWvTMHVDW1Zs0BAPzzCkaDYib5XAWwQVU/FpGpAD4SkbeT2hZV/Y/KdY+IKsUNv6qeAHAi+b5HRPYBmFfpjhFRZX2r9/wi0gLguwD+lNz0lIjsEZHtIjLsXEsRaRORDhHp8F7mEVH1FB1+EZkC4FUA61X1awA/B7AYwDIMvjLYPFw7Vd2mqgVVLXjvH4moeooKv4iMw2Dwf6WqvwMAVe1S1QFVvQbgFwCWV66bRFRubvhl8GPRFwHsU9WfDbl96BGo3wdgb0FLRDWlmE/77wWwFsCnIvJJcttGAGtEZBkABdAJ4McV6WGNOHDgQGqttbXVbOsN1Xm8ZbPWEd/W1tkAcM8995j19vZ2s+4NJT7wwAOpNe/v8ureUmhrCHbRokVm2/vvv9+sjwbFfNr/BwDDDYqO2jF9ogg4w48oKIafKCiGnygohp8oKIafKCiGnygosZY9lluhUNCOjo6qPV45WePZ3jHX3ni1tzTVW9q6cOHC1NrRo0fNtt4cBRpZCoUCOjo67PXKCV75iYJi+ImCYviJgmL4iYJi+ImCYviJgmL4iYKq6ji/iJwE8MWQm2YDOFW1Dnw7tdq3Wu0XwL6Vqpx9W6iqRe2XV9Xwf+PBRTpUtZBbBwy12rda7RfAvpUqr77xZT9RUAw/UVB5h39bzo9vqdW+1Wq/APatVLn0Ldf3/ESUn7yv/ESUk1zCLyIPi8hfRORzEXkmjz6kEZFOEflURD4RkVzXHyfHoHWLyN4htzWIyNsiciD5OuwxaTn17TkR+TJ57j4RkX/OqW/zReR/RWSfiPxZRP4luT3X587oVy7PW9Vf9otIHYD/A/AQgGMAPgSwRlU/q2pHUohIJ4CCquY+Jiwi/wSgF8BLqnpbctu/AzijqpuSfzhnquq/1kjfngPQm/fJzcmBMk1DT5YG8BiAJ5Hjc2f063Hk8LzlceVfDuBzVT2kqv0Afg1gVQ79qHmquhvAmRtuXgVgR/L9Dgz+z1N1KX2rCap6QlU/Tr7vAXD9ZOlcnzujX7nII/zzAAzdXuYYauvIbwXwexH5SETa8u7MMBqTY9OvH58+N+f+3Mg9ubmabjhZumaeu1JOvC63PMI/3BZDtTTkcK+q3glgBYCfJC9vqThFndxcLcOcLF0TSj3xutzyCP8xAPOH/NwM4HgO/RiWqh5PvnYDeA21d/pw1/VDUpOv3Tn3569q6eTm4U6WRg08d7V04nUe4f8QwBIRaRWR8QBWA9iVQz++QUTqkw9iICL1AL6H2jt9eBeAdcn36wDszLEvf6NWTm5OO1kaOT93tXbidS6TfJKhjK0A6gBsV9V/q3onhiEiizB4tQcGDzFtz7NvIvIygPswuOqrC8BPAfw3gN8CWADgCIAfqGrVP3hL6dt9GHzp+teTm6+/x65y3/4RwPsAPgVwfevkjRh8f53bc2f0aw1yeN44w48oKM7wIwqK4ScKiuEnCorhJwqK4ScKiuEnCorhJwqK4ScK6v8BQgV1395eYo4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# choose one image to look at\n", "plt.imshow(x_train[3], cmap=plt.cm.binary)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "((60000, 28, 28), (10000, 28, 28), (60000,))" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# take a look at the array shapes\n", "x_train.shape, x_test.shape, y_train.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2. Define the layers of the model." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# type your code here along with instructor\n" ] }, { "cell_type": "code", "execution_count": 173, "metadata": {}, "outputs": [], "source": [ "model = tf.keras.models.Sequential([\n", " tf.keras.layers.Flatten(input_shape=(28, 28)),\n", " tf.keras.layers.Dense(154, activation='relu'),\n", " tf.keras.layers.Dropout(0.3),\n", " tf.keras.layers.Dense(64, activation='relu'),\n", " tf.keras.layers.Dropout(0.3),\n", " tf.keras.layers.Dense(10, activation='softmax')\n", "])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3. Compile the model" ] }, { "cell_type": "code", "execution_count": 174, "metadata": {}, "outputs": [], "source": [ "# type your code here along with instructor\n" ] }, { "cell_type": "code", "execution_count": 175, "metadata": {}, "outputs": [], "source": [ "loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()\n", "optimizer = tf.keras.optimizers.Adam()\n", "\n", "model.compile(optimizer=optimizer,\n", " loss=loss_fn,\n", " metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": 176, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential_4\"\n", "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", "flatten_4 (Flatten) (None, 784) 0 \n", "_________________________________________________________________\n", "dense_12 (Dense) (None, 154) 120890 \n", "_________________________________________________________________\n", "dropout_4 (Dropout) (None, 154) 0 \n", "_________________________________________________________________\n", "dense_13 (Dense) (None, 64) 9920 \n", "_________________________________________________________________\n", "dropout_5 (Dropout) (None, 64) 0 \n", "_________________________________________________________________\n", "dense_14 (Dense) (None, 10) 650 \n", "=================================================================\n", "Total params: 131,460\n", "Trainable params: 131,460\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "# print a summary of your model\n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 177, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAALhCAIAAACFb6euAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVhTV/o48BMIi4iCVapYUFRwAUWRQUHroBZhZBFUXBClLbK4j1C1OqOOD49bq1Oxg1RBRK3igAhFxFqkbFaDUEBRKFqNIJFQNsEEgRC4vz/Or3fyTUK4CZD1/fx177n3npwD4eUu576HRhAEAgAATaKl6AYAAIC8QeADAGgcCHwAAI0DgQ8AoHHogisMBuObb75RVFMAAGCQhIeHOzk5kav/54yvpqYmOTlZ7k0CQGosFku9v6sFBQUFBQWKboWaSE5OrqmpESyhi+50/fp1ebUHABklJSWtWbNGjb+rq1atQvDHOEBoNJpQCdzjAwBoHAh8AACNA4EPAKBxIPABADQOBD4AgMYR81QXAHXFZDIPHz4cERFhZmam6LYMjKqqKgaDgZcnT55sb29PbuLz+YWFhfPmzUMI1dbWJiQk1NfXu7m5LVy4UFtbm0rlHA4nISHh1atXlpaW69atMzAwIDdxudykpKSqqipHR8clS5bo6OhQbLC0dZaUlIwcOXL8+PGClTCZzIcPH+LlKVOmzJ49m+Kn/w8hIDExUagEAOUk23cVjw65ffv2YDRpYPn6+vr6+va525UrVxBC165dY7PZ7969I8tbWlqOHj2KS54+fbp58+ba2loGgzFv3ryxY8dWV1f3WXNlZeWYMWOsrKx0dXURQpMmTWKz2eQmS0vLjIwMHMXGjRuXl5dHpVMy1NnV1bVp0yah+rlcblVV1b1793R0dMLCwvr8XIRQYmLi/ykRXIHAB1SFzN/VhoaGAW+MkEuXLvW/EqkCX0tLi2Ahi8Xy8vIiC/38/E6dOoWXc3JyEELbtm3rs+alS5c+fvyYIIj6+vqgoCCEUGBgILlp48aN5J6ffvrpggULqHRKtjr5fP7SpUvLyspEK7SwsJAt8ME9PqBZRo0aNaj1Z2dn79u3b1A/ok/h4eHLly83MjLCq/r6+ufPn8fLjo6OCCE2my25huLiYn9/f1tbW4SQiYlJRESElpbWgwcP8FY2m11eXk7urKen19nZ2WerZK5TW1s7PDw8JCSk755TBoEPaJCenp6cnJyioiK8WlNTc/r06Z6enqdPnx45cuT777/v6enBm1gsVnR0NEEQubm5+/bti4qKam9vx5vS09MjIyNxKOFwOGfOnImMjMRnoDk5OT4+Plwu99y5c+np6QihxsbGY8eO/fHHH3LrY2FhYUZGhq+vL1kSHR2dkZGBl6urqxFCixYtklyJhYXFunXryFVTU1N7e/sRI0bg1RUrVhQUFOCTTS6Xm5qaunPnzj4b1p86XVxcOBxOSkpKn59CleDpH1zqAlUhw3e1vLwch4PvvvuOIIibN2+amJgghE6dOvX55597enoihI4ePUoQxJUrV0aMGDFkyJBNmzYFBga6u7sjhBwcHHg8Hq7KxsbGzMwML79792748OFOTk4EQZSWls6fP9/ExCQnJ6e0tJQgiNjYWITQt99+K20HZb7UXblypYuLS2/7Hz9+3NraurOzU9r2jBkzJiIiAi/X1dVNmTIFIRQWFubq6pqSkiJtbTLUGRISYmdnJ1Qo86UuBD6gkmT7rpaVlZGBjyCIvXv3IoSysrLw6uzZs+3t7fHy+vXraTTa06dP8eqBAwcQQmfPnsWrvr6+ZODDB+LARxCEj4+Pubk5uYnL5SYkJAg+dqBI5sBnZWUVEBAgdueenp4pU6Y8ePBA2sbk5eWZmZlxOByypL6+ftKkSQghJyenuro6aSuUoc7Tp0/T6XShkA33+ADom56enuDqkCFDEEJTp07Fq9bW1q9fv8bLQ4cOpdPpNjY2eHXv3r10Oj0/P5/Kpwi+Ej906FA/P79hw4b1v/FU8Hg8JpNpamoqdmtWVpabm5tgdiYquru7Dx48ePPmTUNDQ7IwLi7O2dk5MDCQwWDMnTuX/LkNXp1GRkZ8Pv/FixdSfVBvYBwfAP+ftrY20cvcWwYGBmZmZg0NDVTqEc0FIjfNzc3d3d04oIvKzs6OiIiQts5du3aFh4fb2dmRJfHx8YmJiUVFRXQ6ff78+aGhoVu3bsX3NAevThwiWSyWtbW1tF0QBWd8APSts7Ozrq5u4sSJVHZWYOAbM2aMsbExh8MRu9XCwoJ81EtRTEyMnZ3dsmXLBAsvXbq0dOlSOp2OEAoMDAwODs7MzGxpaRnUOt++fYsQMjc3l6r9vYHAB0DfCgoKOjo68AMQhBCdTu/o6BC7J41G6+7ulmPThNnY2NTX14vdFBoaKlVVqampBEEEBASQJXl5eQihsrIywZDk7e3N4/EoPrmWuU42m02j0SZMmCBVF3oDgQ9oEDw0rLGxEa++e/cOIcTj8fBqY2MjvneOV/l8/m+//YaXk5OTnZ2dycDn6ura2NgYHx/f1tYWHx/f1NTEZDLxKYmpqWldXR2TyXz58mVbW1txcfGcOXNyc3Pl1scFCxY8efJEtPzevXuenp5CN85CQkLc3d3FxqysrKyvvvqqq6srKioqKirq9OnToaGh+OmQj49PamoqOfSnoKDA1tbWyspq8OpECFVVVbm6uurr68vwMxFD8EkHPNUFqkKG72pBQQEezjJ9+vRbt27l5ubiS9egoCA2m33t2rXhw4cjhA4dOtTV1RUaGqqtrb1t27bdu3evXbvWy8tL8Mksh8PBI4GnTZuWkpKyYsUKNze32NhYgiBycnLodLqxsTEewnLjxg0ajYY3SUXmp7rNzc0ffvjhixcvhPY8efIkjUbLzs4WLMRPUU+ePCm0c3Fx8dChQ4Vihb6+flNTE0EQbW1tGzdunD59emRkZFBQ0LJly5hM5qDW2dnZOXLkyLt37wrVCcNZgGYZ7O9qaGiojo4OQRCvX79ubW0Vu099fT1eaG9vFyxvaWkRjJK9HS5Zf15ZO3v27NatW0V3xiFGUEdHR2JiYlpamgwtbGtrq6ioaG5ulkOdSUlJ3t7eovvDcBYABoW5uTk+ExSFxz8jhISuv4yMjATHr/R2+AASemMsODi4qamptLRUaLcPPvhA9EAGg4FHaEvLwMBg2rRp5KsXg1dnZWXl1atXr127Jrq/zLdTYTgLAGK8f/+ez+dzuVzBgWZKSEdHZ/jw4UFBQU5OTg4ODi4uLgghLS2tixcvbt++PTg42MHBQcLhhYWFR48exc9SB8rA1lldXX3s2LELFy4IjtF5+vTpnTt3Xr9+/e7dO9nu+sneuIqKih9//PH58+eOjo7Dhw+n0+ne3t4y1zbYmpqaYmJiKL49rlRZ2/Lz89+8eUOuGhsbL126dLA/NDMzs6mpiVy1tbUlh/JqgqtXr2ZmZhIE8eWXXwYHB8+aNUvRLerV6tWrV69eLVqup6cXExPT57hiHCgH1sDWqaure/HiRaERQtOnT58+fTpC6Ntvv5WxXsHrXur3TQoKCubOndvV1XX+/Hn8L/HgwYNUDlQUHx+f0aNHU9xZqbK2dXZ2pqam4l/Wt99++/79ezl8aH19/Y4dOxBC2tra2dnZMrzaOdgG9R5fS0vL2z/J5wcuiuI9PkAFGqh7fEeOHFmwYAGdTt+4cWNlZSX1Ay9fvixhdZDExsYKZrzpk6+vb0NDw2CfWFHsu66urre3t7GxMUJo/fr1vQ3KH9gmmZiY4JFWs2bNWrRoEU4bqTmMjIyM/zSoP3CgKDIGvszMTPyniBAiF/oklKpMPpnLnj9/XlpaSo7AokipsrbRaDR8s1zaYff9aRL+RNHxBwCoAanv8b169eqXX37p7OysrKxMTk5GCIkOYX/+/HlBQUFZWdn8+fOXL1+OC3GqMhqNdu7cubFjxxoaGgquenl5IYRqa2vv3LnDYrHmz5//ySef4ANrampSUlK2b99eUVGRlpY2btw4f39/LS1KIburq2v//v1xcXH/+te/qPexp6cnLy/P0NAQ3xiW0AAWi3Xz5s3Nmzfn5eX99NNPH3300caNG/E5Qnp6+suXLw0NDYOCgjgczuXLl7u6ukxNTdesWSP0o/Dy8mpsbIyNjQ0MDBw9ejSVFsqhSRR/VqK/659//rmmpgYhpKent2LFCj09vcLCwoqKihEjRuC7wGJ/ywiht2/fXrt2bcuWLT/++GNZWdkXX3wxsDfdAfgfweteKvdN/vjjj7S0NIRQWFjYgwcPHjx48PPPPyOBe3ynTp1auHBhT0/Pq1evLCwscDZHQiRVmWjmsuzs7ODg4JKSkqSkJENDwy1bthASk6ZRsX///vv37xMEERYWRvEen3JmbcOvKHZ3d8utSc+ePUMI/fWvf5XwsxL7u25ra8NPQl6+fEnuOXXq1GfPnhG9/JYJgrh48aKBgQGdTv/Pf/4zc+ZMhBDOUd4btR9zCvf4BhAakAHM+CEj+VfK5XIFA5+lpSU5eNLHx8fd3Z08UChVmeAqh8OZOHEil8vFqxs3bkQIMRgMQmLSNMlyc3MPHTqEl6kHPkIps7YJBj75NIlK4Ovtd33z5k2EEPm6Qm1tLf4blvBbJgjC398fIYQzUP72228SPpeAwAekIRr4Bv5SIjc3F98YqqioqKmpwa9DkoQeS5Or165da29v37NnD15ls9mTJk168eKFo6OjaNK0n376qc9mtLS0REVFiR302Kc+s7aRDRDN2nbs2LH8/Hwqb4OLZm2j3kI5NImK3n7Xnp6e06ZN++abbzZu3Eij0RISEvCjEgm/ZYTQ2LFjEUL4cpjs2sA2WOWofQcVZeAD30cffZSZmXnr1i1nZ+dJkyYVFxcLbu0t8JWXl5uamp45c6bP+iUkTRMUFhbm4OCATz0QQr///ntHR0dKSoqxsfHixYupdkbKBigqa5uimtTb75pGo+3evTswMPD27dseHh5ZWVl///vfUV+/ZXyPkuLdWwyf96mlU6dOIYTCwsIU3RB1sGbNGqGSgQ98Bw4cwLfVhwwZcuPGDaGtvQU+bW3tZ8+edXV1UZ+ZWLKGhoa7d++Sq62tre/fv9+xY4eNjU0/A58EOGubm5sblZ3l8898MJpUX19vZGSkp6cn4Xft7+9/4MCBf//73xYWFjY2NvgxxYD/lsWO3VUPeDCpGndQnkQD3wC/q/vq1avDhw+Tw83IJDOYUKoywdWZM2e2tbWdPXuW3NrS0hIdHS1zS27dusUSsHnzZhMTExaLReUyWWZKmLVtMJoUHBysra0t+Xetq6u7c+fOnJyc3bt3f/7557hwwH/LAMhGlsCH/3LI2fbwnR38mjR+0HHt2rV3797du3cvPz//7du3XC4Xp4QVSlUmuOrp6Wlubr5r164TJ0789ttvSUlJISEhGzZsQH0lTRsMSpi1DbeBvIkmhybheQjJj8DwWTOdTqfT6ZJ/1wih0NBQIyOjxsZG8objmjVrevstI4Ta2toQQoKvygEwWASfdFB5UsZkMvHkmNOmTcvIyKirq/vss88QQlOmTMEPGQMDA+l0uqWl5dmzZ5OTk3V1dRcvXozz4QilKhNaraiomDx5Mm6VjY1NSUkJQRCSk6ZRf6yze/duik91lS1r2927d/Gc8wihFStW3LhxQw5Nunr16pw5cxBCNBpt7ty5n3zyybx582xsbPAlakxMDK5Nwu8a27Rp05kzZwS7I/a3TBDE+fPnP/roI4TQ6tWrHz582OevCZ7qAuqQfPLxCf6ldXR0CG4SSlUmtEoQRFVVVXV1df/bIB8Kz9o2qE2iQsLvmiCIJUuWvH37VvSo/v+WIfAB6kQD36CMjBdMRiY0NETopSvRd7DGjx9P/YO2bNnS26aQkJDekmrIdpRkEuZAkZC1TXB1wLO29b9JVEj4XT9+/HjixIli32iU6rcMwIBT7VeCFi1a1Nsm8m97oI4SSwmztim8ScXFxXv27JkxY0Zubu4PP/ygkDZojqqqKgaDgZcnT55sb29PbuLz+YWFhfPmzUMI1dbWJiQk1NfXu7m5LVy4UFtbm0rlHA4nISHh1atXlpaW69atMzAwIDdxudykpKSqqipHR8clS5ZQf0wvbZ0lJSUjR44U+k/JZDIfPnyIl6dMmTJ79myKn/4/gqd/an/5MLCuXLmCX63dsmULfs1L4ZShSYWFhcOGDTMyMkpKShq8T1H776pUqeevXbvGZrOFbiIdPXoUlzx9+nTz5s21tbUMBmPevHljx46lcp+hsrJyzJgxVlZWODfPpEmT2Gw2ucnS0jIjIwNHsXHjxuXl5VHplAx1dnV1bdq0Sah+LpdbVVV17949HR0dmHND3pQha5sQJWlSV1cX+XbdIJHDd/XSpUsKrKc/c26wWCwvLy+y0M/P79SpU3g5JycHIbRt27Y+a166dCl+Xbq+vh4/XgsMDCQ3bdy4kdzz008/XbBgAZVOyVYnn89funRpWVmZaIUw54YCKGHWNiVpEp1Ol+oFDCU0UDnT5JN7TUh4ePjy5cvJO7b6+vrnz5/Hy/iZPpvNllxDcXGxv7+/ra0tQsjExCQiIkJLS+vBgwd4K5vNFkxwqaenJzTpx8DWqa2tHR4eHhIS0nfPKVPtbycAfeJwOImJiYcOHYqLi8P5shBC6enpkZGROBxwOJwzZ85ERkaSL8DhJF1cLvfcuXPp6ekIIRaLhXPP5Obm7tu3LyoqCo9jlbaexsbGY8eOUZx7WzaFhYUZGRl4SBYWHR2dkZGBl/HwTAm3uTELCws8ag0zNTW1t7cn5wBasWJFQUEBPtnkcrmpqak7d+7ss2H9qdPFxYXD4aSkpPT5KVQJnv7BpS5QFRS/q48ePZoxY8aNGzfq6+tPnjxpaGhIXnj2lqGLEEnSJTnZF/V6CAr5x0gyX+quXLnSxcWlt/2PHz9ubW0tw1wCY8aMiYiIwMt1dXVTpkxBCIWFhbm6uuKEOjKQqs6QkBA7OzuhQphXF2gWKt/Vzs7OqVOnCs4Gs27dOl1d3fLyckJihi5CJEmXhGRfUtXTZ/4xksyBz8rKKiAgQOzOPT09U6ZMefDgQZ/VCsnLyzMzM+NwOGRJfX09njjcycmprq5O2gplqPP06dN0Ol0oZMM9PgCE3blzp7KyEt/Vwtzc3Hg8XlxcHJXDhfKGCSX7otPp+fn5MtTj5+cnOPhxYPF4PCaTaWpqKnZrVlaWm5ubk5OTVHV2d3cfPHjw5s2bggOk4uLinJ2dAwMDGQzG3Llz+5zOrf91GhkZ8fn8Fy9eSPVBvVHtcXwASFBRUYEQEvzTWrBgAUKIfJFZMgm5ahSVf6xPzc3N3d3dvT3Xys7OjoiIkLbOXbt2hYeH29nZkSXx8fGJiYlFRUV0On3+/PmhoaFbt27FNzEHr078e2SxWNbW1tJ2QRSc8QG19cEHHyCEyPG9CKHx48fr6OiQN9QlkxCwcLIv/MZ0f+oZcGPGjDE2NibzRAixsLCQ9uWcmJgYOzu7ZcuWCRZeunRp6dKlONVYYGBgcHBwZmZmS0vLoNaJU2lIeB9JKhD4gNqaO3cuQkjwgvTp06ddXV34Wk9Chi7UV5IuwWRf/alnMNjY2NTX14vdRCULt6DU1FSCIHD2bCwvLw8hVFZWJhiSvL29eTwexUfVMtfJZrNpNNqECROk6kJvIPABtTVz5sxPP/00Pz+fvFv0yy+/WFlZ4RFhEjJ0IZEkXaj3ZF9S1dNn/rH+W7BgwZMnT0TL79275+npKXTjLCQkxN3dXWzMysrK+uqrr7q6uqKioqKiok6fPh0aGoqno/Hx8UlNTSUzMBYUFNja2lpZWQ1enQihqqoqV1dXobfLZSf4pAOe6gJVQfG72t7evnXrVhsbm4sXL54/f97Dw+P169d4k4QMXYRI3jAJyb6kqkdC/jEhMj/VbW5u/vDDD1+8eCG058mTJ2k0WnZ2tmAhfop68uRJoZ2Li4tFp1TW19fHOcfa2to2btw4ffr0yMjIoKCgZcuWMZnMQa2zs7Nz5MiRd+/eFaoThrMAzSLVd7WlpeX+/fs1NTWim3rL0EX83yRdfSb7olgPQTn/WH9eWTt79iw5+50gwVSJWEdHR2JiYlpaGpUmCWlra6uoqGhubpZDnUlJSd7e3qL7w3AWAHplZGQ0b948MzMz0U29ZejCR4mOOzE3NxebQIx6PQOefwz9mTOcFBwc3NTUVFpaKrQbftojdCCDwcBDsqVlYGAwbdo00SdFA15nZWXl1atXxc6YKPP9UxjOAkDfFJ7sqzc6OjrDhw8PCgpycnJycHBwcXFBCGlpaV28eHH79u3BwcEODg4SDi8sLDx69Ch+ljpQBrbO6urqY8eOXbhwQXCMztOnT+/cufP69et3797JeNdP8PQPLnWBqpDnd1Uhyb4GJAOzCiUz701tbW1PT08/K0HyycAMgDrx9PT08PDAy0JZppXcuHHjFN2E/urtLZR+gsAHQB9kyMgPlBw83AAAaBwIfAAAjQOBDwCgccTc40tKSpJ/OwCQCk49oMbfVRaLhdS6gwom+IiXTJkNAADqRGg4Cw0PcgFAzlavXo3gjAYoCNzjAwBoHAh8AACNA4EPAKBxIPABADQOBD4AgMaBwAcA0DgQ+AAAGgcCHwBA40DgAwBoHAh8AACNA4EPAKBxIPABADQOBD4AgMaBwAcA0DgQ+AAAGgcCHwBA40DgAwBoHAh8AACNA4EPAKBxIPABADQOBD4AgMaBwAcA0DgQ+AAAGgcCHwBA40DgAwBoHAh8AACNA4EPAKBxIPABADQOBD4AgMaBwAcA0DgQ+AAAGgcCHwBA40DgAwBoHBpBEIpuA9AIV69ejYuL6+npwauvXr1CCE2YMAGvamlpbdy40d/fX2HtA5oEAh+Qk7KyspkzZ0rY4fHjx7a2tnJrD9BkEPiA/EydOvXZs2diN1laWv7+++9ybg/QWHCPD8jPhg0bdHR0RMt1dHQ+//xz+bcHaCw44wPyw2QyLS0txX7lfv/9d0tLS/k3CWgmOOMD8jNx4sTZs2fTaDTBQhqN9pe//AWiHpAnCHxArgICArS1tQVLtLW1AwICFNUeoJngUhfIVX19vampKTmoBSGkpaVVW1s7evRoBbYKaBo44wNy9eGHHzo7O5Mnfdra2gsXLoSoB+QMAh+Qtw0bNgheZ2zYsEGBjQGaCS51gby9e/fOxMSEx+MhhHR0dOrr642NjRXdKKBZ4IwPyNvw4cP/9re/0el0Op3u7u4OUQ/IHwQ+oADr16/v7u7u7u6Gl3OBQsClLlCAjo6OUaNGEQTR2Ng4ZMgQRTcHaBwlDXxCY1wBACpKOSMMXdEN6NXOnTudnJwU3Qogi1OnTiGEwsLCJOzz6NEjGo0mOV+L0lqzZg18P/vEYDAiIyMV3QrxlPeMLzExcfXq1YpuCJDFqlWrEELXr1+XsA+fz0cI0enK+69XAvh+UpGUlLRmzRrljDAq+bUDakBFQx5QD/BUFwCgcSDwAQA0DgQ+AIDGgcAHANA4cIMZKAUmk3n48OGIiAgzMzNFt2WA8fn8wsLCefPm4dXa2tqEhIT6+no3N7eFCxcKZScUi8PhJCQkvHr1ytLSct26dQYGBoJbuVxuUlJSVVWVo6PjkiVLxCb3H5A6S0pKRo4cOX78eKo9V2aEUkIIJSYmKroVQEa+vr6+vr5SHYLHvty+fXuQmjSwqH8/W1pajh49+u7dO7z69OnTzZs319bWMhiMefPmjR07trq6WnINlZWVY8aMsbKy0tXVRQhNmjSJzWYLbrW0tMzIyMCBbNy4cXl5eX22SrY6u7q6Nm3aRKV+LDExUXkjjKIbIB4EPpUmQ+AjCKKhoWEwGiPk0qVL/a+E4veTxWJ5eXm1tLSQJX5+fqdOncLLOTk5CKFt27ZJrmTp0qWPHz8mCKK+vj4oKAghFBgYKLh148aN5Oqnn366YMGCPhsmc518Pn/p0qVlZWV9fgSh3IEP7vEBZTFq1KjB/ojs7Ox9+/YN9qeQwsPDly9fbmRkRJbo6+ufP38eLzs6OiKE2Gy2hBqKi4v9/f3xdMMmJiYRERFaWloPHjwgd2Cz2eXl5eSqnp5eZ2en5Fb1p05tbe3w8PCQkJA+eq70IPABpdDT05OTk1NUVESW1NTUnD59uqen5+nTp0eOHPn+++/JhPUsFis6OpogiNzc3H379kVFRbW3tyOE0tPTIyMjcWThcDhnzpyJjIzE5x0IoZycHB8fHy6Xe+7cufT0dIRQY2PjsWPH/vjjj8HoUWFhYUZGhq+vr2BhdHR0RkYGXq6urkYILVq0SEIlFhYW69atI1dNTU3t7e1HjBhBlqxYsaKgoODKlSsIIS6Xm5qaunPnTskN62edLi4uHA4nJSVF8qcoO0WfcoqH4FJXlUl7qVteXo4DxHfffYdLbt68aWJighA6derU559/7unpiRA6evQoQRBXrlwZMWLEkCFDNm3aFBgY6O7ujhBycHDg8XgEQdjY2JiZmeFK3r17N3z4cCcnJ7xaWlo6f/58ExOTnJyc0tJSgiBiY2MRQt9++620HaTy/Vy5cqWLi4uEHY4fP25tbd3Z2SnVR48ZMyYiIoJcraurmzJlCkIoLCzM1dU1JSVFqtpkqzMkJMTOzq7PapX5UldZmwWBT5XJcI+vrKxMMPARBLF3716EUFZWFl6dPXu2vb09Xl6/fj2NRnv69ClePXDgAELo7Nmz+KPJwIePIgMfQRA+Pj7m5ubkKpfLTUhIIJ88UEfl+2llZRUQENDb1p6enilTpjx48ECqz83LyzMzM+NwOIKF9fX1kyZNQgg5OTnV1dVJVaFsdZ4+fZpOp/cZspU58MGlLlAKenp6QiU4T9/UqVPxqrW19evXr/Hy0KFD6XS6jY0NXt27dy+dTs/Pz6fyQYIZz4YOHern5zds2LB+Nl4Uj8djMpmmpqa97ZCVleXm5iZVfpfu7u6DBw/evHnT0NBQsDwuLs7Z2TkwMJDBYMydO5f8KQ1enUZGRnw+/8WLF9Q/SNnAOD6gGrS1tYle8nwYGBiYmZk1NDRQqUc+qR6bm5u7u7sl5FjNzs6OiMbbMD0AACAASURBVIiQqs5du3aFh4fb2dkJFsbHxycmJhYVFdHp9Pnz54eGhm7duhXfwRy8OnGUZLFY1tbWUnVBecAZH1B5nZ2ddXV1EydOpLKzfALfmDFjjI2NORxObztYWFgIPu3tU0xMjJ2d3bJly4TKL126tHTpUpzqJjAwMDg4ODMzs6WlZVDrfPv2LULI3NycevuVDQQ+oPIKCgo6OjrwAxA6nd7R0dHbnjQarbu7Wz6tsrGxqa+v721raGgo9apSU1MJgggICCBL8vLy8EJZWZlgSPL29ubxeFSeU/enTjabTaPRJkyYQL0LygYCH1AKeKRYY2MjWfLu3TuEEJ6FEm/Cd9PxKp/P/+233/BycnKys7MzDnyurq6NjY3x8fFtbW3x8fFNTU1MJhOfoSCETE1N6+rqmEzmy5cv29raiouL58yZk5ubOxg9WrBgwZMnT8Ruunfvnqenp9CNs5CQEHd3d9GYlZWV9dVXX3V1dUVFRUVFRZ0+fTo0NBQ/C0II+fj4pKamkgN9CgoKbG1traysBq9OhFBVVZWrq6u+vr60PxMlothnK71B8FRXlUn7VLegoAAPZ5k+ffqtW7cIgsjNzcWXrkFBQWw2+9q1a8OHD0cIHTp0qKurKzQ0VFtbe9u2bbt37167dq2Xlxf5ZJbD4eCBwdOmTUtJSVmxYoWbm1tsbCzempOTQ6fTjY2N8RCWGzdu0Gg0cit1VL6fzc3NH3744YsXL0Q3nTx5kkajZWdnCxbip6gnT54ULCwuLh46dKjQ36y+vn5TUxPeoa2tbePGjdOnT4+MjAwKClq2bBmTyRzUOjs7O0eOHHn37t0+f0rK/FRXWZsFgU+VyfbKGnWhoaE6OjoEQbx+/bq1tVV0h/r6erzQ3t4utKmlpUVw/IrYw/tE8ft59uzZrVu3it1ERhlSR0dHYmJiWlqaDO1pa2urqKhobm6WQ51JSUne3t5UalDmwAeXukCFmZub4zNBIXjwM0JI9HLMyMhIcPyK2MMHSnBwcFNTU2lpqeimDz74QKiks7OTwWDg8djSMjAwmDZtmuDbF4NUZ2Vl5dWrV69duyZDhUpF5YezVFRU/Pjjj8+fP3d0dBw+fDidTvf29lZ0o3rV1NQUExND8XXRzMzMpqam3rYuWbLk8ePHt27dWrJkiWzfbNX1/v17Pp/P5XKFRp8pGy0trYsXL27fvj04ONjBwUHyzoWFhUePHh3YqUgGts7q6upjx45duHBBDaZCVu0zvocPHwYGBv7973+fM2fOjh07fH19S0pKFN0oSYKCgk6fPk1xZzs7u4KCgnXr1u3atauzs7O7u7u7u5vD4fz666+ff/757du3k5KSIiMja2trB7XNyubq1auZmZkEQXz55ZePHj1SdHP6oKenFxMTM3r06D73dHFxGfCAMrB16urqXrx4UfRcVRWp9hnfkSNHFixYQKfTN27c+Le//Y16DsvLly8LPsgXWh0ksbGxgkkv+mRiYhIQEPDtt99aWlp+9tlngpu0tbWnT58+a9asmJgYKlWJdlA+XR4Mnp6eHh4eeFn0fQ/lNG7cOEU3YQBIeBFF5aj2GV9mZqaxsTFeJhf6JJSbSD6pip4/f15aWoqHXFDX29tU27dvt7CwwJcwfY7IFe2gnLMzDSwjIyPjP6nBNRdQCFU943v16tUvv/zS2dlZWVmZnJyMEBI7bPX58+cFBQVlZWXz589fvnw5+jM3EY1GO3fu3NixYw0NDQVXvby8EEK1tbV37txhsVjz58//5JNPyNpqampSUlK2b99eUVGRlpY2btw4f39/La2+/3l0dXXt378/Li7uX//6l9CmxsbG2NjYwMBAKldD2NWrV/39/RFCdXV10vbXy8tLtKS3LsvcXwCUnKoGvqFDh+I3fkxMTD766COEEM7IJigyMjItLS07O7u6unrRokV1dXWbN28eMWKEra3t8+fPp0yZgk8ShVZzcnKuXbu2efPmYcOG+fj4BAQEnDlzBiGUnp6+ceNGnCW4rKysoaFh//79LBaLyqlTRETEzp07xZ6+/fDDD//4xz8MDQ23b99OpeNtbW2HDx/GgU+2/oqWiO1yf/oLgLJT8HCaXiAK46TevHmDBJKpcblchNDBgwfJHSwtLclRVD4+Pu7u7uSyYG4iwVUOhzNx4kQul4tXN27ciBBiMBh4VUKiJAlyc3MPHTqEl8PCwkaPHi24VXJmpGfPniGEjI2NFy9evHjx4o8//nj48OHDhw/HW/Edw/Pnz0vVX+pdlq2/xOCP41M4Kt9PoMzj+FT1jI+K3NxcPEK9oqKipqYGvwKFCd0XI1evXbvW3t6+Z88evMpmsydNmvTixQv8MoBooqSffvpJchtaWlqioqIkjHvCmZEkV2Jra/vzzz/j5ebm5rlz54rdjXp/EbUuy9BfEovFSkpKorizKmIwGIpugrJT5h+ROge+jz76KDMz89atW87OzpMmTSouLiY39Rb4ysvLTU1N8bVtnyQkSiKFhYU5ODjcvHkTr/7+++8dHR0pKSn4JE6Kzvzpgw8+6O1ik3p/kUxdptJfUkFBwZo1ayjurIoiIyMjIyMV3QogI3UOfAcOHMjLy/vpp5+GDBly48YNwU29BT5tbe1nz551dXVRnJy0Tw0NDXfv3iVXW1tb379/v2PHDhsbG9kCH0IoMDBQbDn1/qLB7DLm6+uLZ4xUSzQaLTExcfXq1YpuiFJLSkpS2n9+avuE7tWrV4cPH16/fj2+XiNTTSCR3ESCqzNnzmxrazt79iy5taWlJTo6WuZm3Lp1iyVg8+bNJiYmLBaL+jUjRdT7iwa5ywAoPxU+48PjV8iHufiWFjkPHn7Wce3atbVr1z5+/Dg/P7+zsxPfwidzExEEMWbMGMFVT09Pc3PzXbt24fxuT548SU5OjouLE/wI0URJ/cltWVxcvHnz5q+//nrhwoWiW3FatKqqKrHHtra2kj2l3t+hQ4dS7PJg9BcApaCopyqSob6emjGZTDxF3rRp0zIyMurq6vC7DVOmTCGfQgYGBtLpdEtLy7NnzyYnJ+vq6i5evLipqUkoN5HQakVFxeTJk/EPx8bGpqSkBNcmOVESxX7t3r1b6KmuhMxIN27ccHZ2xi0JCQl58uSJ4NaHDx+6ubkhhOzs7G7fvk29vxS73J/+wlNdQCj3U10aQfl2tTwN1D0UDodDjp7r7Owk33BqbW3V0tIiNwmtIoSqq6tpNJp83jTCsyAOSFUU+yu2ZAC7vGrVKoQQ3OPTcPgen3JGGBW+1KVC8A9b8L1OoekORGc/GD9+PPVP2bJlS2+bQkJCZs2aJfnwAcyMRLG/Ykuk6jIAKk3NA598LFq0qLdNZGI4AIDygMA3APCVHQAy4PP5hYWF8+bNQwjV1tYmJCTU19e7ubktXLhQW1u7z8OLiopE57d1dHTEMwFxudykpKSqqipHR8clS5aIHbEklCOypKRk5MiR6n/6r+ibjOIhuHmsyuDhBkUtLS1Hjx7FLyw+ffp08+bNtbW1DAZj3rx5Y8eOra6ulnx4T08PnlVDSHFxMUEQlZWVlpaWGRkZHA4nISFh3LhxeXl5opX4+PgIPnDr6uratGmT2D2lpcwPN9R2HB9QY5cvX1aqemTz5s2bDRs2bNmyBd+ZPXLkyOTJk01NTR0dHY8cOVJbW3vixAnJNWRlZXl4eLx69arzT5mZmRYWFrNnz0YIhYWFOTs7u7u7Gxoa+vn5LVq0aP/+/UI1iOaIpNPpUVFRx48f722KOPUAgQ+omIFKJqjwpITh4eHLly8nnzLp6+ufP38eL+N3w9lstuQaDA0NT506ZWFhofuntLS0lStX4q1sNlswqOnp6ZGjXLHeckRqa2uHh4eHhIT0o3PKDgIfUCQOh5OYmHjo0KG4uLiamhpcmJ6eHhkZiaMAh8M5c+ZMZGQkvm7CyQS5XO65c+fS09Px/iwWKzo6miCI3Nzcffv2RUVF4WHtUtXT2Nh47NgxKlNxD4jCwsKMjAw8qSYWHR2dkZGBl6urq5HEh2aYk5OTYHrEnp4ePKMmXl2xYkVBQcGVK1cQQlwuNzU1defOneTOOEfkV199JbZmFxcXDoeTkpIiS99UgqKvtcVDcI9PlVG8x/fo0aMZM2bcuHGjvr7+5MmThoaGly5dwptsbGzMzMzwMh7n6OTkRBBEaWnp/PnzTUxMcnJySktLCYK4cuXKiBEjhgwZsmnTpsDAQDzvkoODA4/Hk6qe2NhYJJDlTLL+fz9Xrlzp4uLS29bjx49bW1vj92Soy8/PHzt2bE9PD16tq6ubMmUKQigsLMzV1TUlJUVw5/3799+/f58QlyoNCwkJsbOzk6oBQuAeHwDCeDze2rVrly9fvmLFChMTky+++GLZsmXBwcEVFRUIoWnTppF7Dhs2zNLSEi/PmjXLxMREX19/4cKFeICkv7+/h4dHR0fHtm3b4uLiMjIyDhw4UFRUdOHCBanq8fPzS0hIEJrbZPCUlZWNHTtW7CaCIOLj48+fP6+rqytVndevX1++fDn5QuHo0aPv3bs3adKkU6dOcTgc/OAYy8vLo9PpgiWibGxsnjx5Qr6wqGYg8AHFuHPnTmVlJb6Zhbm5ufF4PPLNaAmEXhYeOnQonU63sbHBq3v37qXT6fn5+VLVgxMj9jbJycDi8XhMJrO3uXuysrLc3NycnJykqpMgiBs3bpA3+LC4uDhnZ+fAwEAGgzF37tzXr1+jP3NE/vOf/5RcoZGREZ/PFx0rox5gHB9QDHxmJzgx7oIFCxBCv/32W5/HSs6SYGBgYGZm1tDQ0M96Bk9zc3N3d3dvMyVlZ2dHRERIW+f9+/d5PN5f//pXsiQ+Pj4xMbGoqIhOp8+fPz80NHTr1q3p6ekUc0TiXw2LxbK2tpa2McoPAh9QDDw9K4PBwPEOITR+/HgdHZ0RI0b0eazkgNXZ2VlXV4czOPSnnsEzZswYY2NjDocjdquFhYXoC4V9Sk5O9vb2FhzzfOnSpaVLl+Kp+AIDA3/99de4uLiWlhaKOSLfvn2LEDI3N5e2JSoBLnWBYuAE+oIXpE+fPu3q6sKXeHQ6Xey0eUhcekEhBQUFOMVWP+sZVDY2NvX19WI3hYaGSlsbQRDJyclC17llZWU4rRnm7e3N4/H++OMPijki2Ww2jUbDb4CoHwh8QDFmzpz56aef5ufn4xtPCKFffvnFysoKDx9zdXVtbGyMj49va2uLj49vampiMpn4HIRMJvjy5cu2tjZ8LJ/PJ6+Rk5OTnZ2dceCjXk9xcfGcOXNyc3Pl0/0FCxaIHSF87949T09P8meChYSEuLu7Sxhqw2AwuFyu4FSoCCEfH5/U1FQyJW1BQYGtra2VlRXFFlZVVbm6uurr61PcX7VA4AMKc/bs2YCAAHd390uXLsXFxd2+ffvnn3/GjzJXrVrl6OgYGBjo4OBgbGxsb28/a9YsnE9/1apVBEHY29vfvn0bT66EENLS0oqOjt6zZ4+fn191dTU5xI96PdXV1b/++qvc7uXv2bOntrb25cuXQuWFhYW3b98WKs/Ozv7xxx/xiDyxrl+/7uXlJfQUOCoqysPDY+bMmadPnw4ODi4pKfnhhx8oTovM4/HS0tJ27dpFuUOqRqGDaXqFYByfKpPqXd2Wlpb79+/X1NSIbqqvr8cL7e3tQocITsgZGhqqo6NDEMTr169bW1tlrkfssWINyPfz7Nmz5HSggpqamoRKOjo6EhMT09LSequKyWQ2NjaK3dTW1lZRUdHc3CxV25KSkry9vaU6RBSM4wOgV0ZGRvPmzTMzMxPdRCb1ErrgMjIyEjvuxNzcXGxyQ4r1DGBiRCqCg4ObmppKS0uFyvFjH0GdnZ0MBgOPzRZrwoQJI0eOFLvJwMBg2rRpVB4ZkSorK69evSphTlQ1AIEPqLz379/z+Xw864gK0dLSunjx4nfffVdUVCR5z8LCwqNHj+Lns4Oturr62LFjFy5c6G20jXqAwAdU29WrVzMzMwmC+PLLLx89eqTo5khHT08vJiZm9OjRkndzcXGRWxjS1dW9ePGi6FmnmoFxfEC1eXp6enh44GXBbPsqRD5Tu1DU2/skagYCH1BtMoz1BQAudQEAGgcCHwBA40DgAwBoHOWdUNzR0VHs2C6g/AoKCtCf+dPVUnJyMnw/+8RisQoKCpQ0wihns2DCRrWHB+7a2dkpuiFgcF2/fl3RTRBDSQMfUHurV69GCCUlJSm6IUATwT0+AIDGgcAHANA4EPgAABoHAh8AQONA4AMAaBwIfAAAjQOBDwCgcSDwAQA0DgQ+AIDGgcAHANA4EPgAABoHAh8AQONA4AMAaBwIfAAAjQOBDwCgcSDwAQA0DgQ+AIDGgcAHANA4EPgAABoHAh8AQONA4AMAaBwIfAAAjQOBDwCgcSDwAQA0DgQ+AIDGgcAHANA4EPgAABoHAh8AQONA4AMAaBwIfAAAjQOBDwCgcSDwAQA0Dl3RDQCa4v37952dneQqj8dDCL19+5Ys0dPTMzAwUEDLgOahEQSh6DYAjRAdHb1161YJO5w5c2bLli1yaw/QZBD4gJw0NDSYmpp2d3eL3aqtrc1ms01MTOTcKqCZ4B4fkBMTE5NPPvlEW1tbdJO2traLiwtEPSA3EPiA/Kxfv17sFQZBEOvXr5d/e4DGgktdID8cDsfExETwEQemq6vb0NAwfPhwhbQKaCA44wPyM2zYMC8vLx0dHcFCOp3u7e0NUQ/IEwQ+IFf+/v58Pl+wpLu729/fX1HtAZoJLnWBXPF4vFGjRnE4HLLE0NCwsbFRT09Pga0CmgbO+IBc6erqrlq1SldXF6/q6OisWbMGoh6QMwh8QN7WrVuHX9tACHV1da1bt06x7QEaCC51gbz19PSMGTOmoaEBITRq1Ki6ujqxg/sAGDxwxgfkTUtLa926dbq6ujo6Ov7+/hD1gPxB4AMK4Ofnx+Px4DoXKIrqZWdhMBg1NTWKbgXoF4IgRo4ciRB69epVVVWVopsD+sXc3NzJyUnRrZASoWp8fX0V/TMDAPyPr6+voqOC1FTvjA8h5Ovre/36dUW3AsgiKSlpzZo1BEFUVFQghKytrRXdogG2atUqhJDmfD9xf1WOSgY+oAbUL+QBFQIPNwAAGgcCHwBA40DgAwBoHAh8AACNA4EPAKBx4KkuUAFMJvPw4cMRERFmZmaKbssA4/P5hYWF8+bNQwjV1tYmJCTU19e7ubktXLiQyst8RUVFL168ECp0dHScMGECQojL5SYlJVVVVTk6Oi5ZskQoBSzW1NQUExOzb98+vFpSUjJy5Mjx48f3t2PKDc74gAooKSmJj49/8uSJohsywFpbW0+cODFjxgyEUHl5+eHDh/39/VesWHHw4MFx48a9fv1a8uEEQfj5+a0TgWcrfvbsmZ2d3ZgxY/bs2dPa2mppaZmfny9aSVBQ0OnTp8lVW1vb48ePi91TnUDgAyrA19e3oaFh6dKlg/oply9fHtT6hbx582bDhg1btmwZNmwYQujIkSOTJ082NTV1dHQ8cuRIbW3tiRMnJNeQlZXl4eHx6tWrzj9lZmZaWFjMnj0bIRQWFubs7Ozu7m5oaOjn57do0aL9+/cL1RAbG1teXi5YQqfTo6Kijh8/rn7/ZgRB4AOqYdSoUYNaf3Z2Nnm5Jx/h4eHLly83MjLCq/r6+ufPn8fLjo6OCCE2my25BkNDw1OnTllYWOj+KS0tbeXKlXgrm80WDGp6enpC0zw9f/68tLTU09NTqFptbe3w8PCQkJB+dE7ZQeADKqCnpycnJ6eoqAiv1tTUnD59uqen5+nTp0eOHPn+++97enrwJhaLFR0dTRBEbm7uvn37oqKi2tvb8ab09PTIyEgcXDgczpkzZyIjIxMTExFCOTk5Pj4+XC733Llz6enpCKHGxsZjx4798ccfg9SjwsLCjIwMwRfPo6OjMzIy8HJ1dTVCaNGiRZIrcXJy0tL6359wT09PSkrKihUr8OqKFSsKCgquXLmCEOJyuampqTt37iR37urq2r9//1dffSW2ZhcXFw6Hk5KSIkvfVIKC3xWWnq+vryq+FA0wHGikOqS8vBwHiO+++44giJs3b+Kpx0+dOvX555/jE5ajR48SBHHlypURI0YMGTJk06ZNgYGB7u7uCCEHBwcej4ersrGxMTMzw8vv3r0bPny4k5MTQRClpaXz5883MTHJyckpLS0lCCI2NhYh9O2330rbQYrfz5UrV7q4uPS29fjx49bW1p2dnVJ9dH5+/tixY3t6evBqXV3dlClTEEJhYWGurq4pKSmCO+/fv//+/fsEQYSFhY0ePVq0tpCQEDs7uz4/VEX/HuGMDyg7a2vrgwcPkqteXl4bN25ECM2YMePChQvp6emzZ8++ceMGQsjf39/Dw6Ojo2Pbtm1xcXEZGRkHDhwoKiq6cOECPnbatGlkPcOGDbO0tMTLs2bNMjEx0dfXX7hw4axZsxBCfn5+CQkJn3322SB1qqysbOzYsWI3EQQRHx9//vx5cmYSiq5fv758+XIajYZXR48efe/evUmTJp06dYrD4eAHx1heXh6dThcsEWVjY/PkyRNykgA1A4EPqACh2YiGDBmCEJo6dSpetba2Jh+ADh06lE6n29jY4NW9e/fS6XSKzyjJkIHr8fPzw48dBhyPx2MymaampmK3ZmVlubm5SZvhjiCIGzdukDf4sLi4OGdn58DAQAaDMXfuXPxTamlpiYqK+uc//ym5QiMjIz6fLzpWRj3AOD6g8rS1tYlepo4xMDAwMzPD83v0STDwDarm5ubu7m4cvkVlZ2dHRERIW+f9+/d5PN5f//pXsiQ+Pj4xMbGoqIhOp8+fPz80NHTr1q3p6elhYWEODg43b97Eu/3+++8dHR0pKSnGxsaLFy8mDzc0NEQIsVgstcyjA4EPqLPOzs66ujo3NzcqO8st8I0ZM8bY2FhwcmFBFhYW5KNe6pKTk729vQXHPF+6dGnp0qV0Oh0hFBgY+Ouvv8bFxbW0tDQ0NNy9e5fcrbW19f379zt27LCxsREMfHgwoLm5ubQtUQlwqQvUWUFBQUdHBzlig06nd3R0iN2TRqN1d3fLrWE2Njb19fViN4WGhkpbG0EQycnJQte5ZWVlLS0t5Kq3tzePx/vjjz9u3brFErB582YTExMWi/XTTz8JHs5ms2k0Gn4DRP1A4AMqAA9Aa2xsxKvv3r1DCJH33RsbG/EDULzK5/N/++03vJycnOzs7EwGPldX18bGxvj4+La2tvj4+KamJiaTiU9tTE1N6+rqmEzmy5cv29raiouL58yZk5ubO0g9WrBggdgRwvfu3fP09BR6ZyMkJMTd3V3C2BoGg8Hlcj/55BPBQh8fn9TUVHKgT0FBga2trZWVFcUWVlVVubq66uvrU9xftUDgA8ru4cOH+J5XYmJiRkZGXl5eamoqQujo0aN1dXX//e9/7927x+FwIiIi+Hw+QkhLSys6OnrPnj1+fn7V1dV4XB62atUqR0fHwMBABwcHY2Nje3v7WbNm4SfCq1atIgjC3t7+9u3bQ4cOra6u/vXXXwfv1v6ePXtqa2tfvnwpVF5YWHj79m2h8uzs7B9//BGPyBPr+vXrXl5eQk+Bo6KiPDw8Zs6cefr06eDg4JKSkh9++EFw3J8EPB4vLS1t165dlDukahQ5lkYmKjpuCGAyjOOTSmhoqI6ODkEQr1+/bm1tFbtPfX09Xmhvbxcsb2lpeffuHbna2+GSUf9+nj17duvWraLlTU1NQiUdHR2JiYlpaWm9VcVkMhsbG8Vuamtrq6ioaG5uptIkUlJSkre3N5U9VfTvEc74gHoyNzcfPny42E14/DNCSOg6zsjISHD8Sm+HD5Tg4OCmpqbS0lKh8g8++ECopLOzk8Fg4PHYYk2YMAFP1ynKwMBg2rRpI0aMoN6wysrKq1evXrt2jfohKkcjnupyudycnJxffvmltxd0FKWurq6ysnLhwoWChRwOJyEh4dWrV5aWluvWrTMwMOiznvz8/Ddv3pCrOjo6JiYmY8eOpX5DR228f/+ez+dzuVw8GkOZaWlpXbx4cfv27cHBwQ4ODhL2LCwsPHr0KH4+O9iqq6uPHTt24cKF3kbbqAeNOOO7c+fOjh07/vvf/yq6If/T0NCwa9euiRMn4ttVpGfPnk2ePPnf//73qVOngoODbW1t6+rq+qzN1tb25cuX69at++yzz969e9fQ0JCenr5mzZoJEybs37+/q6tr0PqhXK5evZqZmUkQxJdffvno0SNFN6dvenp6MTExo0ePlrybi4uL3MKQrq7uxYsXRc861YxGBD5fX985c+bI5x8mRVVVVQEBAeT786SwsLCffvrp+fPnLBYrKCjo5cuXfY6wRwgZGxvjl6smTZoUGhq6efPmkydPFhcXnzhx4j//+Y+Hh0dvQ8bUjKenZ2Vl5du3b48cOYJfU1UJ48aNU3QT/sfU1FRu4xkVSIliwaDS0tKi+DxLPvCb80KFxcXF/v7+tra2CCETE5OIiIgLFy48ePCASoWiN6RoNJqvr293d/fatWsXLFhQWFgo7bufKkeGcb9AM6lz4Gtubk5OTq6qqvrLX/5CEITg/7Ha2to7d+6wWKz58+eTo59qampSUlK2b99eUVGRlpY2btw4f39/MlwSBJGXl/fo0SNtbe2pU6cuWbJEQlWyIVNIYqampvb29uSJamNjY2xsbGBgYJ9XRoLWrFlz+fLl27dvFxYWfvzxx7J1Xw59B0CelOgkaGA9e/bsb3/724wZMyIiIhobG3/44Qcy8OXk5Bw6dMjOzm7atGk+Pj5bt25FCKWnp9vb2+/cufPbb7/95ptvCgoKAgICBB+G7N+//8WLFzt37nRyciIz2YqtSmYjR44Uusqoqakh0w7/8MMP//jHP5KSkqStFme1vHfvnoQ2S+6+HPoOgFwpdjSNDCiOG5o7d+7u3bvxck9PhZgbRAAAIABJREFUz8SJEydPnkwQBIfDmThxIpfLxZtwgiMGg0EQxN69exFCWVlZeNPs2bPt7e3JGkaNGpWTk4NXDx8+LLkqKvDbCDt27Ohth7y8PDMzMw6Hg1e5XG5CQoLgQDNBra2tCKFp06aJbsLpJJcuXSpb9we274M9jk/hVHRcm8xUtL/qeambnZ398OHDf/3rX3iVRqM5ODjgx3zXrl1rb2/fs2cP3sRmsydNmvTixQtHR0fRZEfk24s0Gm3KlClr1qyJiYnx9vbGI9olVNX/LnR3dx88ePDmzZvksAycKEmGqrhcLj5ccpt76/5g9H3VqlUydEQlFBQUILXuoJCCgoIB+cLLmXoGvsePHyOEpk+fTpaQl5Dl5eWmpqZnzpzpsxKhZEdRUVGrVq3y8fH55JNPrl69Onr0aOpVyWDXrl3h4eF2dnb9r6qkpAQhNHfuXCRr9+XcdwAGm3oGPvwS+8OHDwWT6uDYp62t/ezZs66uLrFzjEowa9askpKSvXv3njt3bvbs2U+ePJG5qj7FxMTY2dktW7as/1URBHHv3j1tbW38REK2Ng94369fvy7DUSoBn+upcQeFqOi5rXo+3MATlWZnZ4tumjlzZltb29mzZ8mSlpaW6OhoyRV2dnZ+//33w4YNO3PmTEZGBpvNTklJka2qPqWmphIEERAQQJbk5eXJXFtYWBge0Ddz5kwkU/fl2XcA5ESxtxhlQOVmaldX19SpUw0NDfPy8giCePPmjampqaGh4ePHj7lcrrm5ua6u7tdff11RUZGYmLhq1Sr8xOCLL75ACDGZTFyJh4fHsGHD8NQt7e3t8+bNw8s9PT0mJiapqakdHR29VUUFfiUjJCREsPDu3btz5879z58iIyNDQkLwlDe//vqrg4MD+ZBBCL66t7CwIEtevXq1ZcsWGo22fft2slBCm3vr/sD2HR5uqBkV7a/qfQUp/qBfvXqF33+cOHHiunXrvLy8Pv744++++669vb2iomLy5Mk47tvY2JSUlBAEkZubO3HiRIRQUFAQm82+du0aHhJ86NChrq6u9vZ2U1PTtWvXXr9+/eTJkwcPHsSfIrYqKm7fvr1mzRqE0IcffhgbG8tmswmCKC4uxo8gBOnr6+N0HTdu3KDRaLGxsaK13bx5k3zh18nJacmSJR4eHt7e3l988UVRUZHQztJ2n8PhDGDfIfCpGRXtL43oZbICpSXVPZSGhgYDA4OhQ4eKvrVeXV1No9Govy3E5/N7enrq6upED5G2KpnhGREHpCqp2jyAfU9KSlqzZo3Kfeuo08x7fCrXX/V8uEEiExCJ5uoYP368VFXhNyjE/oULVbVly5beKgkJCcGzF8pmABMlSdV96n0HQCWoeeBTiEWLFvW2iQzEAGB8Pr+wsBBPcVtbW5uQkFBfX+/m5rZw4ULBmYP6JDbFGUIoIyMDD3JACNXU1Gzbtk0o0VlTU1NMTMy+ffvwaklJyciRI9X+/xkEvoGnog/4gfy1trZGR0dv27YNIVReXn7mzJkDBw5UV1d/8cUXVVVVDAaDyj2EhoaGr776Kjo6Ojg4WCjwVVZWenl5kTcW1q5dK5reMSgoiMFgkIHP1tZ2+/btfn5+gjNVqh/1HM4CNNnly5eVqp7evHnzZsOGDVu2bMFpn48cOTJ58mRTU1NHR8cjR47U1taeOHGCSj29pThDCH3zzTfZ2dmv/xQfHy+0Q2xsbHl5uWAJnU6Pioo6fvy42LmQ1AYEPqBWsrOzyZMXZahHgvDw8OXLl5OptPT19c+fP4+X8UtgbDabSj0ODg7ki4aC6urqysrKLC0tzf8klGr/+fPnpaWl5BR0JG1t7fDw8JCQEGl7pEIg8AElxeFwEhMTDx06FBcXV1NTgwvT09MjIyNxgOBwOGfOnImMjMRDZBBCOTk5Pj4+XC733LlzeHI1FosVHR1NEERubu6+ffuioqLwmZG09TQ2Nh47dkzCBI/SKiwszMjI8PX1JUuio6MzMjLwcnV1NZJ4s5iK//znP/jlpYkTJ168eFHoSXpXV9f+/ft7m4zBxcWFw+Hg9BbqSaGDaWShouOGAEZxHN+jR49mzJhx48aN+vr6kydPGhoaXrp0CW+ysbExMzPDy3h8j5OTE14tLS2dP3++iYlJTk5OaWnplStXRowYMWTIkE2bNgUGBuLJenAKWKnqIQgiNjYWIYRHkktG8fu5cuVKFxeX3rYeP37c2toaTxZMhdhMPz/99NPu3bs//vhj/Fqhi4sLn88nt+7fv//+/fsEQYSFhY0ePVq0zpCQEDs7uz4/WkX/HuGMDygdHo+3du3a5cuXr1ixwsTE5Isvvli2bFlwcHBFRQVCaNq0aeSew4YNs7S0JFdnzZplYmKir6+/cOHCWbNm+fv7e3h4dHR0bNu2LS4uLiMj48CBA0VFRRcuXJCqHoSQn59fQkICzu8/IMrKysaOHSt2E0EQ8fHx58+f72fGbFdX16+//vrevXtFRUVTp07Nysoibxrm5eXR6XT8KLk3NjY2T548Ec0Trh4g8AGlc+fOncrKSsFkR25ubjweLy4ujsrhgslchw4dSqfTbWxs8OrevXvpdHp+fr4M9fj5+QlOPtkfPB6PyWSampqK3ZqVleXm5ubk5DQgn4UQmjlzZnFxsZmZGZ4xsqWlJSoqqs+5XIyMjPh8/uBNqa5YMJwFKB18Zic45nzBggUIod9++43K4RLmyjEwMDAzM2toaOhnPf3U3Nzc3d3d28Rp2dnZERERA/uJBgYG3t7e+FQ3LCzMwcHh5s2beNPvv//e0dGRkpJibGy8ePFi8hD882exWNbW1gPbGGUAgQ8oHTy3IYPBwPEOITR+/HgdHR2Ks2JLCFidnZ11dXVubm79rKefxowZY2xs3NvUdxYWFoMxa9LUqVPxu9UNDQ13794ly1tbW9+/f79jxw4bGxvBwPf27VuEkGBiN3UCl7pA6eCcqYIXpE+fPu3q6sJXf3Q6vaOjo7djaTRad3d3b1sLCgo6OjrwAI7+1NN/NjY29fX1YjeFhoYOxiempqZ6e3sjhG7dusUSsHnzZhMTExaLReYbx9hsNo1GmzBhwmA0RuEg8AGlM3PmzE8//TQ/P//169e45JdffrGyssIjy1xdXRsbG+Pj49va2uLj45uamphMJj49QQiZmprW1dUxmcyXL1+2tbUhhPh8PnmNnJyc7OzsjAOfVPUUFxfPmTMnNzd3oPq4YMECsSOE79275+npSXYcCwkJcXd3lzCYBjdbMI4/f/58586dpaWleLW8vLytrY2cKIqKqqoqV1dXoaF/agMCH1BGZ8+eDQgIcHd3v3TpUlxc3O3bt3/++Wf8lHPVqlWOjo6BgYEODg7Gxsb29vazZs26ceMGPnDVqlUEQdjb29++fRvn+NLS0oqOjt6zZ4+fn191dTUelydtPdXV1b/++usA3unfs2dPbW3ty5cvhcoLCwtv374tVJ6dnf3jjz9euXJFbFU//vjj3//+d4TQDz/8cP78eZznkcvlXrx4cfbs2YsXL967d29GRkZOTg71dNk8Hi8tLQ3Pr6KeFDycRnoqOm4IYFLl42tpabl//35NTY3opvr6erzQ3t4uehSZEjU0NFRHR4cgiNevX7e2tspcD0EQYg8XRf37efbs2a1bt4qW4/SLgjo6OhITE9PS0qhUK3jU8+fPWSyWVEdhSUlJ3t7eVPZU0b9HOOMDysvIyGjevHlmZmaim8g8N6LXYkZGRqLjTszNzcUm9aJezwDmBMOCg4ObmprIq1ESfrYjqLOzk8Fg4AHY1Onp6VlZWX300UfSNqyysvLq1at47Iu6gsAH1Nn79+/5fD6eYFPZaGlpXbx48bvvvisqKpK8Z2Fh4dGjR3FWxMFWXV197NixCxcu9DbaRj1A4ANq6+rVq5mZmQRBfPnll3hWZWWjp6cXExMzevRoybu5uLjILQzp6upevHhR9KxTzcA4PqC2PD09PTw88LKenp5iGyOBHCYtoK6390nUDAQ+oLYGYxgwUA9wqQsA0DgQ+AAAGgcCHwBA40DgAwBoHJV8uJGcnDx4mTOAHKj9r0/tOyhIMIG+qqARqjanPYPBIGdgAKrr1KlTCKGwsDBFNwT0l7m5+QCmTZUP1Qt8QD2sXr0aIZSUlKTohgBNBPf4AAAaBwIfAEDjQOADAGgcCHwAAI0DgQ8AoHEg8AEANA4EPgCAxoHABwDQOBD4AAAaBwIfAEDjQOADAGgcCHwAAI0DgQ8AoHEg8AEANA4EPgCAxoHABwDQOBD4AAAaBwIfAEDjQOADAGgcCHwAAI0DgQ8AoHEg8AEANA4EPgCAxoHABwDQOBD4AAAaBwIfAEDjQOADAGgcCHwAAI0DgQ8AoHEg8AEANA4EPgCAxoHABwDQOHRFNwBoiocPHz5+/JhcZTKZCKGYmBiyZObMmXPnzlVAy4DmoREEoeg2AI1w69YtLy8vbW1tLS0thBD+4tFoNIRQT09Pd3d3enq6p6englsJNAMEPiAnXV1do0aNevfunditw4cPb2ho0NXVlXOrgGaCe3xATnR0dPz8/MSGNgmbABgMEPiA/Pj5+fF4PNHyrq6udevWyb89QGPBpS6Qn56enrFjx/7xxx9C5SYmJnV1dfjeHwByAF81ID9aWlobNmwQuqTV1dX97LPPIOoBeYJvG5Ar0atdHo/n5+enqPYAzQSXukDerKysXrx4Qa5OnDjx5cuXCmwP0EBwxgfkbf369To6OnhZV1f3008/VWx7gAaCMz4gby9evLCysiJXnz17NnnyZAW2B2ggOOMD8mZpaTlz5kwajUaj0WbOnAlRD8gfBD6gAAEBAdra2tra2gEBAYpuC9BEcKkLFKC2ttbc3JwgiJqamo8++kjRzQEaR+kCH4PB+OabbxTdCjDocnNzEUILFy5UcDvA4AsPD3dyclJ0K/4PpbvUrampSU5OVnQrwKAbN27c+PHjRcsLCgoKCgrk3x65SU5OZrFYim6F/CQnJ9fU1Ci6FcKUNB/f9evXFd0EMLiam5sRQh988IFQ+apVq5BafwFoNFpYWNjq1asV3RA5wZnHlI2SBj6g9kRDHgByo3SXugAAMNgg8AEANA4EPgCAxoHABwDQOBD4gMpjMpmBgYFqOUaEz+c/ePCAXK2trT158uSePXt+/vnn7u5u6vXU1dXhgZOiMjIyrv3p66+/fv/+vdAOTU1Nx44dw8slJSXV1dXS9UEpQeADKq+kpCQ+Pv7JkyeKbsgAa21tPXHixIwZM/BqeXn54cOH/f39V6xYcfDgwXHjxr1+/brPShoaGnbt2jVx4sTU1FTRrZWVlV5eXuv+VFpaamBgILRPUFDQ6dOn8bKtre3x48fz8/P71zPFg8AHVJ6vr29DQ8PSpUsH+4MuX7482B9BevPmzYYNG7Zs2TJs2DBccuTIkcmTJ5uamjo6Oh45cqS2tvbEiRN91lNVVRUQENDe3i526zfffJOdnf36T/Hx8UI7xMbGlpeXk6t0Oj0qKur48eOq/m8GAh9QB6NGjRrsj8jOzt63b99gfwopPDx8+fLlRkZGZIm+vv758+fxsqOjI0KIzWb3WY+Dg8PUqVPFbqqrqysrK7O0tDT/k77+/2PvzuOauNrG4Z9AWAQV9JZHQbBqlQKpilpaXPi4lMKtQEELUqRaiwIVl4oL6k/EfnzK0mpbF0RkLxUtVLCIoFYFkSoaBBRFcYGChOVmEwhoCJF5/zhv586TjYQl21zfvzJnZk7OGcPlLOdco8u/wbNnz0pLSwVedqypqbl9+3Y/Pz9Ze6RUIPABldfX15eXl1dUVESW1NbWHj16tK+v79GjR6Ghob/++mtfXx9exWKxoqKiCIK4cePG3r17IyMj8dlQVlbWkSNHcGRhs9knTpw4cuRIamoq3isvL8/Nza2rq+vUqVNZWVkIoZaWlvDwcOEXJw0JJpOZnZ3t7u7OXxgVFZWdnY0/4xttS5YsGcy3HD9+/O7du2ZmZlOnTk1KShKYtt/b2xscHPz9998L72hvb89mszMyMgbz7QpGKBn8U1N0K4DCuLu7u7u7S799eXk5DhAnT57EJRcuXDAyMkII/fzzz1999RU+YQkLCyMI4vTp02PGjBkxYsTXX3/t4+OzfPlyhJCNjQ2XyyUIgsFgmJqa4ko6OztHjx49b948vFhaWrpgwQIjI6O8vLzS0lKCIGJjYxFCx44dk7WDCKHU1FTJ23z22Wf29vYSNoiIiLCysurp6ZHmG3t6ehBCW7duFSi/cuXKrl27Fi5ciBNi29vb83g8cm1wcPCtW7cIgggMDBw/frzAvn5+frNnz5bm26Xpr/zBGR9QbVZWViEhIfwlLi4u69evRwjNmDEjISEhKytrzpw56enpCCFvb28nJycOh7N58+b4+Pjs7Oz9+/cXFRUlJCQghCwtLclKRo0aNW3aNHLR2trayMhIV1d38eLF1tbWCCEvL68zZ86sW7duODpVVlZmYmIibi1BEImJiXFxcYN8BbuDg8MPP/xQUFBQVFRkYWFx7do18qZhfn4+nU6fP3++uH0ZDMbDhw9FviVZJUDgAypPR0dHoGTEiBEIIfLelpWVFfkAVF9fn06nMxgMvLhnzx46nS7lY0r++fb6+vpeXl7kk4chxOVyq6qqjI2NxW1w7do1R0fHIUz0NGvWrOLiYlNT07NnzyKE2tvbIyMj9+3bJ2EXAwMDHo/H/9Io1QJJCoD609TUJMTkndTT0zM1NW1ubpamHvkkGmlra3v79i2O3SLl5uYePHhwaL9UT0/P1dUVn/kGBgba2NhcuHABr3r+/DmHw8nIyDA0NFy6dCkuHDlyJEKIxWJZWVkNbUvkAwIfoLSenp7GxkZHR0dpNpZP4JswYYKhoSGbzRa3weTJk/mf9g4VCwsL/P6T5ubmq1evkuUdHR2vX7/eunUrg8EgA9+rV68QQmZmZkPeDPmAwAco7c6dOxwOBz8AodPpHA5H3JY0Gk2myRKDwWAwmpqaxK319/cfji89f/68q6srQujixYv85UFBQcnJyQITYxoaGmg02pQpU4ajJXIA9/iAysNPLVtaWsiSzs5OhBB5672lpQU/AMWLPB7vyZMn+PO5c+cWLVqEA5+Dg0NLS0tiYmJ3d3diYmJra2tVVRU+tUEIGRsbNzY2VlVVVVZWdnd3FxcXf/jhh+LmgQ2SnZ2duBHCBQUFzs7OAnM2/Pz8li9fLm5sDe6CQEx/9uzZtm3bSktL8WJ5eXl3d3dwcLCULayurnZwcBAY96dCIPAB1Xb37l18wys1NRUPc8vPz8fTs8LCwhobG3/77beCggI2m33w4EEej4cQ0tDQiIqKCgoK8vLyqqmpwePyEEIeHh62trY+Pj42NjaGhoZz5861trbGj4PxWoIg5s6dm5OTo6+vX1NTc+/evWG6ux8UFFRfX19ZWSm8islk5uTkCKzKzc29dOnS6dOnhbe/dOnSN998gxD6448/4uLiGhsbcXlXV1dSUtKcOXOWLl26Z8+e7OzsvLw88kXvknG53MzMzJ07d8rcMeWh2NE0wmAcH8XJOo5PVv7+/lpaWgRBvHz5sqOjQ3iDpqYm/OHNmzcCq9rb2zs7O8lFkbv3C0k3ri06OnrTpk0iV7W2tgqUcDic1NTUzMxMmVrC4XCePXvGYrFk2osgiLS0NFdXVyk3lrK/cgZnfICizMzMRo8eLVyOBz8jhISv4wwMDPjHr4jcfaj4+vq2traSl6L8hLP29/T0FBYW4vHY0tPR0Zk+fbqsr/esqKhISUnBA19UFwQ+QC2vX7/m8XhdXV2Kbkg/NDQ0kpKSTp48yT8VTxwmkxkWFkanD/uzypqamvDw8ISEBAmjbVSCOjzV7erqysvL++uvv0TOK1Qhra2tMTExUs6Ev3nzZl1dHbmopaVlZGRkYmIyffr0YWugyktJSfnzzz8Jgti9e7evry+eg6G0dHR0YmJipMk9ZW9vL4f2IIS0tbWTkpKU88VpMlGHM77Lly9v3br1t99+U3RDBos/8Vm/Zs6cWVlZuXr16nXr1nV2djY3N2dlZXl6ek6ZMiU4OLi3t3dYm6qinJ2dKyoqXr16FRoa+t577ym6OVKZNGmSopvwX8bGxmoQ9ZB6BD53d/cPP/xQDuf5MpE1d5tA4rN+GRoa4omi7777rr+//8aNGw8fPlxcXHzo0KHjx487OTlJGAGrEPJMZieOgYGB4T9U/WINDIY6BD6EkIaGhoaGEvVF1txtIhOf9Uv45jqNRnN3d4+Jibl69aqdnZ3yzCGXczI7ACRTrrMkmbS1tZ07d666uvqDDz4gCII8A3/16tXZs2cDAgIuXbpUVla2Y8cOfDLIZrNzcnKePHliZmbm4OBAzrZhsVgXLlzYuHFjfn7+lStXJk6cuH79evJ0QNxeWVlZlZWVI0eO3LBhA5vNTk5O7u3tNTY29vT0xLnbaDTaqVOnTExMXFxcJHcEJz6Lj48/cOCAwKqWlpbY2FgfH5/x48dLf2Q8PT2Tk5NzcnKYTObChQtFHhBx/RrYAZFwNNA/yeykPyAADDtFj6cRJOU4voqKChsbm9u3b/f29p46dUpHR8fc3JwgiKSkJD09PTqdfvz48VmzZiGEHjx4QBDE/fv3Z8yYkZ6e3tTUdPjw4ZEjR/7yyy9EfwnaxO2FiUvfJpy7TTIJic8kJ33r6OhACFlaWgqvwmN6w8LCRB4QCf0a8AGRKZmdBMM9jk/hkFKOaxs+ytlfVQ18H3300a5du/Dnvr6+qVOn4sBHEIS3tzdCKCMjgyCIJ0+eEATR09NjYWEREhJC7r569Wptbe3y8nKCIL744gsajfbo0SO8av/+/Qih6OhoyXsRBOHu7k7+qRMEMWfOHPJP3c3NzczMTJr+3rhx49tvv8WfhQNfV1fXmTNn+AfN8pMQ+HB23GXLlgkfkH77NbADIuFoyHRAIPCpGeXsrxLdF5Nebm7u3bt3ybzbNBrNxsaGvNTFGRzxdGucke3y5csVFRX4NQWYo6Mjl8uNj49H4hO0Sd6rX9I8/Oo38dmAk77hcWr6+vpI6ID02y8FHhDs3LlzNPWFEPL09FR0K+RHyn90OVPJe3wPHjxACL3//vtkCf/xxU85+J91PH78GP2TQQyzs7NDCJEz1fmRCdpk2kuYNP/k0iQ+G5iSkhKE0EcffYSEDois/ZLnAcFsbW0DAwOl3FjleHp6btu2bQjTiCo5fJ9X2ahk4MO5N/B7UshCCX9XeIpPYWEh/kNFCL3zzjtaWlpjxowR3phM0CbTXsKk+TuXJvHZABAEUVBQoKmp+cknnwivlbVf8jwgmKmp6apVq6TcWOV4enrOmzdPjTsoQDkDn0pe6uJXLOfm5kq5PT7x4U8v/ujRo97eXpH/65IJ2vrdS0L6Npp0udsuXrzI4rNx40YjIyMWi3XlyhUpuyZSYGAgHtCHn2YIkOloIKkPiPIkswOgXyoZ+D799FMLC4tff/0V/xHW19fn5+ezWKyysjIej9fd3Y0Qam1tJbefNWvWl19+efPmTXL2z19//TV9+nTy3aAiE7T1u5eE9G0CudsG3FPJSd+qq6sRQvzviq6urt60adOxY8e2bNlCXi0KHJB++zWwAyJTMrsBHxAAhoRKBj46nX7p0iVLS8tFixa9++67u3bt+uCDD6ytrW/fvn3q1Cmciy0gIIDJZJK7REdHr127dvny5b/88kt8fHxOTs7169fJl1SJS9AmeS8J6dsEcrcNuKcSkr5lZWXhPGvV1dXz5893cHBwdnbetm3biBEjmEzmsWPH8Gbx8fHCB0RyvwZ2QGRKZjfgAwLA0FDwU2UhMuXja2pq6urqIgiCzWZLs317e/utW7dqa2v5C/tN0CZyL/424A8C6dsEcrcN2MCSvklDXL8Gc0CkT2YnDgxnUTPK2V+VfLhBIlOn8T9qlMDAwEDCq0LFvTlF8l7i0reRr4MJCAgQt6+fn1+/CUKGL+mb5H6hAR0QycnsZG8jAMNCtQPfkCATtEkZPWVFjjcURoYJpTLcBwRIj8fjMZlM8r+Z+vr6M2fONDU1OTo6Ll68WFNTU8p6GhsbKyoqFi9eLLwqOzsbD5NACNXW1m7evFlPT49/A/5saSUlJf/617/eeeedAfdIWSj6lFOQnFPPnz59Gk+DDQgIkGZ6mdpT+AGBS11Se3t7WFgYeX/g0aNHGzdurK+vLywsnD9/vomJSU1NTb+VNDU17dixY8SIEVu3bhVe++TJE/5hRp9//rnwNm5ubuSEot7e3q+//jo/P1+a9mPS91eeqB742tvbX/3j9evXcvtepaXwAzLcgY9/trVC6pEyELBYLBcXl/b2drLEy8vr559/xp/z8vIQQps3b+63HiaTiQf8iwx8vr6+eXl5L/8hfGc2JiZm+vTp/DMpeTzesmXLysrK+v1qTDkDn0o+1R1CkKBNgHofkKHKjiWHLFvbt29fsWIF/41RXV3duLg4/BlPHGxoaOi3HhsbGzxxU1hjY2NZWdm0adPM/iFwZ1ZktjRNTc3t27fzD35SRVQPfEB1sdns1NTUb7/9Nj4+vra2FhdmZWUdOXIEBwg2m33ixIkjR47gywicHaurq+vUqVPkAB0WixUVFUUQxI0bN/bu3RsZGYnHRcpUT0tLS3h4uLjX2g4Ak8nMzs52d3fnL4yKisLvz0QI1dTUIIm3j6Vx/PhxPP1p6tSpSUlJxD/vHcZwtjSRr3Owt7dns9k4EYaqUvQppyB4vSTFSXmpO4AEWcLZsSTn4JK+HsnZwwQgKS79PvvsM3t7ewkbREREWFlZ4bek9wu/cF34UvfKlSu7du1auHAhfp2uvb09j8cj10rIlkYQhJ+f3+zZs6X5dmn6K39wxgdUD5fL/fzzz1esWLFy5UojI6MdO3Z8+umnvr6+OI2CpaUlueWoUaOmTZuGP1tbWxsZGenq6i7yxuzfAAAgAElEQVRevBiPIvL29nZycuJwOJs3b46Pj8/Ozt6/f39RUVFCQoJM9Xh5eZ05cwa/CWBIlJWV4Zw6IhEEkZiYGBcXxz/mfAAcHBx++OGHgoKCoqIiCwuLa9euHTp0CK/Kz8+n0+kSRjsxGIyHDx8qT4pvWUHgA6pnMAmyBHIliMvBJVM9A84eJhKXy62qqjI2Nha3wbVr1xwdHYcwv8usWbOKi4tNTU3x23L7zZaGEDIwMODxeCLnFKkEGMcHVM9gEmRJThJD5uAaZD2D0dbW9vbtWwlPlnJzc3GG7SGkp6fn6uqKT3WlyZaGDz6LxbKyshralsgHBD6gegaTIEtywCJzcA2ynsGYMGGCoaGhhJfkTZ48eTimwVhYWJibmyPpsqXh9BPi5vYoP7jUBapnwAmy+s2ORebgGmQ9g8RgMJqamsSt9ff3H44vPX/+PE7TLU22tIaGBhqNNmXKlOFoiRxA4AOqZ8AJskRmxxKZg0umeiRnDxsAOzu7hw8filxVUFDg7OxMdhzz8/Nbvny5uPE0uM0CQfzZs2fbtm0rLS3Fi+Xl5d3d3cHBwVK2sLq62sHBQXhGtqqAwAdU0sASZInMjiUuB5f09UjIHjYwQUFB9fX1lZWVwquYTGZOTo7Aqtzc3EuXLp0+fVp4+0uXLuH0ZX/88UdcXFxjYyMu7+rqSkpKmjNnztKlS/fs2ZOdnZ2Xl4fHtfSLy+VmZmbu3LlT5o4pDwUPpxEC4/goTqYpawNIkCWQHavfHFxS1iN99jAk3bi26OjoTZs2iVzV2toqUMLhcFJTUzMzM6VsA7nXs2fPWCyWTHsRBJGWlubq6irlxlL2V87gjA+oMJwgy9TUVHiVhHRhIsedmJmZicwAJmU9Q549zNfXt7W1lbwU5Yef7fDr6ekpLCzEA7Clp6OjM3369IkTJ8q0V0VFRUpKCh74orog8AFKI3NwKbohgjQ0NJKSkk6ePFlUVNTvxkwmMywsjE4f9kEaNTU14eHhCQkJqj6PGwIfoK6UlJQ///yTIIjdu3ffv39f0c0RpKOjExMTg7OESWZvby+fSKStrZ2UlCR8yqlyYBwfoC5nZ2cnJyf8WUdHR7GNEWfSpEmKbsJ/SZhPolog8AHqgmz4lAWXugAAyoHABwCgHAh8AADKUdJ7fGlpaYpuAlAMFouF1P0HUFhYqOgmUJ6iR1ALwjM3AABqQwlnbtCI/5toHwD5WLVqFVL3MzugtOAeHwCAciDwAQAoBwIfAIByIPABACgHAh8AgHIg8AEAKAcCHwCAciDwAQAoBwIfAIByIPABACgHAh8AgHIg8AEAKAcCHwCAciDwAQAoBwIfAIByIPABACgHAh8AgHIg8AEAKAcCHwCAciDwAQAoBwIfAIByIPABACgHAh8AgHIg8AEAKAcCHwCAciDwAQAoBwIfAIByIPABACgHAh8AgHIg8AEAKAcCHwCAciDwAQAoBwIfAIByaARBKLoNgBJSUlLi4+P7+vrw4t9//40QmjJlCl7U0NBYv369t7e3wtoHqAQCH5CTsrKyWbNmSdjgwYMHM2fOlFt7AJVB4APyY2Fh8fTpU5Grpk2b9vz5czm3B1AW3OMD8rNmzRotLS3hci0tra+++kr+7QGUBWd8QH6qqqqmTZsm8if3/PnzadOmyb9JgJrgjA/Iz9SpU+fMmUOj0fgLaTTaBx98AFEPyBMEPiBXa9eu1dTU5C/R1NRcu3atotoDqAkudYFcNTU1GRsbk4NaEEIaGhr19fXjx49XYKsA1cAZH5Cr//mf/1m0aBF50qepqbl48WKIekDOIPABeVuzZg3/dcaaNWsU2BhATXCpC+Sts7PTyMiIy+UihLS0tJqamgwNDRXdKEAtcMYH5G306NH//ve/6XQ6nU5fvnw5RD0gfxD4gAJ88cUXb9++ffv2LUzOBQoBl7pAATgczrhx4wiCaGlpGTFihKKbA6iHUDXu7u6KPmYAgP9yd3dXdFSQGV3RB20gbG1tAwMDFd0KMBCFhYVHjhxJTU29f/8+jUaTnK9FFf38888IIer8PnF/VY5KBj5TU9NVq1YpuhVggI4cObJq1aqVK1cihOh0lfwFSvD7778jhKjz+8T9VTnq9rMDqkL9Qh5QIfBUFwBAORD4AACUA4EPAEA5EPgAAJQDgQ+ogKqqKh8fHxaLpeiGDD0ej3f79m38ub6+/vDhw0FBQdevX3/79q1M9TQ2Nt64cUO4PDs7++w/fvjhh9evXwts0NraGh4eTi6WlJTU1NTI1gcVBIEPqICSkpLExMSHDx8quiFDrKOj49ChQzNmzEAIlZeXf/fdd97e3itXrgwJCZk0adLLly+lqaS5uXnnzp1Tp049f/68wKqKigoXF5fV/ygtLdXT0xPYZsOGDUePHiUXZ86cGRERcfPmzcH1TNlB4AMqwN3dvbm5edmyZcP6LcnJycNav4C6uro1a9YEBASMGjUKIRQaGmpubm5sbGxraxsaGlpfX3/o0CFp6qmurl67du2bN2+EV/3000+5ubkv/5GYmCiwQWxsbHl5OX8JnU6PjIyMiIhQv/9m+EHgA6ph3Lhxw1p/bm7u3r17h/UrBGzfvn3FihUGBgZ4UVdXNy4uDn+2tbVFCDU0NEhTj42NjYWFhXB5Y2NjWVnZtGnTzP6hq6vLv8GzZ89KS0udnZ0FdtTU1Ny+fbufn5+sPVIhEPiACujr68vLyysqKsKLtbW1R48e7evre/ToUWho6K+//krmsmexWFFRUQRB3LhxY+/evZGRkeSpUFZW1pEjR3BwYbPZJ06cwJPnEEJ5eXlubm5dXV2nTp3KyspCCLW0tISHh//nP/8Zph4xmczs7Gz+iedRUVHZ2dn4M77LtmTJksF8xfHjx+/evWtmZjZ16tSkpCTi/6Yj6e3tDQ4O/v7770Xua29vz2azMzIyBtMAZQaj54Gye/z48YEDB86dO3fy5EkbG5usrKz169c3NzcTBFFWVtbc3BwcHMxisfbu3ZuSkrJlyxYOh/Pw4UMul9vY2BgREZGcnHzr1i0tLS0XF5f333+/o6Njw4YNo0aNWrt2rampKYPB8PT0HDNmzMyZM589e/bee+/h/IB//PHH//t//2/kyJFbtmwZjk798MMP8+bNwxe5mK6u7jvvvIM///HHH1ZWVr6+voP5ikWLFvX29hYWFt69e/err75KSUm5fPkymfT/4MGD27Zt42+AgAULFnz33Xd4ZqH6gTM+oOysrKxCQkLIRRcXl/Xr1yOEZsyYkZCQkJWVNWfOnPT0dISQt7e3k5MTh8PZvHlzfHx8dnb2/v37i4qKEhIS8L6WlpZkPaNGjSLfaWltbW1kZKSrq7t48WJra2uEkJeX15kzZ9atWzdMnSorKzMxMRG5iiCIxMTEuLg4bW3twXyFg4PDDz/8UFBQUFRUZGFhce3aNfKmYX5+Pp1Onz9/voTdGQwG/v9jMG1QWhD4gArQ0dHhX8Qp/MgbW1ZWVuQDUH19fTqdzmAw8OKePXvodLqUzyj5X/irr6/v5eUl4YRoMLhcblVVlbGxsci1165dc3R0nDdv3lB93axZs4qLi01NTc+ePYsQam9vj4yM3Ldvn+S9DAwMeDzeixcvhqoZSgUudYHK09TUJMTk09XT0zM1NW1ubpamHoE3nQ+ftra2t2/fisvAmpube/DgwaH9Rj09PVdXV3zmGxgYaGNjc+HCBbzq+fPnHA4nIyPD0NBw6dKl5C4jR45ECLFYLCsrq6FtjDKAwAfUWU9PT2Njo6OjozQbyy3wTZgwwdDQkM1mi1w7efJk8lHvELKwsDA3N0cINTc3X716lSzv6Oh4/fr11q1bGQwGf+B79eoVQsjMzGzIW6IMIPABdXbnzh0Oh0OO2KDT6RwOR+SWNBpN1skSg8FgMJqamkSu8vf3H45vPH/+vKurK0Lo4sWL/OVBQUHJycnCs2IaGhpoNNqUKVOGozEKB/f4gAro6elBCLW0tODFzs5OhBB5372lpaWnp4e82uXxeE+ePMGfz507t2jRIjLwOTg4tLS0JCYmdnd3JyYmtra2VlVV4VMbY2PjxsbGqqqqysrK7u7u4uLiDz/8UOQksCFhZ2cncoRwQUGBs7OzwJwNPz+/5cuXSxhbg7vAH9OfPXu2bdu20tJSvFheXt7d3R0cHCx9C6urqx0cHASG/qkNCHxA2d29exff80pNTc3Ozs7Pz8dzs8LCwhobG3/77beCggI2m33w4EEej4cQ0tDQiIqKCgoK8vLyqqmpwePyMA8PD1tbWx8fHxsbG0NDw7lz51pbW+Mnwh4eHgRBzJ07NycnR19fv6am5t69e8N3az8oKKi+vr6yslKgnMlk5uTkCJTn5uZeunTp9OnTIqu6dOnSN998gxD6448/4uLiGhsbEUJdXV1JSUlz5sxZunTpnj17srOz8/LytLS0pGwel8vNzMzcuXOnzB1TFQp838fAuLu7q+LLTQCGBwwPX/3+/v5aWloEQbx8+bKjo0PkNk1NTfjDmzdv+Mvb29s7OzvJRXG7Syb97zM6OnrTpk3C5a2trQIlHA4nNTU1MzNTppZwOJxnz56xWCyZ9sLS0tJcXV2l2VJF/x7hjA+oJzMzs9GjR4tcZWRkhD8IXMcZGBjwj18Rt/tQ8fX1bW1tJa9GSWPHjhUo6enpKSwsXL58uUz16+joTJ8+feLEibI2rKKiIiUlBY99UVeUeLjR1dWVl5f3119/iZugoyiNjY0VFRWLFy/mL2xvb4+Pj3/58qWTk9PHH39MDrWX4ObNm3V1deSilpaWkZGRiYnJ9OnTh7zNSu7169c8Hq+rqwuPxlBmGhoaSUlJW7Zs8fX1tbGxkbAlk8kMCwuTz1tKampqwsPDExIS1Pt9x5Q447t8+fLWrVt/++03RTfkv8SlEmpra/vggw8ePHjw6NGjZcuWSR5bT5o5c2ZlZeXq1avXrVvX2dnZ3NyclZXl6ek5ZcqU4ODg3t7e4emE0klJSfnzzz8Jgti9e/f9+/cV3Zz+6ejoxMTEjB8/XvJm9vb2cgtD2traSUlJwmedaoYSZ3zu7u6///77vXv3FN2Q/8KphH788UeB8rS0NCaTiX92//u//xsSEnLr1q0FCxZIrs3Q0HDdunX79+9/9913ycEQBEGkp6evX7+eyWSmp6cP0yQEpeLs7Ozk5IQ/C0z2UGaTJk1SdBP+S9x8EjVDiTM+hJCGhoaGhhJ1VmQqIS6X6+joSP5nu3btWiT1nSbhzWg0mru7e0xMzNWrV+3s7NR10iU/AwMDw3+o95UaGCR1PuNra2s7d+5cdXX1Bx98QBAE/7j8+vr6y5cvs1isBQsWfPzxx7iwtrY2IyNjy5Ytjx8/zszMnDRpkre3NxkuCYLIz8+/f/++pqamhYXFJ598IqGqgdHW1uYfL1pWVubs7IzT8yKEWlpaYmNjfXx8+r0y4ufp6ZmcnJyTk8NkMhcuXDiw7suh7wDIkxKdBA2tp0+f/vvf/54xY8bBgwdbWlr++OMPMvDl5eV9++23s2fPtrS0dHNz27RpE0IoKytr7ty527ZtO3bs2E8//XTnzp21a9fyPwwJDg5+8eLFtm3b5s2bRw4EFVnV4BEEkZaWtmfPnpMnT5KFOFFSWlqarLXhrJYFBQUS2iy5+/LsOwDyoMixNAMi5bihjz76aNeuXfhzX1/f1KlTzc3NCYJgs9lTp07t6urCq3CCo8LCQoIg9uzZgxC6du0aXjVnzpy5c+eSNYwbNy4vLw8vfvfdd5KrkgaejbB161aB8q6uLl9fX/xuBENDQyaTSZafOXOGf6AZv46ODoSQpaWl8CqcTnLZsmUD6/7Q9n24x/EpnIqOaxswFe2vel7q5ubm3r1798CBA3iRRqPZ2Njgx3xnz5598+ZNUFAQXtXQ0PDuu+++ePHC1tZWONnRlStXyBree+89T0/PmJgYV1dXPKJdQlWDaby+vn5MTEx0dPSxY8d27ty5ceNG/FgGJ0oaQIVdXV1494F1fzj6PoDzVlWBJ72qcQcFsFgsU1NTRbdCZuoZ+B48eIAQev/998kS8jq3vLzc2Nj4xIkT/VYikOwoMjLSw8PDzc3t448/TklJGT9+vPRVDYCGhsa2bdtu376dnp7e09MzmGeUJSUlCKGPPvoIDbT7Q953T0/Pge2oKtS+g/z4E+irCvW8x4cnsd+9e5e/EMc+TU3Np0+fDmBom7W1dUlJSUBAwI0bN+bMmdPW1jbgqqT3ySefjB07djBRjyCIgoICTU1N/ERiYG0e8r4r+DpnOKnopd+AqWLUQ+oa+PCT0NzcXOFVs2bN6u7ujo6OJkva29ujoqIkV9jT0/Prr7+OGjXqxIkT2dnZDQ0NGRkZA6tKJo8ePXJxcRlMDYGBgcXFxYcOHZo1axYaUPcV1XcAhpGi/8OQmTT/o/b29lpYWIwcOTI/P58giLq6OmNj45EjRz548KCrq8vMzExbW/uHH354/Phxamqqh4cHfmKwY8cOhFBVVRWuxMnJadSoUX19fQRBvHnzZv78+fhzX1+fkZHR+fPnORyOuKqkgbNo+Pn5kSWvX7/+7rvvHj58iBdbWlrs7Oza29vx4r1792xsbMiHDALw1f3kyZPJkr///jsgIIBGo23ZsoUslNBmcd0f2r7Dww01o6L9Vb2foJQH+u+//8bzH6dOnbp69WoXF5eFCxeePHnyzZs3jx8/xqloEUIMBqOkpIQgiBs3bkydOhUhtGHDhoaGhrNnz+Ihwd9++21vb++bN2+MjY0///zz33///fDhwyEhIfhbRFYljZycHHwb6H/+539iY2MbGhoIgujq6po9ezZ+FLN///6jR4+y2Wxyl/T0dBqNFhsbK1zbhQsXyAm/8+bN++STT5ycnFxdXXfs2FFUVCSwsazdZ7PZQ9h3CHxqRkX7SyPEvKxAaXl4eCCEfv/9d2k2bm5u1tPT09fXF561XlNTQ6PRpJ8txOPx+vr6GhsbhXeRtSrJ2tvbtbW18XAWAZ2dnUOVMkSmNg9h39PS0jw9PVXuVyc9mX6fakBF+6ueT3VJZAIi4Vwd5DtMpYRzY4j8CxeoKiAgQFwlfn5++O2FEuD3uoo0hImSZOq+9H0HQCWoeeBTiCVLlohbRQZiAIACQeAbevjkHwBZ8Xg8JpNJ5iKrr68/c+ZMU1OTo6Pj4sWLpcnMSHrw4MHNmze1tbWdnJyEBxi3trbGxMTs3bsXIVRSUvKvf/2Lamfu6jmcBQCV09HRcejQITInRXl5+Xfffeft7b1y5cqQkJBJkyYJvIFInJaWlg0bNuzdu9fV1dXf31/ktIoNGzYcPXoUf545c2ZERISU71xXGxD4gLpJTk5WqnqkUVdXt2bNmoCAADJtYmhoqLm5ubGxsa2tbWhoaH19/aFDh/qtp7q62tLSsqenJycnR9wTp9jY2PLycnKRTqdHRkZGRESIfOubuoLAB9RKbm4uvoJTknqktH379hUrVvC/R1xXVzcuLg5/xjOgGxoaJFfC5XJXrVo1duxY/oHlAp49e1ZaWkq+bxPT1NTcvn27n5/fwDugauAeH1BSbDY7JyfnyZMnZmZmDg4OZmZmCKGsrKzKysqRI0du2LCBzWYnJyf39vYaGxvjQZF5eXlubm40Gu3UqVMmJiYuLi4sFuvChQsbN27Mz8+/cuXKxIkT169fP2LECFnrGVgyRCkxmczs7GwyzGFRUVHki3RramqQxIdm2L59+4qKiuLi4nBCCmG9vb3BwcHx8fFk/g6Svb39tm3bMjIyVq5cOcBuqBZFDySUmYoOmASYlAOY79+/P2PGjPT09KampsOHD48cOfKXX37BqxgMhqmpKf6MBzbOmzcPL5aWli5YsMDIyCgvL6+0tPT06dNjxowZMWLE119/7ePjg99SZmNjw+VyZaqHIIjY2FiE0LFjx/pt+QB+n5999pm9vb2EDSIiIqysrPBL0yWYOHEinU7/5ptvlixZoq+vb2dnV1xczL9BcHDwrVu3CIIIDAwcP368wO5+fn6zZ8+WqeWEyv49wqUuUDpcLvfzzz9fsWLFypUrjYyMduzY8emnn/r6+j5+/BghZGlpSW45atSoadOmkYvW1tZGRka6urqLFy+2trb29vZ2cnLicDibN2+Oj4/Pzs7ev39/UVFRQkKCTPUghLy8vM6cObNu3brh6G9ZWZmJiYm4tQRBJCYmxsXFaWtrS6ikrq6urq7u/fffDwkJyc3NLSkpefHixaJFi8jX7+Xn59PpdAmvr2IwGA8fPqTCKwoQ3OMDSujy5csVFRX8qf0cHR25XG58fLw0u/O/Y0BfX59OpzMYDLy4Z88eOp0u5RNMgXq8vLyG44VNXC63qqpKwit+rl275ujoOG/ePMn14ORjbm5u+J0t5ubmP/30U1dXF84c0d7eHhkZuW/fPgk1GBgY8Hi8Fy9eDKQbqgbu8QGlg8/s+Cfb2NnZIYSePHkize78AUuAnp6eqalpc3PzIOsZQm1tbW/fvpXwaqTc3NyDBw/2Ww9+MDJu3DiyBMfKp0+fIoQCAwNtbGwuXLiAVz1//pzD4WRkZBgaGi5duhQX4gPOYrGsrKwG3h8VAYEPKB18zlJYWIjjHULonXfe0dLSGjNmjDS7SwhYPT09jY2Njo6Og6xnCE2YMMHQ0JDNZovbYPLkyfxPe8XBCSOKi4vJkkmTJmlpaeGz1Obm5qtXr5KrOjo6Xr9+vXXrVgaDQQa+V69eIYTwQyS1B5e6QOngZNH8F6SPHj3q7e3FpzB0Op3D4Yjbl0ajvX37VtzaO3fucDgcPJhjMPUMLQaD0dTUJG4t+aJkySZMmODo6Hjnzh2y5Pnz5729vfilzBcvXmTx2bhxo5GREYvFIl+ugBBqaGig0Wj87/lTYxD4gNKZNWvWl19+efPmTXKuwl9//TV9+nQ80MzBwaGlpSUxMbG7uzsxMbG1tbWqqgqfrSCEjI2NGxsbq6qqKisru7u7EUI8Ho+8Rj537tyiRYtw4JOpnuLi4g8//PDGjRvD0V87Oztxg4cLCgqcnZ0F5mz4+fktX76cHOxC+vHHH2tra2/fvo0X8/LyLC0tpX8gU11d7eDgoKurK1vrVRMEPqCMoqOj165du3z58l9++SU+Pj4nJ+f69ev4saaHh4etra2Pj4+NjY2hoeHcuXOtra3T09Pxjh4eHgRBzJ07NycnBw9n09DQiIqKCgoK8vLyqqmpycrKIreUvp6ampp79+4N043/oKCg+vr6yspK4VVMJjMnJ0dgVW5u7qVLl06fPi2wMYPBuHXrVkhIyIEDB8LCwi5evHj9+nWcWadfXC43MzMTv0mKEhQ8nEZ2KjpuCGAyJSJtb2+/detWbW2t8Kqmpib84c2bN8J7kbmg/f39tbS0CIJ4+fJlR0fHgOshCELk7sIG9vuMjo7etGmTyFWtra0CJRwOJzU1NTMzU1xtdXV1bW1tMjUgLS3N1dVVpl0wFf17hDM+oLwMDAzmz58vcpo9meBL+NLMwMBAeNyJmZmZyGyG0tczhMkQhfn6+ra2tpaWlgqvwo96+PX09BQWFuLx2CKZmJhI+SAIq6ioSElJOXv2rPS7qDoIfECdvX79msfj4TcLKzMNDY2kpKSTJ08WFRX1uzGTyQwLC5PyGrZfNTU14eHhCQkJEobUqB8IfEBtpaSk/PnnnwRB7N69G79OXpnp6OjExMRIMxfY3t5+CIOUtrZ2UlKS8HmleoNxfEBtOTs7Ozk54c+DeTexPA3Vm1ukJ2HSiBqDwAfUljTjfgE1waUuAIByIPABACgHAh8AgHJU8h7fnTt34E1mKorFYiG1fhEdni2rxh0UcOfOHf4EYqpC9QJfv4nJgDIzNTV1d3dHCOHBurNnz1Z0i4aYKkaBwbC1tVXFP0kaQRCKbgOgolWrViGE0tLSFN0QQEVwjw8AQDkQ+AAAlAOBDwBAORD4AACUA4EPAEA5EPgAAJQDgQ8AQDkQ+AAAlAOBDwBAORD4AACUA4EPAEA5EPgAAJQDgQ8AQDkQ+AAAlAOBDwBAORD4AACUA4EPAEA5EPgAAJQDgQ8AQDkQ+AAAlAOBDwBAORD4AACUA4EPAEA5EPgAAJQDgQ8AQDkQ+AAAlAOBDwBAORD4AACUA4EPAEA5EPgAAJQDgQ8AQDkQ+AAAlENXdAMAVbx+/bqnp4dc5HK5CKFXr16RJTo6Onp6egpoGaAeGkEQim4DoISoqKhNmzZJ2ODEiRMBAQFyaw+gMgh8QE6am5uNjY3fvn0rcq2mpmZDQ4ORkZGcWwWoCe7xATkxMjL6+OOPNTU1hVdpamra29tD1ANyA4EPyM8XX3wh8gqDIIgvvvhC/u0BlAWXukB+2Gy2kZER/yMOTFtbu7m5efTo0QppFaAgOOMD8jNq1CgXFxctLS3+Qjqd7urqClEPyBMEPiBX3t7ePB6Pv+Tt27fe3t6Kag+gJrjUBXLF5XLHjRvHZrPJkpEjR7a0tOjo6CiwVYBq4IwPyJW2traHh4e2tjZe1NLS8vT0hKgH5AwCH5C31atX42kbCKHe3t7Vq1crtj2AguBSF8hbX1/fhAkTmpubEULjxo1rbGwUObgPgOEDZ3xA3jQ0NFavXq2tra2lpeXt7Q1RD8gfBD6gAF5eXlwuF65zgaIoe3aWwsLC2tpaRbcCDDGCIP71r38hhP7+++/q6mpFNwcMMTMzs3nz5im6FRIRys3d3V3RRwgAIBt3d3dFR45+KPsZH0LI3d39999/V3QrwBB7/PgxQsjKykryZjQaLTU1ddWqVXJplLylpaV5enoS6vWA0cPDQ9FN6J8KBD6glvoNeQAMH3i4AQCgHAh8AADKgcAHAKAcCHwAAMqBwAcAoBwIfEDdVFVV+fj4sFgsRTdk6PF4vNu3b+PP9fX1hw8fDgoKun79urhXOEnw4MGD48ePnzp1SvhAtba2hvtRjPQAACAASURBVIeHk4slJSU1NTWDabYSgsAH1E1JSUliYuLDhw8V3ZAh1tHRcejQoRkzZiCEysvLv/vuO29v75UrV4aEhEyaNOnly5dS1tPS0rJhw4a9e/e6urr6+/ubmpoKbLBhw4ajR4+SizNnzoyIiLh58+ZQdUQZQOAD6sbd3b25uXnZsmXD+i3JycnDWr+Aurq6NWvWBAQEjBo1CiEUGhpqbm5ubGxsa2sbGhpaX19/6NAhaeqprq62tLTs6enJycmZNGmS8AaxsbHl5eX8JXQ6PTIyMiIiQp3+L4HAB9TQuHHjhrX+3NzcvXv3DutXCNi+ffuKFSsMDAzwoq6ublxcHP5sa2uLEGpoaOi3Ei6Xu2rVqrFjx0ZHR4vc4NmzZ6Wlpc7OzgLlmpqa27dv9/PzG3gHlAwEPqBu+vr68vLyioqK8GJtbe3Ro0f7+voePXoUGhr666+/9vX1kRuzWKyoqCiCIG7cuLF3797IyMg3b94ghLKyso4cOYKDC5vNPnHixJEjR1JTUxFCeXl5bm5uXV1dp06dysrKQgi1tLSEh4f/5z//GaYeMZnM7Oxs/nnrUVFR2dnZ+DO+AbdkyZJ+69m3b19RUVFQUJC+vr7w2t7e3uDg4O+//17kvvb29mw2OyMjYyAdUEKKnizcD3d3d+Wf8AyGD0IoNTVV+u3Ly8txgDh58iRBEBcuXMDvKf/555+/+uorfC4TFhaGNz59+vSYMWNGjBjx9ddf+/j4LF++HCFkY2PD5XIJgmAwGKampnjLzs7O0aNHz5s3jyCI0tLSBQsWGBkZ5eXllZaWEgQRGxuLEDp27JisvcORtN/NPvvsM3t7e3FrIyIirKysenp6+q1n4sSJdDr9m2++WbJkib6+vp2dXXFxMbk2ODj41q1bBEEEBgaOHz9eeHc/P7/Zs2f3+y0q8TcLZ3xArVhZWYWEhJCLLi4u69evRwjNmDEjISEhKytrzpw56enpeK23t7eTkxOHw9m8eXN8fHx2dvb+/fuLiooSEhIQQpaWlmQ9o0aNmjZtGv5sbW1tZGSkq6u7ePFia2trhJCXl9eZM2fWrVs3TJ0qKyszMTERuYogiMTExLi4OPI1JuLU1dXV1dW9//77ISEhubm5JSUlL168WLRoUV1dHUIoPz+fTqfPnz9fQg0MBuPhw4fkawNUGgQ+oG4EXl00YsQIhJCFhQVetLKy4n8Aqq+vT6fTGQwGXtyzZw+dTpfmCSaNRuOvxMvLCz92GHJcLreqqsrY2Fjk2mvXrjk6OkqT/K6kpAQh5ObmNnbsWISQubn5Tz/91NXVFRUV1d7eHhkZuW/fPsk1GBgY8Hi8Fy9eyN4JpQPZWQC1aGpqEuLTQOnp6ZmamuL3gUjGH/iGVVtb29u3b3H4Fpabm3vw4EFp6sEPRvgf++Bw+fTp08DAQBsbmwsXLuDy58+fczicjIwMQ0PDpUuXktuPHDkSIcRisdQgsw4EPgD+q6enp7Gx0dHRsd8t5Rb4JkyYYGhoyP8mYn6TJ08mH/VKZm5ujhAqLi4mSyZNmqSlpTVq1Kjm5uarV6+S5R0dHa9fv966dSuDweAPfK9evUIImZmZDawjSgUCHwD/defOHQ6Hg5+B0Ol0DocjcjMajTaAyRIDxmAwmpqaRK7y9/eXspIJEyY4OjreuXOHLHn+/Hlvb++CBQs2bNjAv2VQUFBycrLwjI6GhgYajTZlyhRZ2q6k4B4fUDc9PT0IoZaWFrzY2dmJECJvybe0tOAHoOT2PB7vyZMn+PO5c+cWLVqEA5+Dg0NLS0tiYmJ3d3diYmJra2tVVRU+6zE2Nm5sbKyqqqqsrOzu7i4uLv7www9v3LgxTD2ys7MTOXi4oKDA2dlZeM6Gn5/f8uXLhYfX/Pjjj7W1teSkt7y8PEtLS+mfyVRXVzs4OOjq6srWeqUEgQ+olbt37+J7XqmpqdnZ2fn5+efPn0cIhYWFNTY2/vbbbwUFBWw2++DBgzweD++ioaERFRUVFBTk5eVVU1ODh+YhhDw8PGxtbX18fGxsbAwNDefOnWttbY2fCHt4eBAEMXfu3JycHH19/Zqamnv37g3fXf+goKD6+vrKykqBciaTmZOTI1yem5t76dKl06dPC5QzGIxbt26FhIQcOHAgLCzs4sWL169fp9OluuzjcrmZmZk7d+4ccC+Ui2JH0/RLJcYEgeGDZBzHJyt/f38tLS2CIF6+fNnR0SG8QVNTE/7w5s0b/vL29vbOzk5yUeS+/ZJyHB9BENHR0Zs2bRIub21tFS7kcDipqamZmZniaqurq2tra5O+nQRBpKWlubq6SrOlSvzNwhkfAAghZGZmNnr0aOFyPP4ZISRwiWdgYMA/fkXkvkPI19e3tbW1tLRUoByPTRHQ09NTWFiIx2OLZGJiMmbMGOm/vaKiIiUl5ezZs9LvouTU8OFGV1dXXl7eX3/9JW7yjfLLzs7Gd6YQQrW1tZs3b9bT05Ow/c2bN/EwVExLS8vIyMjExGT69OnD21DV9/r1ax6P19XVhcdqKC0NDY2kpKQtW7b4+vra2NhI3pjJZIaFhUl5Dduvmpqa8PDwhIQEcUNqVJEaBr7Lly/v2rWrr69PRQNfRUWFi4sL8c/d988//1xy1EMIzZw58+bNm/v379fW1j527FhfX9+dO3dyc3NfvXrl7e194MABLS2t4W+46klJSfnzzz8Jgti9e7evry+ehqG0dHR0YmJipEk/ZW9vP4Tfq62tnZSUJLfhO/KhhoEPv4f33r17im7I/5GcnLx27Vpptvzpp59yc3PfffddvEheaklgaGi4bt26/fv3v/vuu+T4BoIg0tPT169fz2Qy09PTh2lewcBIfzSGlbOzs5OTE/4sMN9DaYnMJTWsxE0aUWnqeY9PQ0NDQ0OJuiZ9FqPGxsaysrJp06aZ/UPK0QPC95hoNJq7u3tMTMzVq1ft7OyUZ4ql/HM6iWNgYGD4D3W6jgP9Up8zvra2tnPnzlVXV3/wwQcEQZBn5q9evTp79mxAQMClS5fKysp27NhBp9PZbHZOTs6TJ0/MzMwcHBz4B6OzWKwLFy5s3LgxPz//ypUrEydOXL9+PflXIXLHrKysysrKkSNHbtiwgc1mJycn9/b2Ghsbe3p6on+yGNFotFOnTpmYmLi4uEjoxfHjx+/evWtmZjZlypSQkJAvv/yS7EhLS0tsbKyPj8/48eOlPyyenp7Jyck5OTlMJnPhwoWyHhDJR2MAB0SmowHAcFHsQ+V+SflovKKiwsbG5vbt2729vadOndLR0TE3NycIIikpSU9Pj06nHz9+fNasWQihBw8e3L9/f8aMGenp6U1NTYcPHx45cuQvv/yC65Gcp0jCjuJSGBGishhJcOXKlV27di1cuBDflbO3t+fxeHiV5NxHHR0dCCFLS0vhVXhcG87FJNMBkXw0BnZAZDoaxPAPZ1Es6YezqBCVGM6i7AddyoP40Ucf7dq1C3/u6+ubOnUqDnwEQXh7eyOEMjIyCIJ48uRJT0+PhYVFSEgIue/q1au1tbXLy8vx4hdffEGj0R49eoQX9+/fjxCKjo6WvKO7uzv5d04QxJw5c8jARxCEm5ubmZmZTB2/f/8+TigSHh6OS7q6us6cOcM/doyfhMCHk0cuW7ZsAAdE3NEgCGLAB0SmowGBT+WoROBTh0vd3Nzcu3fvHjhwAC/SaDQbG5v79+/jRZzIzNXVFSFkYWFx4cKFiooKnK0bc3R0PHPmTHx8/I8//ohE5SkKDw+/efOmsbGx5B0lk/Wh2KxZs4qLi997772zZ8/u2bMH/ZP7SKZKsK6uLrw7XpTpgIg7Gv7+/pcvXx7wAZHpaPz888+///679NurEDwf1sPDQ9ENGUp37tzh/1UoJyV6AjBgDx48QAi9//77ZAn/3xV+ykE+63j8+DH6J8EOZmdnhxAiZ2sKIPMUybqjgAGMBtDT03N1dX3+/LmsOwrAidg++ugjvDiYA8KftWkwB0TNxkYAlaMOZ3x4rC9+JkAWivvTwiPdCwsL8V8pQuidd97R0tISN5CdzFMk644CBvanbmFhgbMJDRhBEAUFBZqamp988onIDWTqF3/WpsEcEJmORmBg4KpVq6TfXoWkpaV5enqq2fmsSpzAqsMZH37TaG5urjQb4xMf/hS7jx496u3tFZfDlsxTJHlHCSmM0CCyGJ0/fx5fkw5YYGBgcXHxoUOH8KMMYTIdEP6sTQM+IHLO6QSAMHUIfJ9++qmFhcWvv/6K/wjr6+vz8/NZLFZZWRmPx+vu7kYItba24o1nzZr15Zdf3rx5kxwB/9dff02fPp3/1Xki8xRJ3lFCCiMklMVIXEeePXu2bds2cj5meXl5d3d3cHAwXpSc+6i6uhohhN8QRpZs2rTp2LFjW7ZsCQwMJMtlPSDisjYN+IBIeTQAGEaKfrrSDymfEP399994AuPUqVNXr17t4uKycOHCkydPRkZGTpw4ESG0atWqu3fv4o3fvHmzadMmBoORlJQUFxfn5OT08uVLsip/f39NTc3Nmzfv2rXr888/d3FxIR+kStiRzWbjG7qWlpYZGRkrV650dHSMjY3Fa/Py8uh0uqGhoeQXcRUXF+NsukuWLNm9e/f333//+vVrcm16ejqNRiPr5HfhwoXFixfjf9B58+Z98sknTk5Orq6uO3bsKCoq4t8yLi5OpgMi4WgM+IBIeTQwBE91VY1KPNVV9oMu00Fsamrq6uoiCILNZve7cXt7+61bt2prawXK+81TJG5HQnwKI0Ioi5E4HA7n2bNnLBZL5NqB5T6Sksh+9Xs0xO2ISZnTSQIIfCpHJQKfOjzcIJHTWqXJtGFgYCD5ZXri3i0gYUdxKYzQP696QQgFBASI+0Y/Pz9ra2sJKVWGNfeR5AMi4U0LAzggUr4mAoBholaBb0gMd54iCW+8lyYfgZypStYmiuDxeEwmE/83U19ff+bMmaamJkdHx8WLF2tqaspU1YMHD27evKmtre3k5GRqasq/qrW1NSYmhpxPXVJS8q9//eudd94Zql4oBUWfcvZDzqfNp0+fxjNhAwICpJlQpd6U4WgguNT9R3t7e1hYGL5F8OjRo40bN9bX1xcWFs6fP9/ExKSmpkbKepqbm9evX79s2TJxu7i5uY0fP55c7O3t/frrr/Pz86WsXyUuddXhqe4QcnZ2rqioePXqVWho6Hvvvafo5igYFY5GcnKyUtUjTl1d3Zo1awICAnB6sdDQUHNzc2NjY1tb29DQ0Pr6+kOHDklTT3V1taWlZU9PT05OjsgMV7GxseXl5fwldDo9MjIyIiJC5AuPVBQEvv8D8hTxU/ujMVQJsuSQaGv79u0rVqwg743q6urGxcXhz/jpeUNDQ7+VcLncVatWjR07Njo6WuQGz549Ky0txcOV+Glqam7fvp1/yJeqg3t8QB2IS6slU4IsCTm4ZKpnYAnEJGAymdnZ2WSkQwhFRUWRb4+sqalBEu8dk/bt21dUVBQXF0dO3ObX29sbHBwcHx9PTnvnZ29vv23bNjwyaYDdUCqKvtbuh0rcLwDDB0lxj09CdixC6gRZ/ebgkj7RluQEYvykvMf32Wef2dvbi1sbERFhZWWFXxYs2cSJE+l0+jfffLNkyRJ9fX07O7vi4mJybXBw8K1btwiCCAwM5L/HR/Lz85s9e3a/36ISf7NwqQtUG5fL/fzzz1esWLFy5UojI6MdO3Z8+umnvr6+OIcCQsjS0pLceNSoUdOmTcOfra2tjYyMdHV1Fy9ebG1t7e3t7eTkxOFwNm/eHB8fn52dvX///qKiooSEBJnqQQh5eXmdOXNG+hd196usrAzn1BFGEERiYmJcXJy2trbkSurq6urq6t5///2QkJDc3NySkpIXL14sWrQIv6YqPz+fTqdLHuDFYDAePnyoPKm8BwMCH1BtIrNjcbnc+Ph4aXbnT5cgnIOLTqfzT0aWvh4vL6+heskJl8utqqoS9+KLa9euOTo6iptpzg8n6XFzc8PZJczNzX/66aeurq6oqKj29vbIyMh9+/ZJrsHAwIDH4w3fe9PlCe7xAdU2fOnC+HNwDaaeQWpra3v79q24h0u5ubk4w3a/8IORcePGkSU4XD59+jQwMNDGxubChQu4/Pnz5xwOJyMjw9DQcOnSpeT2+CCzWCwrK6uB9kZZQOADqm340oXx5+AaTD2DNGHCBENDQzabLXLt5MmTpZwGg/ObFRcXkyWTJk3S0tIaNWpUc3Pz1atXyfKOjo7Xr19v3bqVwWDwBz6cY0LCHB4VApe6QLX1m1ZrwAmy+HNwDaaewWMwGE1NTSJXkW8T7deECRMcHR3v3LlDljx//ry3t3fBggUXL15k8dm4caORkRGLxbpy5Qp/DQ0NDTQabcqUKQPuiPKAwAdUW79ptWRKkCUuB5dM9UhOIDYAdnZ2IgcPFxQUODs7C79i3M/Pb/ny5eR4F9KPP/5YW1t7+/ZtvJiXl2dpaSn9Q5jq6moHBwcp33eq5CDwAZUXHR29du3a5cuX//LLL/Hx8Tk5OdevXyefcnp4eNja2vr4+NjY2BgaGs6dO9fa2jo9PR2vIghi7ty5OTk5eGibhoZGVFRUUFCQl5dXTU1NVlYW+S3S11NTU3Pv3r0hfAgQFBRUX19fWVkpUM5kMnNycoTLc3NzL126dPr0aYFyBoNx69atkJCQAwcOhIWFXbx48fr163S6VPe7uFxuZmbmzp07B9wL5aLg4TT9UYkxQWD4IKnn6krIjkVIlyBLmhxcUibakjKBmPRzdaOjozdt2iRc3traKlzI4XBSU1MzMzPF1VZXV9fW1ibN95LS0tJcXV2l2VIl/mbhjA+oCZwdSyDRCElCgizhcSdmZmbiMoBJWc+QJxDz9fVtbW0ls3OT8LMdAT09PYWFhXgMtkgmJiZSPvzBKioqUlJSzp49K/0uSg4CHwD/PzIHl6IbIoKGhkZSUtLJkyeLior63ZjJZIaFhUl5Dduvmpqa8PDwhIQEdZqvDYEPAIQQSklJ+fPPPwmC2L17N/lSZqWio6MTExMjzfxfe3v7IQxS2traSUlJIk8tVReM4wMAIYScnZ2dnJzwZx0dHcU2RgKRuaSGlbhJIyoNAh8ACEE2fIqBS10AAOVA4AMAUA4EPgAA5UDgAwBQj6JHUPfD3d1d0UcIACAb5Z+5QSMIQtFHSZLCwsLa2lpFtwIMvZ9//hkhFBgYqOiGgKFnZmYmTW5UBVL2wAfU1apVqxBCaWlpim4IoCK4xwcAoBwIfAAAyoHABwCgHAh8AADKgcAHAKAcCHwAAMqBwAcAoBwIfAAAyoHABwCgHAh8AADKgcAHAKAcCHwAAMqBwAcAoBwIfAAAyoHABwCgHAh8AADKgcAHAKAcCHwAAMqBwAcAoBwIfAAAyoHABwCgHAh8AADKgcAHAKAcCHwAAMqBwAcAoBwIfAAAyoHABwCgHAh8AADKgcAHAKAcCHwAAMqBwAcAoBwIfAAAyqErugGAKu7evfvgwQNysaqqCiEUExNDlsyaNeujjz5SQMsA9dAIglB0GwAlXLx40cXFRVNTU0NDAyGEf3g0Gg0h1NfX9/bt26ysLGdnZwW3ElADBD4gJ729vePGjevs7BS5dvTo0c3Nzdra2nJuFaAmuMcH5ERLS8vLy0tkaJOwCoDhAIEPyI+XlxeXyxUu7+3tXb16tfzbAygLLnWB/PT19ZmYmPznP/8RKDcyMmpsbMT3/gCQA/ipAfnR0NBYs2aNwCWttrb2unXrIOoBeYJfG5Ar4atdLpfr5eWlqPYAaoJLXSBv06dPf/HiBbk4derUyspKBbYHUBCc8QF5++KLL7S0tPBnbW3tL7/8UrHtARQEZ3xA3l68eDF9+nRy8enTp+bm5gpsD6AgOOMD8jZt2rRZs2bRaDQajTZr1iyIekD+IPABBVi7dq2mpqampubatWsV3RZARXCpCxSgvr7ezMyMIIja2tqJEycqujmAclQ+8Hl4eCi6CWAgbty4gRBavHixgtsBBuT3339XdBMGReUDH41Gs7W1NTU1VXRDgGyqqqpoNBqexWFra6vo5gyXc+fOqdnvk8Vi3blzR+Xjhsp3gEZLTU1dtWqVohsCZNPW1oYQ8vf3R6p/+iCB+v0+09LSPD09VT1uQCJSoBhjx45VdBMAdcFTXQAA5UDgAwBQDgQ+AADlQOADAFAOBD6gYqqqqnx8fFgslqIbMvR4PN7t27fJxfr6+sOHDwcFBV2/fv3t27cyVfXgwYPjx4+fOnVK5IFqbW0NDw/Hn0tKSmpqagbTbFUEgQ+omJKSksTExIcPHyq6IUOso6Pj0KFDM2bMwIvl5eXfffedt7f3ypUrQ0JCJk2a9PLlS2nqaWlp2bBhw969e11dXf39/UUOIdywYcPRo0fx55kzZ0ZERNy8eXOoOqISIPABFePu7t7c3Lxs2bLh/qLk5OTh/gpSXV3dmjVrAgICRo0ahUtCQ0PNzc2NjY1tbW1DQ0Pr6+sPHTrUbz3V1dWWlpY9PT05OTmTJk0SuU1sbGx5eTm5SKfTIyMjIyIi1O//Egkg8AHVM27cuOH+itzc3L179w73t5C2b9++YsUKAwMDskRXVzcuLg5/xjNbGhoaJFfC5XJXrVo1duzY6Ohocds8e/astLRU4P3Fmpqa27dv9/PzG3gHVA0EPqBi+vr68vLyioqKyJLa2tqjR4/29fU9evQoNDT0119/7evrw6tYLFZUVBRBEDdu3Ni7d29kZOSbN28QQllZWUeOHMGRhc1mnzhx4siRI6mpqXivvLw8Nze3rq6uU6dOZWVlIYRaWlrCw8OFX5M0JJhMZnZ2tru7O39hVFRUdnY2/ozvwS1ZskRyPfv27SsqKgoKCtLX1xe5QW9vb3Bw8Pfffy+8yt7ens1mZ2RkDKQDqohQcQih1NRURbcCDJC7u7u7u7v025eXl+MAcfLkSVxy4cIFIyMjhNDPP//81Vdf4XOZsLAwgiBOnz49ZsyYESNGfP311z4+PsuXL0cI2djYcLlcgiAYDIapqSmupLOzc/To0fPmzcOLpaWlCxYsMDIyysvLKy0tJQgiNjYWIXTs2DFZOyjN7/Ozzz6zt7eXsEFERISVlVVPT4/keiZOnEin07/55pslS5bo6+vb2dkVFxfzbxAcHHzr1i2CIAIDA8ePHy+wu5+f3+zZsyV/BUEQ+L+HfjdTcqrfAQh8qkzWwEcQRFlZGX/gIwhiz549CKFr167hxTlz5sydOxd//uKLL2g02qNHj/Di/v37EULR0dH4q8nAh/ciAx9BEG5ubjhxFtbV1XXmzJnOzk7Zuifd73P69Olr164Vt7avr++99967ffu25Erw01tra+vW1laCIJ4+fWpsbDxy5EgWi4U3uHHjxrfffos/iwx8R48epdPp/YZX9Qh8cKkLVIyOjo5AyYgRIxBCFhYWeNHKyop8AKqvr0+n0xkMBl7cs2cPnU6X8gkmjUYjP+vr63t5eZFPHoYQl8utqqoyNjYWt8G1a9ccHR3nzZsnuZ6SkhKEkJubG54EbW5u/tNPP3V1dUVFRSGE2tvbIyMj9+3bJ6EGAwMDHo/H/x4oNQZJCoC60dTUJMTkDtHT0zM1NW1ubpamHv7AN3za2trevn2LY7dIubm5Bw8e7Lce/GCE/7EPjpVPnz5FCAUGBtrY2Fy4cAGvev78OYfDycjIMDQ0XLp0KS4cOXIkQojFYllZWQ28PyoCAh+gkJ6ensbGRkdHR2k2lk/gmzBhgqGhIZvNFrfB5MmT+Z/2ioNfXVJcXEyWTJo0SUtLC5+lNjc3X716lVzV0dHx+vXrrVu3MhgMMvC9evUKIWRmZjbQrqgSCHyAQu7cucPhcPADEDqdzuFwxG1Jo9FknSwxYAwGo6mpSdxanLKwXxMmTHB0dLxz5w5Z8vz5897e3gULFiCELl68yL9xUFBQcnKywKSOhoYGGo02ZcoU2VqvmuAeH1AxPT09CKGWlhaypLOzEyHE5XLxYktLC75Djxd5PN6TJ0/w53Pnzi1atAgHPgcHh5aWlsTExO7u7sTExNbW1qqqKnzWgxAyNjZubGysqqqqrKzs7u4uLi7+8MMPcbr8IWdnZydu8HBBQYGzs7PAnA0/P7/ly5cLj6358ccfa2tryUlveXl5lpaW69atk7IZ1dXVDg4Ourq6srVeNUHgA6rk7t27+IZXamoqHuaWn59//vx5hFBYWFhjY+Nvv/1WUFDAZrMPHjzI4/EQQhoaGlFRUUFBQV5eXjU1NXhcHkLIw8PD1tbWx8fHxsbG0NBw7ty51tbW6enp5FqCIObOnZuTk6Ovr19TU3Pv3r1huvEfFBRUX19fWVkpvIrJZObk5Aisys3NvXTp0unTpwU2ZjAYt27dCgkJOXDgQFhY2MWLF69fv06nS3VVx+VyMzMzd+7cOeBeqBgFP1UeNATDWVTZAIazyMTf319LS4sgiJcvX3Z0dAhv0NTUhD+8efNGYFV7ezv/+BWRu/dLyt9ndHT0pk2bRK7Cw1P4cTic1NTUzMxMcbXV1dW1tbXJ1M60tDRXV1dptoThLACoDDMzs9GjRwuX48HPCCHhSzwDAwP+8Ssidx8qvr6+ra2tpaWlwquEc/T39PQUFhbi8dgimZiYjBkzRvpvr6ioSElJOXv2rPS7qDoIfECdvX79msfjdXV1Kboh/dDQ0EhKSjp58iT/VDxxmExmWFiYlNew/aqpqQkPD09ISJAwpEb9UO6pbldXV15e3l9//SVyxqICNTY2VlRUSHjPbGtra0xMjDQz52/evFlXV0cuamlpGRkZmZiYTJ8+fUiaqipSUlL+/PNPgiB2797t6+trbW2t6BZJoqOjExMTI03uKXt7+yH8Xm1t7aSkJPmM3VEelDvju3z58tatW3/77TdFN+S/mpubd+7cOXXqVHyTXhz+HGqSzZw5s7KycvXq1evWrevsSqjrFwAADcVJREFU7Gxubs7KyvL09JwyZUpwcHBvb+8QNVzZOTs7V1RUvHr1KjQ09L333lN0c6QiLpfU8DE2NqZa1EMUDHzu7u4ffvjhUF0mDInq6uq1a9firCHiCORQk8zQ0BAPYnj33Xf9/f03btx4+PDh4uLiQ4cOHT9+3MnJScJwWXViYGBg+A9KXceBflEu8CGENDQ0NDSUqOM2NjbkPFORROZQk0z4TjyNRnN3d4+Jibl69aqdnR056g0AClKiE59h1dbWdu7cuerq6g8++IAgCIFz+/r6+suXL7NYrAULFnz88ce4sLa2NiMjY8uWLY8fP87MzJw0aZK3tzeOmARB5Ofn379/X1NT08LC4pNPPpFc1WDgHGrx8fEHDhzgL29paYmNjfXx8Rk/frz0tXl6eiYnJ+fk5DCZzIULFw6g70h894e87wAMEyU68Rk+T5/+f+2de0xTVxzHz7W8H0GcXShCVDadWAko6XhMo4sI04KghlVdholAFXSKEpjZ2GKIrwxjFoeCAqIoGlAmyqhzmWWApspTJ0NNAFdAWgtMCDBKW3r3x0luOvq67UVLb8/nr95z7v3d8zPlZ885v/P9vfjss88CAgKys7MHBgYqKys1A19NTc3hw4eXL1/u7+8fFxe3Z88eAEBVVVVwcHBaWtrp06dPnTr18OHDhIQEYj8kKyuro6MjLS0tLCwsKyvLsCmKZGdnp6WlaeuCVFZWfvPNN+Xl5aYahHK+9fX1+gZs2Hegx/234TsC8bawbBohdQCJBNGQkJCMjAz4Wa1W+/n5LV68GF6OjIz4+fmNjo7Cy8TERACASCTC9au8qdXquXPn1tTUwPYjR44YNWUUeAxr3759U9oNaKgZVogbHh4GAPj7+2t3QZXd9evXm+G7PvfN9v1tJzBbHDLfT+uCHgnM9J/qCoXCR48eEfNEDMM4HM7jx4/h5bVr18bHxzMzM+GlRCL54IMPOjo6QkNDtVXe7t69Cy189NFHPB7v/PnzsbGxxCkfA6bMGznUUNOXVgoV4swwC5PaXF1dzfAd6HGfiu83btyg964ij8fj8XiWHgXif9A/8D158gQAsGzZMqJF88/sr7/+YrFYZ86cMWpHU+UtNzc3Pj4+Li5u7dq1paWlcJWNvCmSkNFQMwOoWBkSEmKe70CX+1R8Dw0NPXDggBkPWgU8Hg+uCVh6INOGSCT68ccfLT0KqtA/8EHpjkePHmkKjRGxj8FgvHjxQqlU2tvbk7cZFBTU0tJy6NChc+fOrVix4unTp3PmzDHPlAHIaKiZCo7j9fX1DAZj3bp1JSUl5g1Y230qvvv4+Hz++eemPmUt8Hi8sLAwmjlIg8BH/80NWKFZKBTq7A0MDBwbG9Msxzc0NATVuvUxMTFx+fJld3f3M2fOVFdXSyQSuGpmhinD/PLLL70apKSkMJnM3t5eYtZpBgcOHIAJfYGBgeYNWKf70+47AvF2sfAaI2WAscVjpVK5ZMkSNze32tpaHMdfvXoFi7A8efJEqVTK5XJfX18HB4cffvihvb29rKwsPj4e7hikp6cDALq6uqAdLpfr7u6uVqvHx8fDw8PVajWO42q1mslk3rx5E8dxA6aMIpVKAQB8Pt/APRkZGZqbG01NTRwOh9hkmAKc4C9YsIBoefnyZWpqKoZhX331FWwxw3ccx3W6b7bvaHPD6qDH5ob1O0Dii/Xy5UsOhwMA8PPz2759e0xMzMqVK/Py8qASUXt7O5TtBgCw2eyWlhYcx//44w8/Pz8AQFJSkkQiuXbtGkwJPnz48MjICIvF2rp16/Xr10+ePPn9998TL9JpyigCgQAufr///vsFBQUSiUTnbVMCX0VFBYZhBQUF2nfevn2bOPMbFha2bt06LpcbGxubnp7e2NioeaepviuVyvHxcZ3um+c7CnxWBz0CH4brKctiLWAYVlZWRmYNpb+/38XFxdXVdXR0FNZV0UQsFmMYRvKkpEqlUqvVUqlU5/0mmaICrAZL3Y6pAzbgvqmm4uPjAQDXr18nP1rrgvz301ooLy/n8XjWHjfov7lBQCivaUc9AMD8+fPJm4JHffX9eU8xlZqaqs8On8+nIhkyXQpxJvkODLpvqikEwiLYUOCzFJ9++qm+LiIWIxAAAJVK1dDQEB4eDi/7+vquXr0qk8mioqLWrFnDYDBI2tEncTYxMQHPGq5cuTIkJAQabGlpee+992zufyxLz7WpAmi3hmJToDU+gqGhoWPHjhE7Qm1tbSkpKX19fSKRKDw83NvbWywWGzUik8nS09OdnZ21TwG9fv164cKFBQUF/f39GRkZXC5XpVLhOK5UKnfv3g23/shAjzU++qezIGyZkpKSGWVHH69evfryyy9TU1OJQ9lHjx5dvHgxi8UKDQ09evRoX19fTk6OUTv6JM7UavWWLVsCAgKSkpLmzp17/Pjxtra2b7/9FgBgZ2eXm5t74sQJfZXeaAkKfAjaIhQKyQhWvzM7Bjh48OCmTZs0C4c7OTkVFhbCz/Dkn0QiMWpHn8RZXV3d/fv3k5OT4SWDwdixY0dubu7Y2Bi8PHjwIJ/Pp+6ItYDW+BDWwcjIiEAgePbsma+vb2RkJDyHU1VV1dnZ6ebmlpSUNDIyUlJSolQqWSwWj8erqamJi4vDMOzcuXPe3t4xMTEAgN7e3tu3b6ekpNTW1t69e3fevHmJiYnOzs4m2TFPEMwADQ0N1dXVRJiDnD17lqicKxaLgcHFYqPAHHuYzA9ZtmzZ2NiYQCCAG+sRERFpaWk///zz5s2bzX6LNWHpuTZVAFrjs2ZIrvE9fvw4ICCgoqJCJpOdPHnSzc3t0qVLsIvNZvv4+MDPML8nLCwMx/HW1tZPPvmEyWTW1NS0trbiOH7lyhVPT09nZ+fdu3fv3LkTVinjcDgKhcIkOwUFBQCA06dPk3GQzPdzy5YtERERBm44ceLE0qVLYZV0o+hU+lm/fj0AQNMCLI5OaAvhOM7n85cvX27UPlrjQyDeBQqFYuvWrZs2bdq8eTOTyUxPT9+4cWNycnJ7ezsAwN/fn7jT3d39ww8/hJ+DgoKYTKaTk9OaNWtgztAXX3zB5XLlcvnevXuLioqqq6u/++67xsbGCxcumGRn27ZtV69eheL+08Kff/7p7e2trxfH8eLi4sLCQgcHB7Nf8fr1awaDoWnBxcUF/H/6zGaznz59aiPS3CjwIWY6v/766/PnzzUVrqKiohQKRVFRkdFnpwheubq62tnZsdlseHno0CE7O7u6ujqT7EBBMG1pWPNQKBRdXV0sFkvfDb///ntUVBRFfRft3NXJyUkAgJeXF9Hi4eGhUqk6OjqovMhaQIEPMdOBv+w0/3RXrVoFAHj27JnRZw0r/bm4uPj4+PT391O0Q4V//vlncnLSQC0koVCYnZ1N8S2+vr6Tk5NwFgyBBaeWLl1KtMB/4d7eXorvsgpQ4EPMdObMmQMAEIlERMv8+fPt7e09PT2NPms4YE1MTEilUngwmYodKnh5ec2ePdtA3bsFCxZo7vaaB5zI9/T0EC0DAwPg/4HvzZs3AABN9TYagwIfYqYTEhICANCckLa1tSmVSjj7s7Ozk8vlOh/EMAxO6PTx8OFDuVwOy9dRsUMRNpstk8n09e7atYv6KxITEx0dHR88eEC0NDc3BwUFEboSAACJRIJh2MKFC6m/buaDAh9iphMYGLhjx466urru7m7Ycv/+/UWLFsG8s8jIyIGBgeLi4rGxseLi4sHBwa6uLvjjhcViSaXSrq6uzs5OmLAGAFCpVMQc+caNG6tXr4aBj7yd5ubmjz/+GO6KTgurVq3SlzxcX18fHR1NOA7h8/kbNmwgkl2mAMc8JYh7eXnt3bs3JycHx3HYW1VVVVRUpFln9e+//46MjHRycqLojlWAAh/CCsjPz09ISNiwYcOlS5eKiooEAsG9e/fgHmV8fHxoaOjOnTs5HM7s2bODg4ODgoIqKipgF47jwcHBAoHA1dUVmpo1a9bZs2czMzO3bdsmFourqqpgO3k7YrG4qalpGjcBMjMz+/r6Ojs7tbsaGhoEAsGULqFQeOfOnStXrmjff+fOnf379wMAKisrCwsLoc4jJCcnJzo6euPGjT/99FN2dnZWVtaKFSuIXoVCcevWLaKADP2xbDYNdQDK47NmTDqrOzQ09ODBg56eHu0umUwGP0CNRc1HNPVQd+3aZW9vj+N4d3f38PCw2XZ0PqsTkt/P/Pz8PXv26OwaHByc0iKXy8vKym7dukVyDJqoVCqpVKrdXl5eHhsbS8YCyuNDIN4pHh4e4eHhPj4+2l2Ezs2UmZqHh4fOvBNfX1+dol4k7UyXIBhBcnLy4OBga2urdhfc29FkYmJCJBLBBGxTYTAY2gdOnj9/Xlpaqq+eHy1BgQ9hQ/z7778qlQoW2JxRzJo16+LFi3l5eY2NjUZvbmhoOHbsGFRFpI5YLD5+/PiFCxcMpNTQDxT4ELZCaWnpb7/9huP4119/TRRWnjk4OjqeP3+ezPnfiIiIaQxSDg4OFy9e1P5dSW+QSAHCVoiOjuZyufCzo6OjZQejj3dQsWAKBg6N0BgU+BC2AvU0YARtQFNdBAJhc6DAh0AgbA4U+BAIhM1BhzU+zePrCOsCaoGUl5dbeiBvEZp9P+nhDh0Kilt6CAiEzWH1ccPaHUAgEAhTQWt8CATC5kCBD4FA2Bwo8CEQCJsDBT4EAmFz/AeDqa8R3WlYMgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "execution_count": 177, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# use this cool `tf.keras` method to visualize the layers of your network\n", "tf.keras.utils.plot_model(\n", " model,\n", " #to_file='model.png', # if you want to save the image\n", " show_shapes=True, # True for more details than you need\n", " show_layer_names=True,\n", " rankdir='TB',\n", " expand_nested=False,\n", " dpi=96\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Everything you wanted to know about a Keras Model and were afraid to ask](https://www.tensorflow.org/api_docs/python/tf/keras/Model)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 4. Fit the model to the train set (also using a validation set)\n", "\n", "This is the part that takes the longest in terms of time and where having GPUs helps.\n", "\n", "-----------------------------------------------------------\n", "**ep·och**
\n", "noun: epoch; plural noun: epochs. A period of time in history or a person's life, typically one marked by notable events or particular characteristics. Examples: \"the Victorian epoch\", \"my Neural Netwok's epochs\".
\n", " \n", "-----------------------------------------------------------" ] }, { "cell_type": "code", "execution_count": 178, "metadata": {}, "outputs": [], "source": [ "# type your code here along with instructor\n" ] }, { "cell_type": "code", "execution_count": 179, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 40199 samples, validate on 19801 samples\n", "Epoch 1/50\n", "40199/40199 - 4s - loss: 0.6735 - accuracy: 0.7575 - val_loss: 0.4546 - val_accuracy: 0.8375\n", "Epoch 2/50\n", "40199/40199 - 4s - loss: 0.4866 - accuracy: 0.8241 - val_loss: 0.3951 - val_accuracy: 0.8557\n", "Epoch 3/50\n", "40199/40199 - 4s - loss: 0.4428 - accuracy: 0.8395 - val_loss: 0.3739 - val_accuracy: 0.8642\n", "Epoch 4/50\n", "40199/40199 - 5s - loss: 0.4175 - accuracy: 0.8511 - val_loss: 0.3722 - val_accuracy: 0.8597\n", "Epoch 5/50\n", "40199/40199 - 5s - loss: 0.4018 - accuracy: 0.8535 - val_loss: 0.3595 - val_accuracy: 0.8684\n", "Epoch 6/50\n", "40199/40199 - 4s - loss: 0.3845 - accuracy: 0.8616 - val_loss: 0.3909 - val_accuracy: 0.8491\n", "Epoch 7/50\n", "40199/40199 - 6s - loss: 0.3726 - accuracy: 0.8639 - val_loss: 0.3609 - val_accuracy: 0.8683\n", "Epoch 8/50\n", "40199/40199 - 4s - loss: 0.3656 - accuracy: 0.8669 - val_loss: 0.3398 - val_accuracy: 0.8727\n", "Epoch 9/50\n", "40199/40199 - 4s - loss: 0.3553 - accuracy: 0.8699 - val_loss: 0.3348 - val_accuracy: 0.8793\n", "Epoch 10/50\n", "40199/40199 - 5s - loss: 0.3455 - accuracy: 0.8734 - val_loss: 0.3335 - val_accuracy: 0.8789\n", "Epoch 11/50\n", "40199/40199 - 4s - loss: 0.3428 - accuracy: 0.8736 - val_loss: 0.3289 - val_accuracy: 0.8804\n", "Epoch 12/50\n", "40199/40199 - 6s - loss: 0.3340 - accuracy: 0.8776 - val_loss: 0.3328 - val_accuracy: 0.8804\n", "Epoch 13/50\n", "40199/40199 - 5s - loss: 0.3283 - accuracy: 0.8792 - val_loss: 0.3223 - val_accuracy: 0.8857\n", "Epoch 14/50\n", "40199/40199 - 5s - loss: 0.3231 - accuracy: 0.8800 - val_loss: 0.3196 - val_accuracy: 0.8819\n", "Epoch 15/50\n", "40199/40199 - 5s - loss: 0.3165 - accuracy: 0.8827 - val_loss: 0.3286 - val_accuracy: 0.8830\n", "Epoch 16/50\n", "40199/40199 - 4s - loss: 0.3167 - accuracy: 0.8824 - val_loss: 0.3166 - val_accuracy: 0.8867\n", "Epoch 17/50\n", "40199/40199 - 6s - loss: 0.3106 - accuracy: 0.8849 - val_loss: 0.3464 - val_accuracy: 0.8752\n", "Epoch 18/50\n", "40199/40199 - 4s - loss: 0.3049 - accuracy: 0.8856 - val_loss: 0.3169 - val_accuracy: 0.8876\n", "Epoch 19/50\n", "40199/40199 - 5s - loss: 0.3018 - accuracy: 0.8877 - val_loss: 0.3285 - val_accuracy: 0.8854\n", "Epoch 20/50\n", "40199/40199 - 5s - loss: 0.3014 - accuracy: 0.8900 - val_loss: 0.3283 - val_accuracy: 0.8858\n", "Epoch 21/50\n", "40199/40199 - 3s - loss: 0.2971 - accuracy: 0.8879 - val_loss: 0.3240 - val_accuracy: 0.8874\n", "Epoch 22/50\n", "40199/40199 - 3s - loss: 0.2953 - accuracy: 0.8900 - val_loss: 0.3331 - val_accuracy: 0.8848\n", "Epoch 23/50\n", "40199/40199 - 3s - loss: 0.2918 - accuracy: 0.8892 - val_loss: 0.3301 - val_accuracy: 0.8836\n", "Epoch 24/50\n", "40199/40199 - 3s - loss: 0.2865 - accuracy: 0.8924 - val_loss: 0.3260 - val_accuracy: 0.8875\n", "Epoch 25/50\n", "40199/40199 - 3s - loss: 0.2816 - accuracy: 0.8946 - val_loss: 0.3181 - val_accuracy: 0.8893\n", "Epoch 26/50\n", "40199/40199 - 3s - loss: 0.2789 - accuracy: 0.8959 - val_loss: 0.3138 - val_accuracy: 0.8895\n", "Epoch 27/50\n", "40199/40199 - 3s - loss: 0.2820 - accuracy: 0.8958 - val_loss: 0.3324 - val_accuracy: 0.8891\n", "Epoch 28/50\n", "40199/40199 - 3s - loss: 0.2796 - accuracy: 0.8963 - val_loss: 0.3289 - val_accuracy: 0.8917\n", "Epoch 29/50\n", "40199/40199 - 3s - loss: 0.2771 - accuracy: 0.8977 - val_loss: 0.3287 - val_accuracy: 0.8867\n", "Epoch 30/50\n", "40199/40199 - 3s - loss: 0.2708 - accuracy: 0.8979 - val_loss: 0.3302 - val_accuracy: 0.8877\n", "Epoch 31/50\n", "40199/40199 - 3s - loss: 0.2694 - accuracy: 0.8979 - val_loss: 0.3264 - val_accuracy: 0.8907\n", "Epoch 32/50\n", "40199/40199 - 3s - loss: 0.2695 - accuracy: 0.8995 - val_loss: 0.3165 - val_accuracy: 0.8921\n", "Epoch 33/50\n", "40199/40199 - 3s - loss: 0.2656 - accuracy: 0.9011 - val_loss: 0.3341 - val_accuracy: 0.8877\n", "Epoch 34/50\n", "40199/40199 - 3s - loss: 0.2633 - accuracy: 0.9007 - val_loss: 0.3259 - val_accuracy: 0.8870\n", "Epoch 35/50\n", "40199/40199 - 3s - loss: 0.2648 - accuracy: 0.9012 - val_loss: 0.3300 - val_accuracy: 0.8906\n", "Epoch 36/50\n", "40199/40199 - 3s - loss: 0.2626 - accuracy: 0.9011 - val_loss: 0.3298 - val_accuracy: 0.8922\n", "Epoch 37/50\n", "40199/40199 - 3s - loss: 0.2601 - accuracy: 0.9032 - val_loss: 0.3201 - val_accuracy: 0.8920\n", "Epoch 38/50\n", "40199/40199 - 3s - loss: 0.2553 - accuracy: 0.9054 - val_loss: 0.3226 - val_accuracy: 0.8911\n", "Epoch 39/50\n", "40199/40199 - 3s - loss: 0.2562 - accuracy: 0.9050 - val_loss: 0.3234 - val_accuracy: 0.8909\n", "Epoch 40/50\n", "40199/40199 - 3s - loss: 0.2532 - accuracy: 0.9061 - val_loss: 0.3258 - val_accuracy: 0.8921\n", "Epoch 41/50\n", "40199/40199 - 3s - loss: 0.2521 - accuracy: 0.9068 - val_loss: 0.3406 - val_accuracy: 0.8885\n", "Epoch 42/50\n", "40199/40199 - 3s - loss: 0.2498 - accuracy: 0.9065 - val_loss: 0.3323 - val_accuracy: 0.8930\n", "Epoch 43/50\n", "40199/40199 - 3s - loss: 0.2531 - accuracy: 0.9049 - val_loss: 0.3318 - val_accuracy: 0.8911\n", "Epoch 44/50\n", "40199/40199 - 3s - loss: 0.2465 - accuracy: 0.9088 - val_loss: 0.3234 - val_accuracy: 0.8906\n", "Epoch 45/50\n", "40199/40199 - 3s - loss: 0.2453 - accuracy: 0.9073 - val_loss: 0.3406 - val_accuracy: 0.8888\n", "Epoch 46/50\n", "40199/40199 - 3s - loss: 0.2452 - accuracy: 0.9093 - val_loss: 0.3407 - val_accuracy: 0.8892\n", "Epoch 47/50\n", "40199/40199 - 3s - loss: 0.2421 - accuracy: 0.9096 - val_loss: 0.3328 - val_accuracy: 0.8924\n", "Epoch 48/50\n", "40199/40199 - 3s - loss: 0.2454 - accuracy: 0.9074 - val_loss: 0.3413 - val_accuracy: 0.8896\n", "Epoch 49/50\n", "40199/40199 - 3s - loss: 0.2400 - accuracy: 0.9103 - val_loss: 0.3315 - val_accuracy: 0.8929\n", "Epoch 50/50\n", "40199/40199 - 3s - loss: 0.2407 - accuracy: 0.9095 - val_loss: 0.3336 - val_accuracy: 0.8925\n", "CPU times: user 5min 56s, sys: 1min 44s, total: 7min 40s\n", "Wall time: 3min 1s\n" ] } ], "source": [ "%%time\n", "# the core of the network training\n", "history = model.fit(x_train, y_train, validation_split=0.33, epochs=50, \n", " verbose=2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Save the model\n", "\n", "You can save the model so you do not have `.fit` everytime you reset the kernel in the notebook. Network training is expensive!\n", "\n", "For more details on this see [https://www.tensorflow.org/guide/keras/save_and_serialize](https://www.tensorflow.org/guide/keras/save_and_serialize)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "# save the model so you do not have to run the code everytime\n", "model.save('fashion_model.h5')\n", "\n", "# Recreate the exact same model purely from the file\n", "#model = tf.keras.models.load_model('fashion_model.h5')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 5. Evaluate the model on the test set." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "# type your code here along with instructor\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Test accuracy=0.8812\n", "Not bad!\n" ] } ], "source": [ "test_loss, test_accuracy = model.evaluate(x_test, y_test, verbose=0)\n", "print(f'Test accuracy={test_accuracy:.4f}')\n", "if test_accuracy>0.8: print(f'Not bad!')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 6. We learn a lot by studying History! Plot metrics such as accuracy. \n", "\n", "You can learn a lot about neural networks by observing how they perform while training. You can issue `kallbacks` in `keras`. The networks's performance is stored in a `keras` callback aptly named `history` which can be plotted. " ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])\n" ] } ], "source": [ "print(history.history.keys())" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJkAAAGDCAYAAACIv8FxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd81dX9x/HXybjZg9wwAgkQ2RsUcaEgigM3KIKjaqv252qdVatttdU6qrbWWQd1i4CjqCiigoiCAgphyoaEMDLI3rnn98f3giEGSEJu7k3yfj4ePHLzXfdzNZDvfd/POcdYaxERERERERERETkcQf4uQEREREREREREWj6FTCIiIiIiIiIictgUMomIiIiIiIiIyGFTyCQiIiIiIiIiIodNIZOIiIiIiIiIiBw2hUwiIiIiIiIiInLYFDKJiE8YY7obY6wxJqQex15pjFnQHHWJiIiISN2a6v6tIdcRkdZFIZOIYIzZYoypMMYk1tq+zHuD0N0/lYmIiIhIXXT/JiKBSCGTiOy1GZi89xtjzCAgwn/lBAZ9AiciIiIBTPdvIhJQFDKJyF6vA7+q8f0VwGs1DzDGxBljXjPGZBljthpj7jXGBHn3BRtjHjPGZBtjNgFn1XHuy8aYHcaY7caYB4wxwfUpzBgz3Riz0xiTb4yZb4wZUGNfhDHmcW89+caYBcaYCO++kcaYb40xecaYdGPMld7t84wxV9e4xn7t3t5P/24wxqwH1nu3Pem9RoExZqkx5sQaxwcbY/5ojNlojCn07k8xxjxjjHm81mv50Bhzc31et4iIiMghBOz9W63rdDbGzDTG5BpjNhhjrqmxb4QxZon3HmuXMeYJ7/ZwY8wbxpgc773cYmNMx4Y+t4g0L4VMIrLXIiDWGNPPe/NwMfBGrWOeAuKAI4BRODc1V3n3XQOcDQwDhgMX1jr3VaAK6Ok95jTgaurnE6AX0AH4AXizxr7HgKOA44EE4A+AxxjT1XveU0B7YCiwrJ7PB3A+cAzQ3/v9Yu81EoC3gOnGmHDvvltxPkUcB8QCvwZKvK95co0buUTgFODtBtQhIiIiciCBfP9W09tABtDZ+xx/N8ac4t33JPCktTYW6AFM826/wlt3CuAG/g8obcRzi0gzUsgkIjXt/TRsLLAW2L53R40bl7uttYXW2i3A48Dl3kMmAv+y1qZba3OBh2qc2xE4E7jZWltsrd0N/BOYVJ+irLVTvM9ZDtwHDPF+shaEE+j83lq73Vpbba391nvcpcDn1tq3rbWV1toca21DQqaHrLW51tpSbw1veK9RZa19HAgD+niPvRq411r7k3Us9x77PZCPEyzhfb3zrLW7GlCHiIiIyMEE5P1bjeukACOBO621Zd77sZdq1FAJ9DTGJFpri6y1i2psdwM9vfd4S621BQ15bhFpfpprRERqeh2YD6RSq9UaSARcwNYa27YCXbyPOwPptfbt1Q0IBXYYY/ZuC6p1fJ28N0cPAhfhdCR5atQTBoQDG+s4NeUA2+trv9qMMbfhhEmdAYvTsbR3os2DPderwGXAHO/XJw+jJhEREZHaAu7+rZbOQK61trDW8wz3Pv4N8FdgrTFmM3C/tfYj7+tKAaYaY+JxOrTusdZWNvD5RaQZqZNJRPax1m7FmUByHPBerd3ZOJ8odauxrSs/f1q2A+dGoOa+vdKBciDRWhvv/RNrrR3AoV0CnAecitMy3d273XhrKsNpra4t/QDbAYqByBrfd6rjGLv3gXf+pTtxPu1rZ62Nx+lQ2nvHdbDnegM4zxgzBOgHfHCA40REREQaLEDv32rKBBKMMTF11WCtXW+tnYwzLcIjwAxjTJS3E/1+a21/nGkRzmb/+adEJAApZBKR2n4DjLHWFtfcaK2txhkj/6AxJsYY0w1nLqK94/6nAb8zxiQbY9oBd9U4dwfwGfC4MSbWGBNkjOlhjBlVj3picG5wcnCCob/XuK4HmAI84Z1QMtgYc5wxJgxn3qZTjTETjTEhxhi3MWao99RlwHhjTKQxpqf3NR+qhiogCwgxxvwZp5Npr5eAvxljehnHYGOM21tjBs58Tq8D7+4dficiIiLShALt/q1mDenAt8BD3sm8B3vrfRPAGHOZMaa9974uz3tatTHmZGPMIG9XewFOWFbdkOcWkeankElE9mOt3WitXXKA3TfhdAFtAhbgTIA9xbvvRWA2sBxncu7an6T9CqddezWwB5gBJNWjpNdwWqq3e89dVGv/7cAKnCAnF+cTsCBr7TacT/Ru825fBgzxnvNPoALYhTOc7U0ObjbOJOLrvLWUsX+r+BM4N2mf4dwEvcz+ywe/CgzCCZpEREREmlQA3r/VNhmnGz0TeB/4i7V2jnffGcAqY0wRzrQCk6y1ZTid5jNw7q3WAF/xy0nNRSTAGGvtoY8SEZFGM8achHNT1N37KZ2IiIiIiEiro04mEREfMsaEAr8HXlLAJCIiIiIirZlPQyZjzBnGmJ+MMRuMMXfVsb+bMeYLY0yaMWaeMSa5xr6uxpjPjDFrjDGrjTHdfVmriEhTM8b0w5lbIAn4l5/LERERERER8SmfDZfzTtC2DhgL7J34drK1dnWNY6YDH1lrXzXGjAGustZe7t03D3jQWjvHGBMNeKy1JT4pVkREREREREREDosvO5lGABustZustRXAVJxlyGvqD3zhfTx3735jTH8gZO9kcNbaIgVMIiIiIiIiIiKBy5chUxf2X30pw7utpuXABO/jC4AY77LfvYE8Y8x7xpgfjTH/8HZGiYiIiIiIiIhIAArx4bVNHdtqj827HXjaGHMlMB9nifIqb10nAsOAbcA7wJU4y4L//ATGXAtcCxAVFXVU3759m656ERERCThLly7Ntta293cdLZUx5gycJcKDcRYkeLiOYyYC9+Hcty231l5ysGsmJiba7t27N32xIiIiEhAacv/ly5ApA0ip8X0ykFnzAGttJjAewDvv0gRrbb4xJgP40Vq7ybvvA+BYaoVM1toXgBcAhg8fbpcsWeKjlyIiIiKBwBiz1d81tFTervBnqDFfpjFmZq35MnsBdwMnWGv3GGM6HOq63bt3R/dgIiIirVdD7r98OVxuMdDLGJNqjHEBk4CZNQ8wxiQaY/bWcDcwpca57Ywxe5OyMcBqRERERKSx6jNf5jXAM9baPQDW2t3NXKOIiIi0YD4Lmay1VcCNwGxgDTDNWrvKGPNXY8y53sNGAz8ZY9YBHYEHvedW4wyl+8IYswJn6N2LvqpVREREpA2oz3yZvYHexphvjDGLvMPrREREROrFl8PlsNbOAmbV2vbnGo9nADMOcO4cYLAv6xMRERFpQ+ozX2YI0Avng8Bk4GtjzEBrbd5+F6oxL2bXrl2bvlIRERFpkXwaMvlbZWUlGRkZlJWV+bsUnwsPDyc5OZnQ0FB/lyIiIiKB6ZDzZXqPWWStrQQ2G2N+wgmdFtc8qPa8mD6rWEREJAC0lWyhKXKFVh0yZWRkEBMTQ/fu3TGmrg/vWgdrLTk5OWRkZJCamurvckRERCQw7ZsvE2dF30lA7ZXjPgAmA68YYxJxhs9tatYqRUREAkxbyBaaKlfw5cTffldWVobb7W61PwR7GWNwu92tPlUVERGRxqvnfJmzgRxjzGpgLnCHtTbHPxWLiIgEhraQLTRVrtCqO5mAVv1DUFNbeZ0iIiLSePWYL9MCt3r/iIiIiFdbeM/dFK+xVXcyBYK8vDyeffbZBp83btw48vLyDn2giIiIiIiIiLRaLSlXUMjkYwf6Yaiurj7oebNmzSI+Pt5XZYmIiIiIiIhIC9CScoVWP1zO3+666y42btzI0KFDCQ0NJTo6mqSkJJYtW8bq1as5//zzSU9Pp6ysjN///vdce+21AHTv3p0lS5ZQVFTEmWeeyciRI/n222/p0qUL//vf/4iIiPDzKxMRERERERERX2tJuUKbCZnu/3AVqzMLmvSa/TvH8pdzBhz0mIcffpiVK1eybNky5s2bx1lnncXKlSv3zdY+ZcoUEhISKC0t5eijj2bChAm43e79rrF+/XrefvttXnzxRSZOnMi7777LZZdd1qSvRUREREREREQOzh/ZQkvKFTRcrpmNGDFiv+UA//3vfzNkyBCOPfZY0tPTWb9+/S/OSU1NZejQoQAcddRRbNmypbnKFRERqZfKag9bsouZvy6LjD0l/i5HWoEt2cXMXbvb32WIiIgEnEDOFdpMJ9OhOo6aS1RU1L7H8+bN4/PPP2fhwoVERkYyevToOpcLDAsL2/c4ODiY0tLSZqlVRERaP4/H8mFaJjvyy4gKCyHKFUxUWAjRYSFEuoKdr2EhRLtCsFjSc0vZmlvMttwS0nNL2JpTwrbcEjLzSvFY55r3ndOfK09IPfgTixzC9KXpPP/VJtY/cCZBQa1/RR8REWkZAiFbCORcoc2ETP4SExNDYWFhnfvy8/Np164dkZGRrF27lkWLFjVzdSIi0pZtzi7mzhlpfL8lt1HnJ0a7SEmI5Khu7bhgWBe6JkTSNSGS3h1jmrhSaYsSo8Oo9ljySitJiHL5uxwRERG/aUm5gkImH3O73ZxwwgkMHDiQiIgIOnbsuG/fGWecwfPPP8/gwYPp06cPxx57rB8rFRGRtqLaY3l5wSYe/2wdYSFB/OPCwZw1OIni8mqKy6soKq+iuLyKkorqfY+LyqsASPEGSSkJkUSH6TZCfMcd7XzimlNUrpBJRETatJaUK+jusBm89dZbdW4PCwvjk08+qXPf3vGRiYmJrFy5ct/222+/vcnrExGRwFdeVc3ugnJ2FpSxI7+MnfmlxEe6OK1/R+Ij6/8GfN2uQu6Ykcby9DzG9u/Ig+cPpENsOACRrhDax4Qd4goizSPRGyxlF1XQq+MhDhYREWnlWkquoJBJREQkgOwqKOPD5ZlszSlxwqSCUnbml5FdVFHn8X8MMozslcjZgzsztn9H4iJC6zyustrDc/M28tSX64kJD+WpycM4e3ASxmiuGwlM+zqZisv9XImIiIjUl0ImERERP7PW8u3GHN5YtJXPVu+i2mOJiwglKS6cTnHhDOoSR6fYCJLiwukYF+58jQ1nW04JH6Vl8lHaDm6fvpzQYMNJvdpz9pAkTu3XkZhwJ3BauT2fO2aksWZHAecM6cx95/Tf9wZeJFC5o51OppwDBKwiIiISeBQyiYiI+El+SSUzfsjgze+2simrmPjIUK4emcolx3SlmzvqkOcPSo5jUHIcd53Zl+UZ+Xy0PJOPV+zgi7W7cYUEMap3e5Liwnnzu224o1y8cPlRnDagUzO8MpHD1y7SRZCB7CJ1MomIiLQUCplERESaWVpGHm8s2srM5ZmUVXoY1jWeJyYOYdygJMJDgxt8PWMMQ1PiGZoSzx/H9ePH9Dw+Sstk1oodzFldzsThydwzrj9xkXUPpRMJRMFBhoQo1wGHioqIiEjgUcgkIiLiAx6PJbuo3DuvUhk7850Ju7/dmE1aRj4RocFcMCyZy47tyoDOcU32vEFBhqO6teOobu3401n92VNSoaFx0mK5o8LIUSeTiIhIi6GQSURE5ACstWzOLmb1jgLKKj1UVnuoqHK+lnu/7t1WUeUhu7iCnflOoLSroIwqj93veqHBhp4dYrj/3AFccGQXYsN921kUFGQUMEmL5o52kVOsTiYREZGWQiFTgImOjqaoqMjfZYiItEnWWjZmFfPd5hwWbcrlu0057C48eBdFSJAhNDiI0GAn0OkUG84xqQl08k7Q3SkuYt8E3gmRLoKCtJqbSH25o8NYkZHn7zJERERaFH/mCgqZRESkzbLWsmF3EYs25bBocy7fbcrdN8lwx9gwjuvh5phUN0NT4okJD9kXJrlCgryPgwhWaCTiM4nRmpNJRESkJVHI5GN33nkn3bp14/rrrwfgvvvuwxjD/Pnz2bNnD5WVlTzwwAOcd955fq5URKR1q6z2sGF3EaszC1iVWcDqHfmsziygoKwKgKS4cE7slcgxqQkce4Sbbu5IjFGAJOJPidFhFJVXUVZZ3ahJ8UVERFqDlpQrtJ2Q6ZO7YOeKpr1mp0Fw5sMHPWTSpEncfPPN+34Ypk2bxqeffsott9xCbGws2dnZHHvssZx77rl6MyMi0kQKyypZs6OQ1Zn5rN7hhErrdxVRUe0BIDw0iL6dYjl7SGeGJsdz7BFuUhIi9O+wSIBxR7kAyCmuoEt8hJ+rERERwS/ZQkvKFdpOyOQnw4YNY/fu3WRmZpKVlUW7du1ISkrilltuYf78+QQFBbF9+3Z27dpFp06d/F2uiEiLk1NUzipvd9LKTKc7aXN28b797igX/TvHctXI7vRPimVA5zhSE6M0zE2kBdg7cX1OUblCJhERabNaUq7QdkKmQ3Qc+dKFF17IjBkz2LlzJ5MmTeLNN98kKyuLpUuXEhoaSvfu3SkrK/NbfSIiLUF+SSVbc4vZllvC+l1F3mApnx35P//7mdwugoGd4xg/rAsDujiBUoeYML9/oiMijeOO9nYyaV4mEREJFH7KFlpKrtB2QiY/mjRpEtdccw3Z2dl89dVXTJs2jQ4dOhAaGsrcuXPZunWrv0sUEQkIuwrKWL+riG25JWzLLSE9t8QJlnJK9s2dBGAM9GgfzYjUBAZ2jmNA51j6d44lPtLlx+pFpKm193YyZRUdfJVHERGR1q6l5AoKmZrBgAEDKCwspEuXLiQlJXHppZdyzjnnMHz4cIYOHUrfvn39XaKIiN+UVVYze9VOpi1J55sNOfu2hwYbkttF0jUhkmEp7eiaEElXt/N9N3ckkS79ChNp7dTJJCIi4mgpuYLu0JvJihU/TwyWmJjIwoUL6zyuqKiouUoSEfGr1ZkFvLN4Gx8syyS/tJIu8RHcfGovRqQm0M0dRafYcM2bJNLGRbpCiAgNJkedTCIiIi0iV1DIJCIizSa/tJKZyzOZtjidFdvzcQUHcfrATlw8PIXje7gJUqgkIrW4o13kFKuTSUREpCXwachkjDkDeBIIBl6y1j5ca383YArQHsgFLrPWZtTYHwusAd631t7oy1pFRKThcosreP/H7WTmlWKAoCCDATBgMAQZZ/4kgyFjTwmfrNxJeZWHfkmx3HdOf84f1kXzKInIQbmjw8hWJ5OIiEiL4LOQyRgTDDwDjAUygMXGmJnW2tU1DnsMeM1a+6oxZgzwEHB5jf1/A77yVY0iItJw1loWbcrlre+3MXvlTiqqPUS5grGAtWCxeCxQ47G1lpjwUC4anszFw7sysEusVnwTkXppH+1ie57/V8sRERGRQ/NlJ9MIYIO1dhOAMWYqcB5QM2TqD9zifTwX+GDvDmPMUUBH4FNgeGOLsNa2iTcy1lp/lyAiAeDTlTt54OPVhIUE0btjDL06xtC7YzS9O8aQmhhFaHBQo6+dW1zBez9k8Nb329iUVUxseAiXHNOVS47pSu+OMU34KkREfuaOCiMtI9/fZYiISBvXFrKFpsgVfBkydQHSa3yfARxT65jlwAScIXUXADHGGDewB3gcp6vplAM9gTHmWuBagK5du/5if3h4ODk5Objd7lb9w2CtJScnh/DwcH+XIiJ+Ulxexf0frmLakgz6JcWS0i6CtTsLmb1qp9NVhLNaW2pilBM8dYihqzuCuIhQ4iJCiQ0PJdb7OCwkaN+/mdZavt/sdC19ssLpWjqyazyPXTSEswYlEeEK9uOrFpG2wB3tIre4Ao/Hat42ERHxi7aQLTRVruDLkKmu//K1Y7HbgaeNMVcC84HtQBVwPTDLWpt+sP+B1toXgBcAhg8f/ovILTk5mYyMDLKyshr1AlqS8PBwkpOT/V2GiPjBD9v2cMs7y9iWW8L1o3tw86m9cYU4HUtlldVszCpi3a5C1u0qYv2uQlZk5DNrxQ4O9EGFKziI2IhQYiNCqKjykLGnlJjwECaPSGHyMV3p2ym2GV+diLR17ugwqjyWgrJKzeEmIiJ+0VayhabIFXwZMmUAKTW+TwYyax5grc0ExgMYY6KBCdbafGPMccCJxpjrgWjAZYwpstbe1ZACQkNDSU1NPZzXICISsKqqPTw9dwNPfbmBTrHhvHPtcYxITdjvmPDQYAZ0jmNA57j9tpdUVLEzv4yCsioKSivJL62koMz7tbRq3/cVVR5+d0ovzh6cRKRLC5KKSPNLjHaCpeyiCoVMIiLiF8oW6s+X7xgWA72MMak4HUqTgEtqHmCMSQRyrbUe4G6cleaw1l5a45grgeENDZhERFqzrTnF3PzOMn7clscFw7pw/3kDiA0Prff5ka4Qjmgf7cMKRUSaRmJ0GADZReX07KB/t0RERAKZz0Ima22VMeZGYDYQDEyx1q4yxvwVWGKtnQmMBh4yxlic4XI3+KoeEZHWwFrL9CUZ3P/hKoKDDP+ePIxzh3T2d1kiIj7j9nYy5RRV+LkSERERORSfjn2w1s4CZtXa9ucaj2cAMw5xjVeAV3xQnohIQKuq9pDvHcqWV1pJfkkl7yxO59NVOznuCDePTxxC5/gIf5cpIuJT7iinkymnuNzPlYiIiMihaIINERE/25JdzH+/2cyGrCLySirJK6mkoLSSwvKqXxwbGmz447i+XD3yCK2yJCJtQrvIUIxx5mQSERGRwKaQSUTET9bsKOC5eRv5KC2TkOAgBnaOpWNsOH06xhAXGUp8hIv4yFDiIkK934eS3C6S9jFh/i5dRKTZhAQH0S7SRXaROplEREQCnUImEZFmtnTrHp6du4Ev1u4myhXMNScdwW9GptIhJtzfpYmIBKTEaBc5CplEREQCnkImEZFmYK1lwYZsnpm7gUWbcomPDOXWsb254rjuxEXWf1U4EZG2yB0Vpom/RUREWgCFTCIiTajaYymrrKakopqyympKK6tZv6uI/8zfSFpGPh1jw7j3rH5MHtGVqDD9EywiUh/uaBerMgv8XYaIiIgcgt7hiIjUk7WWHfllpGXksSw9n7SMPHbkl1Fa4YRJpZXVVFR56jy3mzuSh8cP4oIjuxAWEtzMlYuItGyJ0WGak0lERKQFUMgkInIAe4orWJ6RR1pG/r5gae+bnNBgQ99OsQzoHEukK5hIVwjhocFEhAYT4QoiIjSY8FBne3xkKMekJhASHOTnVyQi0jK5o1wUllVRVllNeKiCehERkUClkElExMtay6rMAj5K28HsVTvZnF0MgDHQo300J/VOZEhyPENS4unbKUZvdEREmkmid1XN3OIKOsdH+LkaERERORCFTCLS5q3fVciHaTv4aHkmm7KLCQkynNAzkYuPTmFwchyDusQRE67JuUVE/MUd5QIgp0ghk4iISCBTyCQibdKW7GI+Ssvko7QdrN1ZSJCBY49wc81JR3DGgE60876hERER/3NHO51M2cWal0lERCSQKWQSkTajqLyK937IYMbSDNIy8gEY3q0d9587gDMHdaJDTLifKxQRkbokRv/cySQiIiKBSyGTiLR6G3YX8frCLbz7w3aKyqsY0DmWe8b1Y9zgJLpo2IWISMDb18mkFeZEREQCmkImEWmVqj2WL9bs4rWFW1mwIRtXcBBnD07iV8d3Z2hKvL/LExGRBohyBRMeGkSOQiYREZGAppBJRFqV3OIK3lmczhuLtrI9r5SkuHDuOL0PFx+dQqL3k3AREWlZjDG4o8I0XE5ERCTAKWQSkRavvKqaBeuz+ShtBx+v2EFFlYfjjnDzp7P7cWq/joQEB/m7RBEROUyJ0S6yixUyiYiIBDKFTCLSIu0Nlj5esYM5q3dRWFZFTHgIE4cn86vjutO7Y4y/SxQRkSbkjg5jV0GZv8sQERGRg1DIJCItRnlVNV+vy2bWih3MWeMES7HhIZw+oBNnDUrihJ6JuELUtSQi0hq5o1ysysz3dxkiIiJyEAqZRMSvPB5LYVkVheWVFJVXUVRWRaH3a83vt+UU88Wa3RSW1wiWBidxQg8FSyIibUFijDMnk7UWY4y/yxEREZE6KGQSkWZXVlnNNxuymb1qJ5+v2U3uIebYMMb5BPuMgZ0Yp2BJRKRNcke5qPJYCkqriIsM9Xc5IiIiUgeFTCLSLArLKpn7UxazV+1k3trdFFdUExMWwsl9OzAkJZ6Y8BBiwkKIDg8hOiyEmPAQosNCiQ4PITI0mKAgfWotItKW7V0hNLu4XCGTiIhIgFLIJCI+k11UzuerdzF71U6+2ZBDRbWHxGgX5w7twukDOnJcDzdhIcH+LlNERFoAd7QLgJyiCnq093MxIiIizWX+YxAUAiNv9ncl9aKQSUSaXGZeKU99uYHpS9Kp8lhSEiL41XHdOH1gJ47s2o5gdSWJiEgDuaO8nUxF5X6uREREpJmU5cP8f4CnGgZOgPgUf1d0SAqZRKTJ7C4s49m5G3nru20AXHpMVy4+uiv9kmI0SauISAAwxpwBPAkEAy9Zax+utf9K4B/Adu+mp621LzVrkQeQGLO3k0khk4iItBGrZ0JVGWBgwRNw9j/9XdEhKWQSkcO2p7iC5+dv5NVvt1BZbZk4PJkbx/SiS3yEv0sTEREvY0ww8AwwFsgAFhtjZlprV9c69B1r7Y3NXuAhJEQ6IVN20cEXixAREWk10t6BhCMgdRT88DqceBvEJfu7qoNSyCQijZZfWsnLCzYzZcFmiiuqOH9oF35/Si+6J0b5uzQREfmlEcAGa+0mAGPMVOA8oHbIFJBCgoNoFxlKTrE6mUREpA3Iz4AtC2D0XTD0EvjxDVjwLzjrMX9XdlAKmUTaOI/HsqekgqyicrIKy8kuKsfjgZBgQ2hwECFB3q/BhpCgIEKDDSHBQXyzIZsX5m8iv7SScYM6ccupvenVMcbfL0dERA6sC5Be4/sM4Jg6jptgjDkJWAfcYq1Nr32AMeZa4FqArl27+qDUurmjw8hRJ5OIiLQFK2YAFgZPhPiuTtD0w6tw4q0Q29nf1R2QQiaRNmJVZj6frtzJroIysgrLa4RKFVR7bKOueUrfDtwytjcDu8Q1cbUiIuIDdU2OV/sXwIfA29bacmPM/wGvAmN+cZK1LwAvAAwfPrxxv0QaITHapYm/RUSkbUibBskjnOFy4AyVW/am08007lH/1nYQCplEWrnFW3J5Zu4G5v2URZCBxOgw2sc4f/p1iqVDbBjto8NoHxNO+5gwEqOQOkY6AAAgAElEQVRdBAcZKqstVR4PVdWWymoPVR7vV+/2TrER9O8c6++XJyIi9ZcB1FyWJhnIrHmAtTanxrcvAo80Q1315o4OY01mgb/LEBERObjKMqgsgciExp2/cyXsXgXjagyNa9cNhkyGpa/AyFsgNqlJSm1qPg2Z6rGCSTdgCtAeyAUus9ZmGGOGAs8BsUA18KC19h1f1irSmlhr+WpdFs/O3cj3W3JJiHJx+2m9ufy47sRFhPq7PBER8Y/FQC9jTCrO6nGTgEtqHmCMSbLW7vB+ey6wpnlLPLjEKHUyiYhIgNu9Bt65DErz4Hc/QngjPphPeweCQmDA+P23n3gbLHsLvnkSzny47nP9zGchUz1XMHkMeM1a+6oxZgzwEHA5UAL8ylq73hjTGVhqjJltrc3zVb0irUG1xzJ71U6embuBVZkFJMWF85dz+nPx0SlEutS4KCLSlllrq4wxNwKzcT4AnGKtXWWM+SuwxFo7E/idMeZcoArnA8Ar/VZwHdzRYRSUVVFR5cEVEuTvckRERPa3YgbMvAlCI6AkB757Hkb9oWHX8FQ71+k5FqLc++9LSPV2M/0XRt4MMZ2arvYm4st3nfVZwaQ/cIv38VzgAwBr7bq9B1hrM40xu3G6nRQyidShstrDBz9u57mvNrIpq5jUxCgenTCY84d10U24iIjsY62dBcyqte3PNR7fDdzd3HXVlzvaBUBucQWd4sL9XI2IiIhXdSXM+TMsehZSjoWLXoGPb4OFT8OIayEivv7X2vI1FGbC6Q/Wvf/EW2H52/DNv+GMvzdJ+U3Jl+8+61rBpEutY5YDE7yPLwBijDH7RXXGmBGAC9joozpFWqySiiqmLNjMqEfncseMNMJCgnn6kmF8fusoJh6dooBJRERalcToMAANmRMRkcBRuBNePccJmI65Dq78yJkvafRdUJYPi55r2PXSpkFYLPQ5s+797h7OinNLpkDR7sOvv4n5spOpPiuY3A48bYy5EpiPMz9A1b4LGJMEvA5cYa31/OIJ/LR8roi/5RZX8Mq3W3ht4RbySioZ0T2BBy8YxOg+7TGmrr96IiIiLV+it5NJIZOIiASErd/C9CuhvBAmvAyDLvx5X9Jg6Lc3fPpt/SYBryiB1TNhwHnOkLsDOekOZ96mb/8Npz1w2C+jKfkyZKrPCiaZwHgAY0w0MMFam+/9Phb4GLjXWruorifw1/K5Iv6SsaeEl77ezNTF2yir9HBqv45cN/oIjurWyFULREREWhB3lNPJlFNU4edKRESkTbPW6VD67F5o1x0u/wA69v/lcaPvhjUfwsJn4JQ/Hfq66z6BikIYfPHBj3P3gEEXweKX4fjfQ3T7Rr0MX/BlyFSfFUwSgVxvl9LdOCvNYYxxAe/jTAo+3Yc1irQIa3cW8J+vNjFzeSYGOH9YF3570hH06hjj79JERESazd45mXKK1ckkIiJ+Ul7kTO696j3ocxZc8ByEx9V9bMcBMOACZwLwY6//5UTetaVNg9gu0G3koes46Q5YMR0WPgVj/9rw1+EjPguZ6rmCyWjgIWOMxRkud4P39InASYDbO5QO4Epr7TJf1SsSKEoqqticXez8ySpmydY9fLUui0hXMFce353fjEylc/xBWidFRERaqeiwEFwhQepkEhER/6iuhP+eAbtWwSl/gRNuhqBDzIM76i5Y9YEztG3s/Qc+rjgbNnwOx91w6GsCJPaCgRPg+5ecbqZDBVjNxKdrmtdjBZMZwIw6znsDeMOXtYn4W35pJUu35rIpq5hN3kBpc3YxOwvK9jsuuV0Et47tza+O60Z8pMtP1YqIiPifMYb20WFkaU4mERHxh1Xvw84VMP4lGHxR/c7p0NeZq+n7F+C4Gw88tG3V++CpgsGT6l/PSXfAihlON9Op99X/PB/yacgkIr9krWXm8kzu/3A1ucXOJ7FxEaEc0T6K43u66dE+mtTEKFITo+jujiLCFeznikVERAKHO9qlTiYREWl+1sK3T0Fib6eDqCFG3Qkr34Vv/gWnP1j3McunQsdBdc/tdCDt+zjD8b5/EY7/Xf0mF/cxhUwizShjTwn3frCSeT9lMSQlnqcnD6NfUiztotShJCIiUh/uKJc6mUREpPlt+Rp2psE5T9ZvOFtNib2cybwXvwTH3wQxnfbfn7MRti+BsX9reF2j/uB0QdV3cnEfa+B/GRFpjGqPZcqCzZz2z/l8vzmXP5/dn/euO57jeyYqYBIREWkAd3SYOplERKT5ffs0RCY2bDhbTSfd4czptOBfv9yXNg0wzrC6hurQD/qfB9/9B0pyG1dbE1Ink4iPrd1ZwJ3vrmB5eh6jerfngfMHkpIQ6e+yREREWqS9w+WstRhj/F2OiIi0BVk/wfrZMPpuCA1v3DXcPWDoZFgyBU74HcR2drZbC2nvQOpJP29rqFF3QnkhlOX7fcicOplEfKSssprHP/uJs/+9gPTcEp6cNJRXrjpaAZOIiMhhaB8dRkW1h4KyKn+XIiIibcXCpyEkHI6++vCuc9IdYKthwT9/3paxBPZsdobTNVbH/nD5e5CQenj1NQF1Mon4wPebc7nrvTQ2ZRUzflgX7j27PwkaFiciInLY3NHO79OconLiIkL9XI2IiLR6Rbth+Tsw9BKISjy8a7XrDsMug6WvwAm/h7hkp4spJAL6ndMU1fqdOplEmlBmXim/e/tHJv5nIRVVHl779QieuHioAiYREZEm4o4KAyCnWPMyiYhIM1j8ElSXw3E3NM31TrzdGSL39ePOHE0r34W+4yA8tmmu72fqZBJpAiUVVTz/1SZemL8Ra+GmMT25bnQPIl36KyYiItKUanYyiYiI+FRlqRMy9T7TWSGuKcSnwFFXwNJXoX0/KM09vKFyAUbvgEUOg8dj+WDZdh75dC27Cso5Z0hn7jyjD8ntNO+SiIiILyRGO51M2VphTkREAErzICLeN9de/jaU5MDxNzbtdUfeCj+8Dp/eBZFu6DGmaa/vRxouJ9JIS7fmcsGz33DrtOV0ig1nxv8dx1OThylgEhER8aG9Q9Cz1ckkIiI/fQKPpsJ3LzT9tT0eWPgMJA2Fbic07bXjusDwq5xJwAdOgODWM8egOplEGmh7XimPfLKWmcsz6RgbxhMTh3D+0C4EBWkZZREREV8LDQ4iPjKUHHUyiYi0bVXl8OndzvxGn94F7XvDEaOb7vrrZ0POBpjwMhgfvNcbeStk/QRHX9P01/YjhUwih1BZ7WF1ZgGLt+SydOsevly7G4DfndKL/xt1hOZdEhERaWbuKBc5xepkEhFp0757HvZshomvwdyHYNoVcM2X4O7RNNf/9imIS4H+5zfN9WqL6Qi/+sA31/YjvTsWqaWwrJIftuWxdEsui7fsYVl6HqWV1QCkJEQw/shkbhzTky7xEX6uVEREpG1yR4dpTiYRkbasaDd89Q/odTr0Pw86DYYXT4a3J8PVcyA87vCuv/0H2PoNnPYgBCs2aQj91xIB1u0qZPqSdL7ZkMPanQV4LAQZGNA5jouPTuHo7gkM796OjrHh/i5VRESkzUuMdvHTzkJ/lyEiIv7y5QNQVQqnP+h8n5DqdDS9fgG8ew1MfhuCght//YVPQ1gsHPmrpqm3DVHIJG1WcXkVH6ftYOribfywLY/QYMOI1ARuGtOLo7snMLRrPNFh+isiIiISaBKjw/imKMffZYiItA6b5sH0q+A3n0FiL39Xc2g70uCH1+DY6/avN/UkOPMR+Pg2+OJ+GPvXxl0/Lx1WfeBcPzy2aWpuQ/QOWtoUay1pGflMXZzOh8szKSqvokf7KO4Z14/xR3bB7V0WWURERAKXOyqM/NJKKqo8uEK0WLKISKNVV8KsP0BpLix7E069z98VHZy1MPuPENEORv3hl/uPvhp2rYJvnoQOA2DIxQ1/ju+ed74e83+HV2sbpZBJ2oT8kko+WLadqYvTWbOjgPDQIM4a1JnJI1I4qls7jC9WCxARERGfcEe7ANhTUqGh7CIih2PJFMj+CWKSYMUMGPNnCArg8H7tR7Dlaxj3mBM01eXMRyF7Pcy8Cdw9Ifmo+l+/LB+WvgoDx0N8StPU3MYoZJJWrarawwtfb+LJz9dTXuVhYJdYHjh/IOcO7UxseKi/yxMREZFGSPSGTNlF5QqZREQaqyQX5v4dUkfBsMvgvWsgfRF0O97fldWtqhw+uxfa94OjrjrwccGhcNGrzkTgUy+Ba+dCbOf6PccPr0FFIRx3Y9PU3AYpZJJWa8PuIm6bvpzl6XmcMaATN47pycAuh7nKgIiIiPjd3uHtOVphTkSk8b56BMoL4IyHIL4bhEZC2juBGzIteg72bIHL3z/0im9Rbpg8FV4eC1MvhatmQeghVgevroRFz0P3E6Hz0CYru61RyCStTrXH8t9vNvOP2T8R4Qrm35OHcc7gJA2JExERaSUSvSFTdlG5nysREWmhsn6C71+Eo66EjgOcbX3Pcia8PvMfEOLya3m/ULQb5j8Gvc+AHmPqd07H/jD+BSdkmnkTjH/R2V66B/K2wp6tNb5ug9yNUJABZz3uu9fRBihkklZlS3Yxd8xYzuItezi1X0f+Pn4gHWLURi8iItKa7J2TSZ1MIiKNNPsecEXDyff8vG3QRFgxHTbMcQKnQPLl36CqFE57sGHn9T0LxtzrnL/9ByjOcrq3agqPh/iuTtg2/DfQ67Smq7sNUsgkrYLHY3l90VYe/mQtIcGGxy8awvgju6h7SUREpBWKCQvBFRxEdrE6mUREGmz9HCdIOu1BiEr8eXuPkyHSDWnTAitk2pEGP7wOx14PiT0bfv6Jt0FVmXOdnqc4QwPbdXO+xneFiPimr7kNU8gkLV56bgl/mJHGwk05jOrdnocnDCIp7hDjbUVERKTFMsbgjnapk0lEpKGqK2H2HyGhB4y4dv99waEwcIIz+XVZAYTH+qfGmqyFT+92VpIb9YfGXcMYp5tJmoVCJmlxSiuq2ZhVxPrdhazdUcgbi7ZijOHh8YO4+OgUdS+JiIi0AU7IpE4mEZEGWTIFstc5k2LXNe/SoInw/Quw5kMYdmnz11fbmg9h6wJnniR1HLUICpkkYBWVV7FhdxHrdxU6X3c7wVLGnlKsdY4JCTKM7JXIA+cPJLldpH8LFhERkWaTGB1GtjqZRETqryQX5v4djhjtTKBdl+Th0C4VVkzzXchkrbOKXUkORCY6K8FFJkJUe2f4XoizuAOVZfDZvdChPxx5pW9qkSankEkCzva8Up6du4FpS9KprHbSJFdIEEckRjE0pR0XHZVCrw7R9OoYTTd3FKHBQX6uWERERJqbOyqMdTsL/V2GiEjLMe9hZ9Lr0//uDCGrizEw6CL4+jEo2AGxSU1fx9L/wke3HHi/K8YJnoJCndXfLv8AghVdtBT6PyUBIzOvlGfnbeCdxekAXHhUCmP6dqBXh2hSEiIJDtIwOBEREXEkRrvILq7AWquh8iIih7J7LSx+CY66yllF7WAGT4T5j8LKd+H4G5u2jpyNzsp2R5wMF05xuqtKsqE4++evNR/3OdOZkFxaDIVM4ne1w6WJw1O4/uSedInX5N0iIiJSN3e0i4oqD0XlVcSEh/q7HBGRwPbZPeCKhpP/eOhjE3tB0lBnyFxThkzVVfDetRDsgvOfhcgE5w+NWDFOApZCJvGbHfmlPDt3I+8sTsdiuWh4CteP7qG5lUREROSQ3FHOnB05RRUKmUREDmb9HNjwuTNMLiqxfucMnuisQpe1Dtr3bpo6vn4cti+BC/8LsZ2b5poScHw6mY0x5gxjzE/GmA3GmLvq2N/NGPOFMSbNGDPPGJNcY98Vxpj13j9X+LJOaV67C8v48/9WMurReUxdvI0Lhycz9/bR/P2CQQqYREREpF4SY5yQKVsrzImIHFh1pRMWJfSAo6+p/3kDJ4AJcrqZmsL2pfDVI87qdQPHN801JSD5rJPJGBMMPAOMBTKAxcaYmdba1TUOewx4zVr7qjFmDPAQcLkxJgH4CzAcsMBS77l7fFWvNI8Pl2fyp/+tpKisiouGp3DDyepcEhERkYZzRzlLb2uFORGRg/jmScheB5OnQoir/ufFdILUUbBiOpx8z4EnCq+PihJnmFxMEoz7R+OvIy2CLzuZRgAbrLWbrLUVwFTgvFrH9Ae+8D6eW2P/6cAca22uN1iaAxxgjUVpCXKLK7jhzR+46e0f6e6O4tObT+Kh8epcEhERkcZJjPYOlytWJ5OIyC+U7oEZv4Yv/wZ9zoLejXg7PXgi7NkCGYsPr5Y5f4KcDXDBcxARf3jXkoDny5CpC5Be4/sM77aalgMTvI8vAGKMMe56nosx5lpjzBJjzJKsrKwmK1ya1pzVuzjtn1/x2eqd3HF6H2b833H07BDt77JEREQk0HmqD7grwdvJlKNOJhGR/W36Cp47AVb/D06+Fya+1rhOpL5nQ0g4pB3GkLn1c5xV7Y67EVJPavx1pMXwZchU10+xrfX97cAoY8yPwChgO1BVz3Ox1r5grR1urR3evn37w61XmlhBWSW3T1/ONa8toX1MODNvHMkNJ/ckJNinU4GJiIhIa7DoOfjPSc5qRHVwhQQRGx5CjuZkEhFxVJXD7HvgtXMhNAJ+MwdG3QHBjZwlJzwW+pwJq95z5nZqqJJc+N8N0L4fjPlT42qQFseXq8tlACk1vk8GMmseYK3NBMYDGGOigQnW2nxjTAYwuta583xYqzSxBeuzuWPGcnYXlnPTmJ7cNKYXrhCFSyIiIlJPsV1g10pY/QEMurDOQxJjwjQnk4gIwK5V8O41sHsVDP8NnPY3cEUd/nUHTYRV78PGL6H36fU/z1r48PdO0HTZuxAafvi1SIvgy3f9i4FexphUY4wLmATMrHmAMSbRGLO3hruBKd7Hs4HTjDHtjDHtgNO82yTAFZdX8acPVnLZy98R6QrmveuO57bT+ihgEhERkYbpeza07wtfPwEeT52HJEaFaXU5EWnbPB749ml4YTQUZ8El0+HsJ5omYALoeSpEtGv4kLnlU2HNTBhzL3Qa1DS1SIvgs3f+1toq4EaccGgNMM1au8oY81djzLnew0YDPxlj1gEdgQe95+YCf8MJqhYDf/VukwBlreWjtExO/9d83vhuK9ecmMrHvzuRISma2E2aQXUlrJgBr5wNS6Yc+ngREQl8QUEw8lbnU/l1n9Z5iDvaRU6xOplEpI3Kz4DXz4PP7oGeY+H6hdD7tKZ9jhAXDLgAfpoF5UX1O2fPVph1B3Q9Ho6/qWnrkYDny+FyWGtnAbNqbftzjcczgBkHOHcKP3c2SQBbsiWXB2et4cdtefTtFMM71x7HiNQEf5clbUHpHlj6Knz/AhRsB1cMbFkA4fEwcHzjr1tVDsvegv7nQaR+lkVE/GbgBJj7IHz9mDMvSK2Ja93RLhZtUieTiLRBRbvh+ROd+9Zzn4Jhlzducu/6GDTR+SB37ccw5OKDH+uphg+ucx5f8DwEBfumJglYPg2ZpHXbkl3MI5+u5ZOVO+kQE8ajFw5mwpHJBAf56B83kb1yNsJ3z8OPb0JlsbNSxVlPOF/fGA/v/xaiEhu3gkVlGUy7HNZ/BtsWwvgXmr5+ERGpn+AQGHkzfHQLbP4Kjhi93253VBh7SiqprPYQqoVFRKQtWfJfKM2F334NSYN9+1wpx0BcV1gxre6QqXQPbP0WNn8Nm+ZB1ho4/zlo1823dUlAUsgkDbanuIKnvtzA64u2EBocxC2n9uaak1KJdOnHSXzIWueX18JnnHbdoBAYdBEce93+v1gnvw1TzoCpl8JVn0CngfV/jooSmHqJ88ux6/GQ9g4cfTWkjGjylyMiIvU09FL46lGY/9gvQqbEmDDAuTfpEKtJZUWkjaiqgCUvO/Ml+TpgAmf48qAL4ZsnoSjLmcR760LYMh82z4cdaYCFkHAnkDr6NzBksu/rkoCkVEDqrbyqmte+3cpTX66nqLyKi49O4ZZTe+umTnxv60L49C7YsQwiEuCk253wJ6bTL4+NaOesYPHSWHjzQmfp1viUXx5XW0UxvHWxM9zuvGecoXJPD4dP7oSrv3B+uUpgqKqAyhKI0JxvIm1CSJgzp8fsP0L69/sF/4lRLgCyixQyiUgbsmYmFO2CY55pvuccPBEWPAEvjYH87WCrIdgFySNg9F3Q/URIHu78my1tmkImqZfvN+dy2/RlpOeWMqp3e/44rh99OsX4uyxp7aqr4KtHnLk44pLh7H/B4IvBFXnw8+KSnaBpyhnwxgT49acHn1upvBDenAjpi5zhcYMnOttPvR/evxaWvwXDLmu61+Vv1sJn90LuJpjwUtOtPtJc3v0NbPoKrvgfdB7m72pEpDkcdaXTyfT143DJO/s2u6OdNzM5xZqXSUTakO+eh4Qe0OOU5nvODv2g//lQkOnM0ZR6otO1FBrRfDVIi6CP5uWgrLW8vmgrl7y4iJCgIF779Qhe/fUIBUzie7mb4b9nwPxHYfAkuO5bGH7VoQOmvTr2h8lvwZ7N8PYkqCyt+7iyfHh9PKR/BxNe/jlgAudx8gj4/H4oKzj81xQovn8RFj7tDDuceqkzD1VLsXWh8+ldVSm8dj7sXOHvivxnz1bYs8XfVYg0D1cUHHu9s8pcjb/37minkymrUCGTiLQR23+AjMUw4trm77Sf+CpcPQdO+ZMzfFkBk9RBnUxyQOVV1dw3cxVvf5/OyX3a869Jw4iLCPV3WdIWLH8HPr4NTBBcOMVZXagxuo+E8S/C9Cvh3ath4mv7r3BRuscJmHaucH5p9jtn//ONgTMfgRdPhvn/gNP+1uiXdFD522Hxi5CX7rQee6rBen7+s+/7aohLgTMehrDoxj3X5q+doYd9xkHfs+B/Nzj/fS5+HYID/O+3tTDnTxCTBJe/73SpvXYeXPmx8+laW1FW4Pw8LnrO+Xk+81E48leNX1Emb5vT2WY9ztwOPU91ugFFAs2Ia+DbfzvdTBe9AkByuwhiwkJYtCmH8Ufq51ZE2oDvXwBXNAy9xN+ViNRJIZPUaXdBGde9+QNLt+7hhpN7cOvYPlo1rqUrL3Qmzu45NnDnFyrLd8KlFdOh63HO0LX4rod3zQHnQ9Ej8MkfYNbtzip0xkBJrhNQZK11ApY+Z9Z9fpcjYehlzhv6I6+AxJ6HV09N2Rvgm386oZr1OCtwmGAnODBBzmNjanwfBMveclbXu3R6w4OmvG0w/Qpw94AL/gPhsU6H16zb4b1rnaFzgbzM7JoPnU/uzvm3Eypd8SH8dxy8ei5cNQsSe/m7wkMr3eP8f+9yVMP/Hno8kDYV5vwFinc7P5cFGfDh72DL13D2PyGsAV2m1sLyqTDrDsBCeJzz3xigfT/oeYoTOHU7XvMrSGCIiHfm41vwTzh5AyT2JCwkmLH9OzJ71S4eON+DKyRAf7+JiDSFoixY+a4zhDg81t/ViNRJIZP8wrL0PH77+hIKSqt45pIjOWtwkr9LOjzrZsPcvztdLG15Gc1P7oRlb0KPMU7AEN3B3xXtb9sieO8ap6vn5Htg5K3O0tVN4ZjfOuPHv/kXxHR2fjG/dh7kbIBJb0OvUw9+/il/htX/g8/u2W8ukEbbsRy+fsK5ZkiYU8/xN9Xv53Plu05X1lsXw6XT6j+fUkWJMzSuusp5zXtvTEZc40yiPefPEBoJ5z4VmCFkdSV8cT8k9nZWmgInLLviQ3hlHLx6jtPR5O7h3zoPpqwAXjkbdq10lgEeMgmGToaEIw59bsZS+OQO2L4Uko+GS6Y6QZWn2unqmPcQZP7odHd0GnTo6xXnwEe/d0KlrsfDBc9BfDfI+gk2zIENnzuflC582vm56H4i9BrrhE4JqYf9n0Kk0Y693gn9F/wTzncmvD1rcBLv/bidbzZmc3KfAPvdJiLSlJa+AtUVzlA5kQAVgO8kxJ9mLM1g4n8WEhocxLvXHd/yA6b0xfD/7N13eFTV08Dx70kChA4hoYP03glVkF6kqCioIB1FFLADdtGf7RXsFRBQESnSpYtSlB567y20FGoC6ef9YxJpIdmUzabM53nyJLt77+5s2t6dOzNnZj9ZlWzD966OxnXO75EKmNJNpZrph2ZwZKWroxLRUbDyI5h8P2BkSHeLkamXYIrTdrTMdlr5Poy7T4Ze95qReIIJIG8RiengUji0InmPb62sXDflYXn8I39DsxfhhV3QeazjCdAaj0gL4Ml1kmiKuObYYy8YLm2Bj/x4ZzXWvc9Di1Gw/VdYOkq2T23H18LikY7FG59tUyQp2Hb0rb8bPpWg7wKICpeKposnUiPaW53eKgm6SyeTfx9RETCjt1TOtXpTfgZrxsBXdWVA/Zaf45/7dfU8zBsau5KLPzz0AwxcLgkmkMqzFiMl2RYRChPawOaJCf8MDy6H7xrDgaUy3L7/QihYRqrmCleRhGff+TDqOPSaKUPvgw5KxdtXdeC7JvD3+5LUcsbvilIJyeMD9ftJVV/s32Szit7k9fRg0c6zLg5OKaWcKDoS/CbKCeOMUL2tsixjM8kBoq+vr/Xz83N1GBlWVHQMHy7ez6S1x2havhDf9KqHV+yywBlW0CGY2F5aQHwqyxv8l/bK5axm6qNSKfT8drh6Fn4fIG8am78ELV9P/YSOIy6egN2zpF0n6KAkgDqNcW7pb3SkDAE/sV4STGWbO75vVIS8MTduMoTcw8G/D2ulmu6fT8F/E+T2kTPxDQal7Hdx5++y8l2ZZtBzRsID0dd+KZVKbd6G5i/fPc7lb0rlyr0vSDInuTN+brdvIcwaCNHhsjpgt3FJu++IUEnGFCwrScj49j27U6qZPPNL61xqzRSKioBxzSU5lL+UJF+SWi1lLcx9GnbOgAe/g7qxlViXT8t1O6bJ34BHTqjaRWYslG4qc7pW/R9EhUGTZ+G+EQm3w4UGSdvjkb+gejfo+uWtv2MRofIz9psEhavDw+Mcq3qKE3xEfpcPLIYTa6XFM18JmeU5kLwAACAASURBVO1VpTPcc2+azPUyxmyx1vo6/YGUw9L8GOzyafiytlSBdh4LwCu/72DZnnP4vdmWHB7puO1XKaWSa/dsOZ7qNRMqdXB1NCqLScrxlyaZFBdDIxj621bWHQlmwL1leKNTVTzcM3iR29VzMLGdVE08+afM+hnfEjp8CE2Gujq6tHX8X/ipsyQNmr0o10WESvvctimy9OgjE6FAqcTvKyRQ5iXt+A2unIXSjaWNpmxzmeGSWJtVaBDsmSv3cWqjXFe6ibSzVe+WkmfpuJhoCL8COQsmfd+Dy+C3Rx3/PQo+AgtfhGOrpT3q3uekKiS1VuLYMQPmDZGfQc/p8SeaDq+AqT2g2oPQfXLCyR1rYdFLkoRo9Sa0GJHyGLdNhQXDoHg9me2z7ivo+H/QeIjj97H6E1j5gVTwlG509+1Ob5U2yNze0H8x5EuFSsx/PpM2vbajYe1X4J5dqoZ8Kjl+HytGx86Qucv31FqJfftUOYAMuySPEx0BFTvI75ujs8BiYqQt9O/3ZZ5Zj8lQvC74+0k76oVj0HSYxJLN0/HncLvQYDi0DPYvgsN/yWp/nvkl3iqdpa0uucPpE6FJpvTHJcdgC4bL/8AXdkHeIqw8EMCAyZuZ2M+XNlWLpG0sSinlqOhIOf4u2RCK1kjavhM7QMh5GL41fY42UJmaJpmUw05fuk7vHzdy+tJ1PnioBj18HUg0pHdhV2RGS/BRaQMpUU+un3S/DMl9bnvyhxvvXwwbv4fWb0OpBqkXs7NYCz+2kaTb8C13Jjd2zYI/XpAXqge/vXN1NZBKjoNLpdri0HKIiYJidWTw8ol1cCm2PSmnF5S5F8rcJ9U1PlXkfsOvyvdt1+/SImajoXA1qNlDWr8y2pysX7tLgmz4VmnbiE9UuFQPrRkLHp6yzGv9/s6p8tgxHeYOgXItJNF08884+IisjJe/FAxa7tj8ppgYmPeMtKKkNCm7/ltY9roscfvYVJntM+MJSdb1WyC/J4kJCZQWrXIt4fGpiW9/ahNM6Qb5isuMppTMHrt4HL5tLLOIHpsCAfukJQ8rFU1Fqid+H5smSJtZ/f7Q5YvEK7iiwuHAEqlGqtIVKrVPXuwnN8jZztBAqPqAJHfzFYduPzj2fU+KiGtwdKUknA4sgesXoN170obpBJpkShljTEfgS8Ad+NFa+/FdtusO/A40sNYmeIDlkmOw4CPwja+0d7Z7j4ioGBp8sII2VQrz2WN10jYWpZRyxNkdsqrvuV1y3DzoT8dPIp3ZDuNbQIePpLpZqTSmSSblkGNBoTwxYQNXw6OY3L8BvmW8XB1SykVFwNTu0srR87Z5O3sXwMw+8OgUqPZA0u878jp8XR+unAYMNBoCrd902tn6VLFnrixP/+C3UkETnwtH5c3omW3Q4Clo/74Moz67XeY47ZolbxrzFJFWpzq9bl0u/tJJqZY69o+scHX5lFyfq5C8CT+1Waoc8peCmt0lueTIm/P0KvAgfN9Evg8PfH3n7cf/leqloINQ/WHo+BHkLercmLb/BvOelURMz2mSaAq/Cj+2hZAAGLxSZu44KjoKZg+UweRdvgDfAUmLx1qppPlnrFRQPTzhxupkYZdhQmv5PHg15C+R8H0tHiEzhoZudHz+wPG18n+gYBlJNOVKxv82a6UC7OR6GLrpRpxBh6UtL+o69JkrVUJ3s2+hzGGq1BEe+zXt21KvXZCE4cGlULsX3P+x89uFo6Pg1AbwKp86lWTx0CRT8hlj3IGDQDvAH9gM9LTW7r1tu7zAIiA7MCxdJpkAZg2S3+8XdkEuL0bO2sHiXdIy55lNW+aUUulEVLjMYfz3czk+bjFKFiXKnlsSTXkdqL6c9yzsmQcv78uaoz+UyyXl+Evr7LKo/eeu0OOH9YRHxTB9cOPMkWCKq8A4tlre/N8+0LlKZ2kf2fBd8u5/4zhJMPWcIUsob/xeBuAeTuYgaGeLjoS/3pOqodo9776dVzlpQ2oyTGbATGglz2t8SxlGXK4lPDELXtwL7f93a4IJ5Htap5esTvXibnh+pyS1KraXlpo6vWDAUrm+7eiMnWACaZNqNAS2TpGzSnGuXZABzT91loOJJ2ZLq5KzE0wg3+MHv4Wjq2RAdeR1qW4KOiSrjSUlwQSSDHn4R/kZLnwBfntc7tuRkxIx0dJy989YqNdXWvTiEkwgB0aP/yYxzuwj36u7CT4irXv1+iZtwGWZeyXZFnxEvh8JPcbd7J0nq6y1fvPWRJh3BZn5lCMv/PygJFHjc3IjzB4klZTdJ7pm7lkuL6lue36n/H2mxUGpu4dUSjkpwaRSrCFw2Fp71FobAUwHHoxnu/8BnwBhaRlckjV/CSJCpGIQ6FKrOCHhUaw5GOjiwJRSKpb/FhjXQpJMNR+FZzfIXM4nZkq18W895MRgQkKD5KRv7cc1waQyBE0yZUHbT13isXEb8HAzzHi6CdWLZ5J/Vn++JYOk27wtb7pv5+YuyYGT62X+SVJcuwD/fibzRip3lEGjA5fJTJNfH4E5T8s26cmWn6RKqe3oxNsDPbJDhw+g1+9ywJ4jD3T5HF45IImSiu0cf5Nc8B6pmur2Azy7Drp8Bvc0yVy94y1GypmoJaMkubl9mrRt7Jwuc6+e3eDYqnWpqe4T8OA30pL4TQPYv1B+puVaJO/+PLLDo7/AfSPBf7PMOvq+qfxeRV6Pf5+oCJj9pCSG7n0Bun4V/++eT2X5/Ti9BRa9fPfk1d//k9lELV9NevzlWkpi5eQ6KU1PStVu2GVY8ioUqx3/EsFeZWHAEshdCKY8JJVTNws6BNMek/a0XjMda1N0FmMyXkuqcqYSwKmbLvvHXvcfY0xdoJS1dmFaBpYsRapD5U5y0ic8hCblC1EwVzYW7dJV5pTK9K6eS/6KtXGsleOmRS9Li3xqirwOy9+CiW1lFmiv3+W4JK66ukR9ORF4breshB0deff72vKTLJ4S3zGJUulQJnrXpxyx4WgwT0zYQL6cHvw+pAkVCqfjVq+kWP+trIrV4Clo9tLdt6vbB7LnhQ3fJ+3+//lUzjK0HX3jutKN4el/ZMWn3bPkjf2uWY69mY2OkgTQmW3SfnP1HISHpN5y4OFXYdXHcE8zqUZxVKX20nbw5ArwHZi84dhZgWd+SWae2iCtc/OGSHvQ02vkdyShld6cqW5vqeK7fEqq1xolYbh2fLLlhNZvwIt7pFLKuMMfz8NnVWWY9eXTN7aNCIXpPWHPHJnH0+7dhOcPVe0qK91tmwJbJt95++kt0u7ZZFjyq8FqPCI/p12/y+BwR/39PoQGSKvg3RK0+UtKoilfCUk0H1kp1189D78+LN+r3rNlCLlS6Ud8f5T/vfAYY9yAz4G7LEN50x0ZM9gY42eM8QsMdGHlUPNX4PpF2DSObO5udKxRlBV7zxMWGe26mJRSzhUSKCMsxlaSRQBObkjiyaQr0qHwTQOZ47j5R/jtMbk+NZzcAD80k8VO6vaBZ9fHP2OxUgfo+oXMYfzj+fifQ3SknLwr1xIKV0md+JRyMhfU7ytXWXUggKenbKGUVy5+HdSIovlTsLJQerJrlgwXrvoA3P9/Cb+x9cwnb8Q3T5A3wo60dFw6CZvGy0yTItVuvS2bp7TTVHtIXuRmD5I3tJ0/kyqGa8EQfFgqG4IPSftO0CFJMMXEd8bCQPY8UkkU9zm3D7R+C4rVcvx7su5ruBYkzzG1lqFXt6rbG7b+LEnCLp9Dvf7po1qrXh8oe58kQVLrZ5/NU55vnSdk3tmG72Ww+dqvZL5ZvX6w6iOpeHrga2lvc0SrN6TlcPFIKFIDSjWU662FP9+BXN6yIl9KNHtJVlRbM0baBu82myzO6S3SetNw8I1FA+4mb1GZ+TTlITk47faDrOwWGiSLDniVS1nsSqU+f+DmFT5KAmduupwXqAGsMvL/oyiwwBjzwO1zmay144HxIDOZnBl0gkrWl2qmf7+Aev3pXLM40zadYtWBADrW0LZNpTIlv4lSeV/jEdg1G7b+Iq+5tXtJS9ndVkwO2C/vAXZMl/1L1Idu4+R4Y9pjMqO014zkLxAUeR1WvAsbf5AY+syD8q0S3qdeX7hyRo6j8hWX9xU3279QxnV0/jR5MSnlAjr4O4tYsussz03fRuWiefllYCO8cmd3dUgpY638Qz7ytwxZLtlAhvA6siT3haPwVT2Z5dDm7cS3n/O0zGcZvkXeuN9NTLS8+f77fTBuspJY2KUbt7tlkxdA74pQqDwUqiiVQhGh8kIXESLVTBEhUokUd/nsDvn6oe+gerfE4716Hr6qKy1uj/6c+PYq+SJC5efumc/VkaS9iyfkQG3rL9Je5p4dHpmY9KH61y7IHLDIMHh6tSRuDi6XGQX3j4FGqVAaHh0pQ7yP/yPVReVa3mW7KIklJACGbXb853rtgpwJPbtd/vZ7Tpezk8opdPB38hljPJDB322A08jg717W2j132X4V8Eq6HfwdJ/AAfNcYGj5NVPsPafThXzQpX4hveiWSKFZKZTyR1+HzGlDSVxJC4SGwb4EsgnL8H8DIybY6T0DVLuCeAw4ukRPGx9bI5RqPQMMnJckUx2+SvKdoPBQ6fpj0uMKvwrSeEkPDwdDmHccXB7IW/nhOjqm6fC7dBHEm3S9Jpue2JT/5pVQqSMrxl1YyZQGztvgzctYO6pUuyKQBDcjn6YRl1J0t7LK0lvn7yTyl01sg5JzcVrg69PzNsQQTSKKnSmfwmyxl9gm1Np3bBTtnSDVFQgkmkH/8TYfJff8zVt50F6ogySTvCpC/dPKG/149LwOSf+8P5/dAy9cTrphZ/bH0bTuSQFMp48pZO65W8B5ZibDFq9Ii511JWkiTKpcXPDYVJraTmQR958OKd6BgWajfP3Vidc8mCddJHWFGXxi0PP6S803j4dxOmZGQlMRhLi/ot0BmOlRsrwkmlW5Za6OMMcOAZYA7MMlau8cY8x7gZ61d4NoIk8mnslQDbP4Rj0ZP07FGUeZsPc31iGhyZtc3ZUplKjtnSrV+k6FyOUcemcVap5ecANsxHXb8BnMHw6I8kCMfXD0jqxy3eUf+V8TXyu47UCqdNnwrxwiOVmWDtOxO7SHvUR7+EWr1SNpzMgY6fy7jMxa9DHmKQpVOcHanzJZs/4EmmFSGopVMmdyU9cd5a/4emlXwZnzf+uTKnkHyiiEBUh56apMklIIO3ritUAU58xD3UbSWDClOiuP/yipgiS3PPuVhefznt7t2PlFUuLzobJsibQHdxsX/JjjoMHzbUF4oO49N+ziVSq5ds6TdtGhNSe52nyRnGlPTpVPwYxs5i/nkiluXDL58Wv52SjeBJ37XNtN0TCuZ0p90cQx29ZxU8Va+n3V1P6HXhI1826senWtpy5xSmUZMjFQteuSQOZh3e622Vhb62T5VVjqu2xsqdUz8ZG90lFRSH/tHTnqVuTfxmEKDpG0+YL8sllO1a9KfV5yIUPipCwTsg35/wNafYPcceGkf5CyQ/PtVKhVoJZMCYNHOs7w1fw/tqhXh65518cyWzjPgYVcksbTr99jl0mNkHlEJX1nys2R9KF43dZI999wryakN30u1RHwvUkdXySC+9u+7fgC2Rw6ZdVO0Jix9Tao+ek67c+bLX+/KsOYWo1wTp1LJVbO7VCuu/0b+zqs50BqaVAVKSWn95E4w7XGZpxRXybhkpLQ+dh6rCSalMqK8RWWhgDWf0KjRULzzZGfRrjOaZFIqPVk8Uo7tW4xI3v5H/oKgA9BtfMKv1cbAPU3lIyncPaD7ZPixLczoDU/9LSvK3s2Vs5JgunhcWuVTurJw9tyyKu3EdvDboxB5TRZy0QSTymDSwZRa5QzHg0IZNXsndUsX4Lsn6qXfBFNUOOxbKG0yYyvCvGdkOHazl2QZ+FcOQa/p8mJUvnXqJXuMgcbPygvVkb/vvD0mBv58W0prGzyVOo+ZUsZAo6ehzxwIOQ/jW91Y0Qrg1GbpSW/6HOTxcV2cSiVX23dlGPhD3ztviHrxujI76sw2mPOUJJYOLJEEd4uRMhxcKZUx3fsc5PLGfcXb3F+9KH/vDyA0PMrVUSmlQKqJN42HVR9KG1hyrPsa8hZ3bEZpcuUsICekbIyckLrbinOXTsLk++Gyv8x7TGmCKU4eH7k/4wZRYXLsr1QGo0mmTCgsMpqhv23F3c3wTa96ZHNPRz/mqAgZkntsjazGNrYizHhC2tfq9YVBK+D5HdDmLShc1bkVBTUehjxFYMN3d962Z44M3G79puOzntJKuZbw1ErIW0yWTt/wfexqXG9D7sI3etSVymjcPSTRU7iqcx+nSifo+LEklpaMhMUjwKcqNB3u3MdVSjlXjrzQ8lU48S+9C+0nLDKGv/cHuDoqpRTIrCSszEha/Iqc0E2Kc7vg2GpZECSpYzKSqlB5ePQXWSF69iA5IXWz4CMykPv6BVlBrkyz1H/8/otkvpOzj4mUcgJtl8uEPly8jz1nrvBjX19KFMiZdg8ceR3++QwC99+2UlrIjdXToiNubJ89j/Qt1+wOZVsmbyh2SnjkgAZPwsoPZGUan8pyfVQ4/PUeFKkpbXrpkVdZePJPmDsElr4q1WAn10HnzxxfyUKprKzxELh4TJYZBhiwVAaEK6Uytvr9YcP3VNr1KUXzvMvCnWfoWru4q6NSKmuzVuYjlWkOtR+H+UNh53QZ1u2o9d9BttyptyhIYsq1gPs/gUUvyYncDh/I9QH74JcHISYK+i2EYrWc8/iFq8S/SIlSGYAmmTKZRTvP8sv6EzzVvCxtqxVJfIfUEnhQVj8L2APeleVsYvbckKewJJNy5Ln1c74SUKFtwiu7pQXfgbBmrFQDdf1CrvObBJdOSKmqs1p2UkOOvPDoFFlNbvX/yUD0pKyEoVRW1+FDSSrnKQL3NHF1NEqp1OCeDdq+g5nZl9dKb2fEgVqEhEeRJ4ce8irlMifWyYmdlq/KCdwtP0nipnInx+YNXTkrM1t9B6btnNQGg+Tk+fpv5GR00VowpZusID1gyY0T1EqpWzj0imuMmQ1MApZYa5NY26jSyongG3OYRnZMw8z3jumw8CVpK3siFXuS00Jub6j1qDyHNm/L8qCrP4GyLaB8G1dHlzg3N2j1urTQ5SmilRhKJYWb+43kslIq86j6AJRswP1BExkV9TF/7TvPg3VKuDoqpbKu7VMhe17523Rzg05jYXxLWPkhdPok8f03T5DKocZDnB7qHTp8BEGHYt/r5ATPAtBv/p2L7yil/uNomcb3QC/gkDHmY2OM1u6lM+FRN+Ywfd2zbtrMYYoIhXlDYe7TULwODPk3YyWY4jR+FqKuw5bJsPZL6a9u927GWmHqnqbSv62UUkpldcZAu/fIfu08z+f+kz92nHV1REplXeEhsGce1Oh2o4OheB2pEto8QWYtJSQiFDZPhKpdXJPYcfeAHpPlsXP7wIDFmmBSKhEOZSKstSustU8A9YDjwJ/GmHXGmAHGGC2dSAc+XLSP3aev8GmP2pQsmAYtaAH7YEJrOTNx3wjouwDyZdCZB0WqSSXQhh+k37vGI7IClVJKKaUypnuaQuVODLTz2HXwCFfCIl0dkVJZ0955EBkKdXrfen3rN6X1bdErMrPpbrb/BmGXoMkw58aZkJwF4ek1svJ1gVKui0OpDMLhchdjTCGgP/AksA34Ekk6/ZnAPh2NMQeMMYeNMa/Gc3tpY8xKY8w2Y8xOY0yn2OuzGWN+NsbsMsbsM8a8lsTnlaUs3nWWn9NqDpO1sHUKjG8F14Khz1x5kUjrod2prfGzEBogpbit33J1NEoppZRKqbajyW7DGGJms2LveVdHo+4mJgY2TYDwq66ORDnD9t9kbmiphrden7MgtB0NpzbErjwXj5hoWQW6hC+UauTsSBOWzdP5q9oplUk4lGQyxswB/gFyAV2ttQ9Ya2dYa4cD8S5lZYxxB74F7geqAT2NMdVu2+xNYKa1ti7wOBC3lnwPIIe1tiZQH3jaGFMmKU8sqzgRHMqoWTupUyoN5jCFh0hr3IJhUKqBtMeVb+Xcx0wrFdpB6abQ7AVZuU0ppZRSGZtPZajblz4eK9i8xc/V0ai7OblOlrTf+ourI1Gp7cJROLFWVpGLbwxFnd6SQPrzLbh+6c7bDy6V+2gyNGONsVAqi3O0kukba201a+1H1tpbGtuttb532achcNhae9RaGwFMBx68bRsL5Iv9Oj9w5qbrcxtjPICcQARwxcFYs4y4OUzGwDe94pnDdGY7zBkMx9ak/MFOb5UBfbt+h5avQ595kLdoyu83vXBzg4FLpCpLKaWUUpmCafUaMW7ZaHbqey5f05a5dMl/s3w+/Jdr41Cpb/tvYNygds/4b3dzg85jITQIVn105+3rvoH8pWVguFIqw3A0yVTVGPPf+pLGmILGmGcT2acEcOqmy/6x191sNNDbGOMPLAaGx14/CwgFzgIngbHW2gsOxppl/DeH6dE6t85higiFZW/AhFawcwb83BX+eAHCkpGni7gm9/VjG4gIkdlLLUfJqkxKKaWUUulZ3qJcqDWYzm4b2Lz2rhMelCv5x1aZnVgLkdddG4tKPTHRsH0alG+d8NzW4nXBdyBsGn/rEPDTW6TKrfGQjD+WQ6ksxtEk01PW2v9qGK21F4GnEtknvprG26e69QR+staWBDoBU4wxbkgVVDRQHCgLvGyMuWOMvzFmsDHGzxjjFxgY6OBTyRyW7pY5TE82K0u7m+cwHV4B3zWG9d9A3T7w0n4ZlLf1Z7n+UBIOsI6ugu+byH3V6wtDN0LZ5qn+XJRSSimlnKVIxxFcJB/lN72VvBNuynmslSRT3mIQFSaJJpU5HFsNV/yhzhOJb9v6TfAsAItH3BgCvv5byJFP3s8opTIUR5NMbsbcaISNnbeU2OQzf+Dm8fsludEOF2cQMBPAWrse8AS8gV7AUmttpLU2AFgL3NGWZ60db631tdb6+vj4OPhUMr7Aq+G8NmcXtUrmvzGHKSQQZj8Jvz4C7jmg/2J44CvIVww6fACD/oQceWFqd5g7BK4lUBh2/SLMHwq/PCglrv0XQdcvwTN/2jxBpZRSSqlUYjzzsaHmu5SMOMaVCV0h7LKrQ1JxrpyGkHPQaIgcvx7+29URqdSybaokjip3SnzbXF4yBPzkeunCuHQK9syTk9ye+RLbWymVzjiaZFoGzDTGtDHGtAamAUsT2WczUNEYU9YYkx0Z7L3gtm1OAm0AjDFVkSRTYOz1rY3IDTQG9jsYa6ZmreXNebsIjYjms0drk93dyD/xbxvIP+MWo+CZtVDm3lt3LOkrS2/eN0LmKn3bCPbe/uMA9s6X27ZPg3tfgGfWQZlmafPklFJKKaWcoPWD/RjtOYJcwbuI+aVb/EOGVdqLm8dUtrkcux5e4dp4VOq4fgn2L4SaPWRVNkfU7QMl6sPyt2DNGLmu0RDnxaiUchpHk0yjgL+BZ4ChwF/AyIR2sNZGAcOQBNU+ZBW5PcaY94wxcdPbXgaeMsbsQBJX/a21FlmVLg+wG0lWTbbW7kzSM8ukFuw4w7I953mpXSUquAfALw/A/GfBu7Ks9tbqdfDIEf/OHjmkHHXwKhnaPbMPzOwHIQFw9RxMfwJm9oU8RWDwSmj3LmTLmZZPTymllFIq1eXwcKflgwMZEvEC9uwOmPKQVG4r1/L3kwqmIjWhfBsIOiBVLCpj2zNH2h/r9HJ8Hzc36DQWQgNlzEf1h6BAqcT3U0qlO8ba28ckZUy+vr7Wzy9zL08bcDWM9p+voax3bmY3P4fb/GfBPbuUl9YfIP+cHRUdCeu+glUfQ/bcEBMD0eHQ8lVoMlwH7CmllEqXjDFbEljZVrlARjkGs9bSb/Jm8p5YwTcen2MKV4M+c6VVR7nGxA5gY+DJPyFgP3zXSEY01O/v6shUSkxoA5HXpCPCxDemNwELXwS/SfDU31LZpJRKF5Jy/OVQVsIYU9EYM8sYs9cYczTuI2VhqqSw1vLG3N1ci4jm0y6lcVv0EhSpLsO4GwxKWoIJwD0bNH9Zqp8KV4cS9eSFoNmLmmBSSimlVKZjjOHtLtVYFlmHn0q+DwF7Zf5kQnMqlfNER8LZ7VCygVz2qQz5SsDhv1wbl0qZwANw2k8Gfic1wQTQ4SMYuFwTTEplYI5mJiYD3wNRQCvgF2CKs4JSd5q//Qx/7j3PiPaVKbfnGwi/Al2/SnhJUEf4VIYBi6DvPChUPnWCVUoppZRTGWOeN8bki51fOdEYs9UY097VcaV3FQrnoV/TMrx3sCTH2v4ob4h/eUATTa5wfre0VJWMTSYYAxXawNHVEB3l2thU8m37Fdw8oNZjyds/myeUbpS6MSml0pSjSaac1tq/kPa6E9ba0UBr54WlbhZwJYx3Fuyh/j0FGVg5AjZNgHr9oGgNV4emlFJKKdcYaK29ArQHfIABwMeuDSljeK5NRbxyZeeV7T7Yx3+DwIPw8wMQGuzq0LIW/9gWy7hKJpC5TOGXpRJGZTzRUbI6XMUOkCfrrPytlLqVo0mmMGOMG3DIGDPMGNMNKOzEuFQsay2vz91FWGQ0Y7rXwn3FWzJDqdUbrg5NKaWUUq4T14fSCVkgZcdN16kE5M+ZjZEdK7PlxEXmh1SFXtMh+BD83BVCg1wdXtbh7we5C0P+m4Y7l2sJxl1XmcuoDq+AkPNQ9wlXR6KUciFHk0wvALmA54D6QG+gn7OCUjfM2XqaFfsCGNGhMuUubYBDy+G+EXp2QCmllMrathhjliNJpmXGmLxAjItjyjB61C9FzRL5+WjJPkJL3ge9ZsCFo5Jo0ta5tHHaT6qYbp7bk7MAlPTVuUwZ1fZfIZc3VNTOXaWyskSTTMYYd+BRa22ItdbfWjvAWvuItXZDGsSXpZ27HMa7f+zB956CDGhSCpa9Dl7loNEQV4emlFJKKdcaBLwKNLDWXgOyIS1zygFubobRD1Tj/JVwvlt1TGq+OQAAIABJREFUWCpoes2A4MPwez8ZSq2c59oF+V6XjGe4c4W2cGabti9mNKHBcGCpzGJyz+bqaJRSLpToMmLW2mhjTH1jjLHW2rQISkmb3GtzdhIRHcOYHrVx3/oTBB2Ax38Dj+yuDk8ppZRSrtUE2G6tDTXG9AbqAV+6OKYMpf49XnSrW4IJa47xqG8p7inXQhZVmTcElr4KnT91dYiZ1+mt8vnmeUxxyreBlR/A0ZVQs3vaxuVKJzfCgmEQHQHZckG2nPLZw/PG13Gfaz6S/lZf2/U7xERqq5xSyuF2uW3AfGNMH2PMw3Efzgwsq5u1xZ+VBwIZ2aEKZXNHyItt2fugcidXh6aUUkop1/seuGaMqQ2MBE4gq/+qJHj1/ip4uBveX7RPrqjTE5oOh80/wuaJrg0uM/PfDBgoXvfO24rXgZxeGWMuU2gw/Ps5XD6dwvsJkgq6yOtQsqF0LngWABsD14Ig6CCcXA/7F4HfRPjlITi/N3WeQ2rZ/isUqwNFqrs6EqWUiyVayRTLCwjm1hXlLDAn1SNSnL18nff+2EvDMl70b1oGlr8OYZehw0e39q0rpZRSKquKstZaY8yDwJfW2onGGJ2XmURF8nkytFUFxiw7wJqDgdxXyQfavguBB2DJSPCuBGWbuzrMzOe0HxSuBjny3nmbmzuUbyVzmWJiwM3Rc+JpKCYatvwEf/8Prl+EnTNh4DLwzJeM+4qBOYOlhfDJP6FY7YS3v3waJrSG3x6FJ/+CvEWS9RRSzcXj8O8XcG4XdBrr2liUUumCQ/+1Y+cw3f4x0NnBZUXWWl6dvYuoGMuYHrVwu3AYNo2Hen2haA1Xh6eUUkqp9OGqMeY1oA+wKHaGpg5CSYZBzcpS2isX7y3cS2R0jCQ5HvkRvMrDzD5w4ZirQ8xcrJWV5eKbxxSnQlsIDYDzu9MuLked2ixJnkUvQZEa0PVLSUrOGgjRUUm/v38/hSN/wf0fJ55gAshfQlZEvBYM0x6HiGtJf8zUELAf5jwNX9WD7VOh/gCo29s1sSil0hWHkkzGmMnGmEm3fzg7uKzo9y3+rD4YyKiOlbmnUG5Y/iZ45IRWb7o6NKWUUkqlH48B4cBAa+05oAQwxrUhZUye2dx5q0s1DgeE8Mv6E7FX5oee0yQhMq0nhF1xbZCZSfARCLsU/zymOOVjmyeOpKNV5kKDYP5QmNgWQs7DIxOh3x9Qv7/M7zr8Jyx/I2n3eewfWPkh1OguSRpHFa8rj39mG8wdLNVQyRESCOFXk7bPmW0wozd81xj2LYDGz8DzO6DrFzIzSimV5TnaLrfwpq89gW7AmdQPJ2s7dzmM/y3cS8OyXvRtUkbKhA8uhXbvQR4fV4enlFJKqXTCWnvOGDMVaGCM6QJsstbqTKZkalu1MM0revPFioM8ULs4PnlzQKHy8OjPMOVhaWd6fKpUOamU8d8sn0v43n2bvEWhSE05Fm72YtrEdTcx0eA3SVrjIkJlZleLUbe2+vkOkNXy1n8DhSpAw6cSv9+QAJg9SOYvdf0i6SMxqnSCDh/CstdgxTvQ/n+O7xsdCWvGyIeNgQL3SFVWkepQpJp87VXu1t/342vhn9iqK8/8cN8IWfE6d6Gkxa2UyvQcSjJZa2fffNkYMw3IANP4Mg5rLa/P3UVkdAyfPFILNxsNy96AgmXkH7hSSimlVCxjzKNI5dIqwABfG2NGWGtnuTSwDMoYwztdq9Ppq394Y+4uxvWpjzEGyrWEjh/DkhGSZGg72rWBZgan/SB7XvCpnPB2FVrD+u+k0ia+2U1p4eRGWPyyzBsqex/cPwYKV4l/23bvSaJpySjwKistf3cTEw2zn5SZq73nJP/5NX4GLhyFdV9JUsjXgWqooMMw5yk4sxVqPSZzx87vkY+DSyTpBLKqXeGqULg6XDgig8dz+8jfgO+g5M2fUkplCY5WMt2uIlA6NQPJ6uZuO83f+wN4s3NVynjnhk0TIHAfPPYreORwdXhKKaWUSl/eABpYawMAjDE+yAlATTIlU4XCeXi5XSU+WrKfedtP061uSbmh4VMQsFdWEfOpCrUfc22gGZ3/ZihRN/GqsAptYe2X0lJWJQ1XVw4JhP1/wJ55cGw15C0O3SdD9W4JVxvFzfKa1BF+HwCDlkuSJj5rxsh9P/B1ymauGiNJ0IvHYdHLUKA0VGgT/7bWyrDyZa+De3bo8TNUf+jWbSKvy3ypgL2xiafd0lWRPZck2Or10ZY4pVSiHEoyGWOuIqvJxTkHjHJKRFlQwJUw3v1jL/VKF2DAvWVllYqVH0KZ5lCli6vDU0oppVT64xaXYIoVjIOzNtXdPdm8HMv3nued+XtoUs6bovk95Y18pzEQdAgWDJc2upIJtHqpu4u4JsmLe59PfNtSjSFbbmnPcnaSKSRA5gvtmQcn1ko1j1d5aPk6NBkKOfI4dj858kLP6TdWf3tqJeT2vnWbo6tg1cdQ63Go2yflsbt7QI/Jktya2U+SW0Wq3fb8AuV39+ASqc576HvIV/zO+8qWE4rXkQ+llEomR1eXy2utzXfTR6XbW+hU8lhreXPebq5HRjOmR23c3QysHiOJpg4fJr0/WymllFJZwVJjzDJjTH9jTH9gEbDYxTFleO5uhrE9ahMRHcOrc3Zibew5Vvds8OgvMito+hNw8YRrA82ozu6AmKiE5zHF8cguLWqHnTSh4+p56Rz4qQt8Wlkqga6eg+Yvw5C1MHwLtBzleIIpToFSkmgKCYDpvSAy7KbHPCdtct6VoMtnqXecnyMv9JoJ2XNLcuvq+Ru3HVwG3zeBI39L1VPvufEnmJRSKpU4urpcN2NM/psuFzDGPJTQPsoxf+w8y/K953m5XSXK++SRF99N46QctVgtV4enlFJKqXTIWjsCGA/UAmoD4621WmWeCsp652ZUxyqsOhDITL9TN27IXUiSBxEh8FUdqRxZ+6VUOCVFVDgc/1eq1n95CFaMlnan5DqzDeYOgbGVYeVHMtQ5vTrtJ58drQSr0Ea+N8FHUi+GC8fg1+6SWFr8iiSD7hsBz6yHYZuh9ZvSwpaSBFDJ+lItdGqjVBBZC9FRkmCKCJWB8tlzp95zAshfAnrNgGvBMO1xCA2GhS9K0ilPERi8SmY4uWnBo1LKuRydyfSOtXZu3AVr7SVjzDvAPOeElTUEXg3nnfm7qV2qAE82LycHHXOHQK5C0PZdV4enlFJKqXQstqpcK8udoF+TMizbc47/LdzHvRW8KVkwl9xQpBoMXg27ZsKBxfDn2/JRqAJUvh8qd4KSDaWFKU50lJxEPLZaPk5ugKgwMG5S0bJ2Nfz7hSRUfAdCxQ637h+f6EjYOx82jgP/TZA9DxSrA6s/lpaobuPuPg/Ilfw3y9ygPIUd2z5uvtDhv6RNMSWslVXilr8l85NajJQ5S876PtV4WJJjK98H74oQHQHH/5Hkk7Mes3gdeGSiVFB9Xk3eWzQdDq3f0hmvSqk042iSKb6Ud3KHhqtY7yzYTWh4NGO715I2ub8/kkF7vWZCLi9Xh6eUUkqpdCaeOZn/3QRYa60u+ZQK3NwMY7rXpuMXaxg5aye/DmqEm1tsZYt3BWj1unxcOiWDkQ8sgQ0/wLqvIacXVGwviYSTG2TGT/gV2bdwdag/QNrA7mkKOQvA5dOw9RfY+rMkB/IWh/r9oF7fO9uaQgJkeLPfJLh6VlYU6/gx1Okly8rvnS/VK+Puk4qcJsMSH7Cdlvy3QOlGjm/vVQ4KlpW5TI0GJ/9xL/vD/GFwdCWUawUPfgP5Syb//hx13ysQfAhWfgAYqNtbflbOVKUTdB4LmyfB/R/L75pSSqUh81+veUIbGTMJuAR8ixzYDAcKWmv7OzW6JPD19bV+fn6uDsNhi3ed5dmpWxnRoTJDW1WAU5tgUgeo84S88CmllFLqDsaYLdZanbqcjmS0Y7Ck+G3jSV6fu4v3HqxO3yZlEt447IrMvTmwBA4tk/maXuXkTX7Z+6DMfZDH5+77R0dJwspvkiRVjLtUR/kOgJwFYeN42DNHKmLKt4FGQ2QFttvbn0ICYeELsH+hDM9+6LuUVwGlhitn4bMq0OEjaPKs4/stegW2T4VRx5NejWMtbP8Nlr4KMdHQ/n9SLZaWM0+jwuHXRyD8KgxYIiu1KaVUBpOU4y9Hk0y5gbeAtrFXLQc+sNaGJjvKVJaRDnAuhEbQ7rPVFC+Qk7nPNsUjOgx+aCalz8+sBU89CamUUkrFR5NM6U9GOgZLKmst/SZvZvOxCyx5vjllvB2coxMdJUmmhJJKCblwTCqbtk6Ba0FyXfY8UgXTcLC0XyUcOOycCYtHQEwktHsPfAe5dh7Pvj9gRm8YtAJKNXB8vwNLZMZQ3wVQroXj+109B388L4m7e+6FB78Fr7JJjzs1WCsr1qWnqjKllEqCpBx/OdTyFptMejVFUan/vLNgD1fCIpnaoxEe7m6w/F24cAT6/aEJJqWUUkqpdMIYw/89UpP2n69hxKwdTB/cREYcJMbdI/kJJpBkSNvR0PI12L8Iwi7LjB/P/IntGRc41H4MyjSDBcNkwPX+hfDAN7L6mSv4bwa3bFC0ZtL2K9Nc9ju8wrEkk7Wwe7Y858jrUjnVaIhrE2zGSGWaUkplAY6uLvenMabATZcLGmOWOS+szGvZnnP8seMMw1pVpErRfHB0NWz8QV78tGdaKaWUUipdKZY/J+90rc7m4xeZvPZY2j64Rw5JLvkOcDzBdLP8JaD3HOjyOZzaDN83hQ3fQ3hI6seaGP8tsnJyNs+k7ZcjD5RuLK2ICYmOkvETv/eD2YPAqzwM+Vda83RFNaWUSjOO/sf1ttZeirtgrb0IOLgshIpz6VoEb8zdTdVi+Xi2VXnp3Z8/VF4E27zj6vCUUkoppVQ8HqlXgrZVi/DJsgMcDnBBgiYljJE5RM+shWK1ZT7R59Xgz3fgypm0iSE6Cs5shRLJ7HSt0BbO75a5Tje77A9bfoaZfWFMOZjYTtrr2rwDA5cl3laolFIq1Tm6QlyMMaa0tfYkgDGmDPGvbKIS8NO64wSHhvPTgAZkc3eDha/DldPyIqhDAJVSSiml0iVjDB8+XIP2n6/h5d93MHtIExl5kJF4lYX+C6XaZ/03sO4r+VzjEWgyVBJQzhK4DyKvQckkzGK6WYU2sOIdOLAICpaBw3/LcPTA/XJ73mJQpStUaC2rx+kqzUop5TKOJpneAP41xqyOvXwfkIJ1RLMeay0Ltp+hUVkvapTIDweXwbYp0OxFKNXQ1eEppZRSSqkEFM7ryf8erMHwadv4ZuVhXmhbydUhJU+phlDqF7h4HDb8IMejO2fI7KMmw6Bi+7u3l1krA81DAuD6BSheF7LlTPwx/TfL55L1kxdzkRqQpwgselkuu+eAe5pC3d6y0l7hqmm7YpxSSqm7cnTw91JjjC+SWNoOzAeuOzOwzGbPmSscDQrlyebl4NoFWDAcCleTgY5KKaWUUird61q7OCv3B/DFikNUKJyHLrWKuzqk5CtYBu7/GFq+Clt/kRmh0x6DQhWg9uMQFQ4h5yWh9N/nAFmtLk6xOtBnbuKVQ/5bIFchKJjM1d2MgfYfwJltUL6VrBanXQBKKZUuOZRkMsY8CTwPlESSTI2B9UBr54WWufyx4wwebob7axSFxc/AtWB44ncZ6KiUUkoppTKEDx+uyckL13hp5g6KF8hJvdIFXR1SyuQsAPc+B42fgb3zYd3X8Pf7YNwgtw/kKSxVRIWrxV4uItdFhMDiEfDzA9B3HuT2vvtj+G+WeUwpqTaq1UM+lFJKpWuOtss9DzQANlhrWxljqgDvOi+szCUmxvLHjjPcV8mHgscXwe5Z0OpN5/a+K6WUUkqpVOeZzZ1xferT7bt1PPWzH/OG3kspr0xQVeOeDWp2lxlN1y/KanZu7gnvk78UTO8FP3WBvvMhb5E7t7l+CYIOQE1NECmlVFbg6MTCMGttGIAxJoe1dj9QObGdjDEdjTEHjDGHjTGvxnN7aWPMSmPMNmPMTmNMp5tuq2WMWW+M2WOM2WWMSeJ6p+nHlpMXOXM5jO6VPWDhS1C8nsxiUkoppZRSGU6hPDmY1L8BkdExDPhpM5evRya+U0ZhjLS/JZZgAhnI3WsmXDoBP3WOf7W6M1vlc3LnMSmllMpQHE0y+RtjCgDzgD+NMfOBBNc8Nca4A98C9wPVgJ7GmGq3bfYmMNNaWxd4HPgudl8P4FdgiLW2OtASyLCv3gu2n6GCRwAdNw2EyOvQ7Qdwd7SITCmllFJKpTcVCufhhz71OR4UytCpW4mMjnF1SK5RrgX0ng1Xz8LkTnDp1K23+28BDJTQJJNSSmUFDiWZrLXdrLWXrLWjgbeAicBDiezWEDhsrT1qrY0ApgMP3n7XQL7Yr/NzI3HVHthprd0R+/jB1tpoR2JNb6KiYzi+8x/m5hiNW9hFKSX2SbQITCmllFJKpXNNy3vz0cM1+fdwEG/P34211tUhucY9TaHPPFnc5qdOsnJdHP/N4F1J2u+UUkpleo5WMv3HWrvaWrsgNnGUkBLAzacy/GOvu9looLcxxh9YDAyPvb4SYI0xy4wxW40xI+N7AGPMYGOMnzHGLzAwMKlPJU3sWzObcdHv4J4jNwz6E0o3cnVISimllFIqlfTwLcXQVuWZtukU49ccdXU4rlOqAfSbD+FXpaIp+AhYC6f9oGQDV0enlFIqjSQ5yZQE8S0fcfvpnZ7AT9bakkAnYIoxxg0ZSN4MeCL2czdjTJs77sza8dZaX2utr4+PT+pGnxq2/kK11U9znOK4PbUCvCu6OiKllFJKKZXKXm5XmS61ivHx0v0s3X3W1eG4TvG60O8PiAqTRNOh5bKiss5jUkqpLMOZSSZ/oNRNl0ty5xynQcBMAGvtesAT8I7dd7W1Nshaew2pcqrnxFhTl7Ww8iNYMJz1tgZTq36PZ8Hiro5KKaWUUko5gZubYWyP2tQpVYAXZmxnx6lLrg7JdYrWhP6LwMbAtMflOq1kUkqpLMOZSabNQEVjTFljTHZksPeC27Y5CbQBMMZURZJMgcAyoJYxJlfsEPAWwF4nxpp6oiNhwTBY/TH+ZR6mf/jLtK9XwdVRKaWUUkopJ/LM5s6Evr745M3BoJ/98L94zdUhuU7hqjBgMeQpAjnygU9VV0eklFIqjTgtyWStjQKGIQmjfcgqcnuMMe8ZYx6I3exl4CljzA5gGtDfiovAZ0iiajuw1Vq7yFmxpprwEDljs+1XaDGKj7INI3/uXNxbvpCrI1NKKaWUUk7mnScHk/o1IDwqmv6TN3MsKNTVIbmOd0V4eg0MXKqrKiulVBZiMssqGL6+vtbPz891AYQEwNQecG4ndPmc0Bq9qf/+n/SoX4r/PVTDdXEppZRSmYgxZou11tfVcagbXH4Mlg6tPxLMkF+3EBkdw+iu1enhWxJj4htXqpRSSqV/STn+cma7XNYRHQVTukHQQXh8GtTvz597zxMWGcMDdXQWk1JKKaVUVtKkfCGWvtCc2iULMHL2Tp6dupWLoYktzKyUUkplfJpkSg1+k+D8bug2Dip3BGDBjjMUz+9J/dIFXRycUkoppZQwxnQ0xhwwxhw2xrwaz+1DjDG7jDHbjTH/GmOquSLOzKBY/pxMfbIRr91fhRX7ztPxyzWsPRzk6rCUUkopp9IkU0pduwCrPoSy90HVrgBcDI1gzcFAutYujpublkYrpZRSyvWMMe7At8D9QDWgZzxJpN+stTWttXWAT5AZmSqZ3NwMT7coz9xn7yV3Dg96T9zIR4v3ER4V7erQlFJKKafQJFNKrf4/CLsMHT+G2F77JbvPERVj6VpbW+WUUkoplW40BA5ba49aayOA6cCDN29grb1y08XcQOYY3uliNUrkZ9Hw5vRqWJpxa47S7dt1HA646uqwlFJKqVSnSaaUCDwAmyZA/f5QpPp/V/+x4wzlvHNTvXg+18WmlFJKKXWrEsCpmy77x153C2PMUGPMEaSS6bn47sgYM9gY42eM8QsMDHRKsJlNzuzufNCtJhP6+nLuShidv/qXKRtOkFkW4VFKKaVAk0wps+x1yJ4HWr3x31Xnr4Sx4VgwXWsX11VElFJKKZWexHdgckeGw1r7rbW2PDAKeDO+O7LWjrfW+lprfX18fFI5zMytXbUiLH2+OY3KFeKtebsZMWsnUdExrg5LKaWUShWaZEqug8vh8ApoOQpye/939cKdZ7EWXVVOKaWUUumNP1DqpsslgTMJbD8deMipEWVRhfN58lP/BjzXpiKztvgzfNo2ndOklFIqU9AkU3JER0oVU6EK0OCpW25asOMM1Yvno7xPHhcFp5RSSikVr81ARWNMWWNMduBxYMHNGxhjKt50sTNwKA3jy1Lc3AwvtavEW12qsWT3OZ782Y9rEVGuDksppZRKEU0yJcemCRB8CNp/AB7Z/7v6RHAoO05d4gEd+K2UUkqpdMZaGwUMA5YB+4CZ1to9xpj3jDEPxG42zBizxxizHXgJ6OeicLOMQc3K8skjtVh7OIi+EzdxJSzS1SEppZRSyebh6gAynNBgWP0xlG8NlTrcctPCnWcB6KJJJqWUUkqlQ9baxcDi2657+6avn0/zoBSPNihF7hwevDBjGz3Hb+DngQ3xzpPD1WEppZRSSaaVTEm18gMID4EOH8Ftg70XbD+D7z0FKVEgp4uCU0oppZRSGVHnWsWY0NeXI4EhPDpuPWcvX3d1SEoppVSSaZIpKc7vgS2TocEgKFzllpsOnLvKgfNXdeC3UkoppZRKlpaVC/PLwEYEXgmn+/frOR4U6uqQlFJKqSTRJJOjrIWlr0GOfNDytTtuXrDjNO5uhk41i7kgOKWUUkoplRk0LOvFtMGNuR4ZTY9x69l/7oqrQ1JKKaUcpkkmRx1YDMdWQ6vXIZfXHTf/tS+AxuW8tH9eKaWUUkqlSI0S+Zn5dGPcDDw2bgNbT150dUhKKaWUQzTJ5IiocFj2BnhXBt+B8W5y7koY5bzzpHFgSimllFIqM6pQOC+zhjSlQK5sdP9+HS/N3M7J4GuuDksppZRKkCaZHLFxHFw8Bh0/BPdsd9wcGR3DpWuRWsWklFJKKaVSTSmvXMx79l6ebF6ORTvP0vrTVbw2ZxdnLulQcKWUUumTJpkSExIIa8ZAxQ5QoW28mwSHRADgnTd7WkamlFJKKaUyuYK5s/N6p6r8M7IVTzQqzawtp2g5ZhWjF+wh4EqYq8NTSimlbqFJpsRcOAo5C0CHD+66SVBIOIBWMimllFJKKaconM+Tdx+swaoRrXikfgmmbDjBfWNW8tHifVwIjXB1eEoppRSgSabElW4Ew7eBd8W7bhKoSSallFJKKZUGShTIyUcP1+Kvl1rQqUYxJvxzlOb/9zefLj/A5euRrg5PKaVUFqdJJke4eyR4c9BVSTL5aJJJKaWUUkqlgTLeufnssTosf/E+WlYpzNd/H6b5//3NtysPExoe5erwlFJKZVGaZEoFQTqTSSmllFJKuUCFwnn5tlc9Fj/XnIZlvRiz7AAtxqxk4r/HCIuMdnV4SimlshhNMqWCoJBwcmV3J1f2hCuelFJKKaWUcoZqxfPxY78GzHm2KZWL5uV/C/fSauwqftt4ksjoGFeHp5RSKovQJFMqCAoJ13lMSimllFLK5eqVLsjUJxvz21ONKJbfk9fn7qLtZ6uZu82f6Bjr6vCUUkplcppkSgWSZNJWOaWUUkoplT40Le/N7GeaMrl/A/Lk8ODFGTvo+MUa/j0U5OrQlFJKZWKaZEoFQVcjtJJJKaWUUkqlK8YYWlUpzB/DmvHdE/WIjrH0nbSRKRtOuDo0pZRSmZQmmVJBUEg43nk1yaSUUkoppdIfNzdDp5rF+GN4M1pXKcxb83bzwaK9xGj7nFJKqVSmSaYUioqO4cI1rWRSSimllFLpW+4cHozr40v/pmWY8M8xnp26lesRugKdUkqp1KNJphS6EBqBteCjM5mUUkoppVQ65+5mGP1Add7uUo1le8/x+IQNBF4Nd3VYSimlMgmnJpmMMR2NMQeMMYeNMa/Gc3tpY8xKY8w2Y8xOY0yneG4PMca84sw4UyIwRF6UfbRdTimllFJKZRADm5VlXO/6HDh3hW7freVwwFVXh6SUUioTcFqSyRjjDnwL3A9UA3oaY6rdttmbwExrbV3gceC7227/HFjirBhTQ1BIBIC2yymllFJKqQylffWizBjchLDIGB7+bh3rjujKc0oppVLGmZVMDYHD1tqj1toIYDrw4G3bWCBf7Nf5gTNxNxhjHgKOAnucGGOKBcWWF2uSSSmllFJKZTS1SxVg7rNNKZLPk74TNzFri7+rQ1JKKZWBOTPJVAI4ddNl/9jrbjYa6G2M8QcWA8MBjDG5gVHAu06ML1UExbbL6epySimllFIqIyrllYtZzzSlUTkvXvl9Bx8v2c+J4FCs1dXnlFJKJY2HE+/bxHPd7a9UPYGfrLWfGmOaAFOMMTWQ5NLn1toQY+K7m9gHMGYwMBigdOnSqRN1EgWFhOOZzY3c2d1d8vhKKaWUUkqlVP6c2ZjcvyFvztvFD6uP8MPqIxTN50mjcl40KluIRuW8KOedm4SOzZVSSilnJpn8gVI3XS7JTe1wsQYBHQGsteuNMZ6AN9AI6G6M+QQoAMQYY8Kstd/cvLO1djwwHsDX19clp1qCQiLwzpNDX3CVUkoppVSGlt3DjU+61+ap5uXYcDSYDccusPZwMPO3yyG8T94cNCzrReOyXjQuV4gKhfPoMbBSSqlbODPJtBmoaIwpC5xGBnv3um2bk0Ab4CdjTFXAEwi01jaP28AYMxoIuT3BlF4EhYTrPCallFJKKZVpVCySl4pF8tKnSRmstRwNCmXj0QtsPBbMxqMXWLTzLADVi+djeOuKtK9WBDc3TTYppZRyYpLJWhv1/+3deZhdVZ3v//e35nmuylBJpTJBQiBMCQiRMSigCF6Hdm7D0GWcAAAgAElEQVT12uK9LbZTP4q3tbW99q+v7U9b+8qvW6RtUBto2hEVRYiIzCQEMIQwBDIVZKrMlaHG9fujDiHEAJVUqnZS9X49z3nq7F377Pqe9dQ5tc6n1lo7Iq4AbgXyge+llJZGxJeBRSmlm4FPA9+NiE/SP5XuA+kom/y9cUcnE2rLsi5DkiRJOuwigqmNFUxtrODdp7eQUmL15l384amNXHP3Cv7HDx/i2DGVXHH+NN5wwjjyDZskaVQbypFMpJRuoX9B7333/e0+9x8H5r3KOb40JMUdJu0dXZzcUpN1GZIkSdKQiwgm1ZfzvjPKeddpLfzij8/z7d8t52M3PMw3b3+Kj543jUtPHE9B/lBeX0iSdKTy3X8QevsSm3c6XU6SJEmjT0F+Hv/t5An89pPn8O13n0xhfh6fuulR5n/jTm5auIbu3r6sS5QkDTNDpkHYsquLvoQhkyRJkkat/LzgktnjueWvzuI77zuVypICPvPjP3Lu137PDQ+uprfvqFoNQ5I0CIZMg9De0QkYMkmSJEl5ecGFs8byiytey/c+MIfGymI+95MlXPJ/7+aBZzdlXZ4kaRgYMg1C+44uABoqijKuRJIkSToyRATnzxjDT//yTK569yls393NO66+nyuuX8zzW3dnXZ4kaQgZMg3C3pFMlY5kkiRJkvYVEbxx9jhu/9Q5fHz+dG57fD3nf/33fOv2p9nT3Zt1eZKkIWDINAgbdzhdTpIkSXolpUX5fPJ1x7Dg0+cwf8YY/un2p5j/9Tv59ZK1pOR6TZI0khgyDUJ7RydF+XlUlRRkXYokSZJ0RJtQW8ZV7zmFGz78GipLCvif/7GYd3/3AZ5Ytz3r0iRJh4npyCBs7OiksbKYiMi6FEmSJOmocMbUen75sddyw4Or+fptT/GGb93FzHFVnDqpllMn1XJKSy0TakvtY0vSUciQaRDaO7pc9FuSJEk6SAX5ebzvjFYumT2e79+3igdXbuJHD7Xx/ftWAdBUWfxi6DSpllnjqyguyM+4aknSqzFkGoT2HZ2Mqy7JugxJkiTpqFRbXsTHL5gOTKent48n1+9g8aotPLRqC4tXb+XXj60DoKggjwtnjeVLbzqOetdDlaQjliHTILR3dHJCc3XWZUiSJElHvYL8PGaNr2bW+Gred0YrABt27GHxqq3c/+wmrn9gNfc9s4mvvvUE5s8ck22xkqQDcuHvQ9TXl9i0s4uGSqfLSZIkSUOhqbKEi44fy5cuncXPr5hHQ0URH7puEVf++I90dPZkXZ4kaT+GTIdo6+5uevsSDQ7XlSRJkobczHFV/PyKefyPc6byn4vWcPG3/sDClZuzLkuStA9DpkPU3tEJYMgkSZIkDZPignyuvHgGN33kDILgz75zH//w62V09vRmXZokCUOmQ9a+w5BJkiRJysLc1jpu+fhZvHPuRL5z57Nc9u17WLZ2e9ZlSdKoZ8h0iDbmRjI1uiaTJEmSNOwqigv4h7fM5t/eP4f2ji4u+/Y9XHXHcrbu6sq6NEkatQyZDlF7R/8fL0cySZIkSdmZP3MMt37iLM6f0cTXbn2SU79yO++95gF+eP8qNuzYk3V5kjSqFGRdwNGqvaOTwvygurQw61IkSZKkUa2+oph/ee8pLHluG79+bB2/eWwdn//ZY3zh549xakstFx0/lgtnjWViXVnWpUrSiGbIdIjad3RSX15MRGRdiiRJkjTqRQSzJ9Qwe0INn7nwWJ7e0MGvl6zjN0vX8ZVfLeMrv1rG8c1VXHz8OM6e3sjMcZUU5DuxQ5IOJ0OmQ9Te0UmD6zFJkiRJR5yI4JgxlRwzppKPXzCdVZt28pvH+gOnr936JF+79UnKivI5uaWGUyfVMbe1lpNbaqko9uORJA2G76KHaGNHp+sxSZIkSUeBSfXlfOScqXzknKms376HB1dsZtHKzSxatYVv/+5p+hLkBcwcV8WcSbXMaa3j9Cl1NFWWZF26JB1VDJkOUfuOLmaMrcq6DEmSJEkHYUxVCW86cTxvOnE8ADv2dPPImq0sXLmFRSs3c9OiNq67bxUFecFbT5nAR8+bRku9azlJ0kAYMh2ClBKbdnbSWOlIJkmSJOloVllSyFnTGzlreiMA3b19LFu7nR8/1MYNC9fwo8VtvOXkZj563jRaG8ozrlaSjmyGTIdg2+5uunuT0+UkSZKkEaYwP2/vAuJ/ed40/vXOZ7j+gdX85OHnuOyk8Vxx3jSmNFZkXaYkHZG8nMIhaO/oBKChwoW/JUmSpJFqTFUJX3zTLO76zHl88MxWblmylgu+cSefuPFhlm/oyLo8STriOJLpEGzc0QVAoyOZJEmSpBGvqaqEz19yHB85ZyrfvetZfnDfKn7+6PO84YRxTGkop7s30dvXR3dvoqevj96+1H+/t4+evsTkhnI+cGYr9X5+kDTCGTIdgr0jmVyTSZIkSRo1GiuL+V9vmMlHzp7CNXev4Af3reKWJWspzMsjPy8oyA8K8/vvF+YFBbn7v1qylmvuWsH7zpjE5WdPcdkNSSOWIdMheHG6nH8cJEmSpNGmvqKYz140g89ceCwR8arHL9+wg2//bjnX3PUs379vJe89fRKXnzOFpsqSoS9WkoaRazIdgvaOTvLzgprSwqxLkSRJGrCIuCginoyI5RFx5QG+/6mIeDwi/hgRCyJiUhZ1SkeLgQRMANOaKvnmO0/mtk+dwxuOH8f37lnBWV+9g7/7xVLWb98zxFVK0vAZ0pBpAB2Zloi4IyIeznVm3pDb/7qIeCgiluS+nj+UdR6s9h1d1JcXkZc3sD8qkiRJWYuIfOAq4GLgOOBdEXHcfoc9DMxJKc0GfgT84/BWKY1sUxsr+MY7TmLBp8/lTSeO5/v3reKsf7yDL928lHXbDJskHf2GbLrcPh2Z1wFtwMKIuDml9Pg+h30euCml9C+5Ts4tQCvQDrwppfR8RBwP3Ao0D1WtB6u9o9OpcpIk6WhzGrA8pfQsQETcCFwG7O2bpZTu2Of4+4H3DmuF0igxuaGc//ftJ/Kx86dx1R3L+eH9q7juvpWMry5lYl0pLXVltNSVMTH3taWujLryogGPnJKkrAzlmkyv2pEBElCVu18NPA+QUnp4n2OWAiURUZxS6hzCegesvaPTRb8lSdLRphlYs892G3D6Kxz/IeDXQ1qRNMpNqi/nH992Ih87fzo/XtzGqk27WL15F3c8uZGNO1760ae8KJ+JdWWcNLGG82c08drpDZQVucSupCPLUL4rDaQj8yXgtxHxMaAcuOAA53kr8PCBAqaIuBy4HKClpeUwlDww7R1dTG2qGLafJ0mSdBgcaAhEOuCBEe8F5gDnvMz3M+mDSSPVxLoyPnHBMS/Zt6urh7Ytu1mdC55Wb97Fyk07+eUf13LjwjUUFeRx5tR65s9o4vyZY2iuKc2oekl60VCGTAPpyLwLuDal9PWIOAP4QUQcn1LqA4iIWcBXgdcf6AeklK4GrgaYM2fOATtJh1tKiY0dnTQ6XU6SJB1d2oCJ+2xPIDeKfF8RcQHwN8A5LzeKPIs+mDTalBUVcMyYSo4ZU/mS/V09fSxcuZkFyzaw4In1fOHnS/nCz5cyY2wl82c2cf6MMZw0sYZ814+VlIGhDJkG0pH5EHARQErpvogoARqADRExAfgp8OcppWeGsM6DsqOzh66ePtdkkiRJR5uFwPSImAw8B7wTePe+B0TEycB3gItSShuGv0RJr6aoII950xqYN62BL1wyk2c27uR3T6xnwbIN/Oudz3LVHc/QWFnMe05v4T2nT6LRZT4kDaOhDJletSMDrAbmA9dGxEygBNgYETXAr4DPpZTuGcIaD1p7bm50Q2VRxpVIkiQNXEqpJyKuoP+CKvnA91JKSyPiy8CilNLNwNeACuC/cgsMr04pXZpZ0ZJeUUQwramCaU0VXH72VLbt6ubOpzfy08VtfPP2p/n/7niGS04cx3+fN5njm6uzLlfSKDBkIdMAOzKfBr4bEZ+kfyrdB1JKKfe4acAXIuILuVO+/kj4j9oLC/A5kkmSJB1tUkq30H813333/e0+9w+0Pqako0R1WSGXnjieS08cz7MbO7ju3pX810Nt/GTxc8xtreUDZ07mwlljKMjPy7pUSSPUkF6OYAAdmceBeQd43FeArwxlbYeqvaMLMGSSJEmSdOSa0ljB3112PJ++8FhuWriG6+5byUevX8z46hLed0Yr7zptIjVlzs6QdHh5zcuD1N7RP5LJuc2SJEmSjnRVJYX8xVlT+OC8ySxYtp5/v2clX/3NE3xrwVO8Zko9c1vrmDOplhMn1lBSmJ91uZKOcoZMB6m9o5O8gFpTf0mSJElHify84PWzxvL6WWN5Yt12rn9gNfc9s4nfP/kkAIX5wQnN1czJhU5zWuuoK/czj6SDY8h0kNo7OqkrL/aSoJIkSZKOSjPGVvHly44HYMvOLhav3sLClVtYtHIz196zkqv/8CwAUxvLmdtax9zWOk6bXMeE2lJyFwWQpAMyZDpIG3d00VBhoi9JkiTp6FdbXsT8mWOYP3MMAHu6e3nsuW17Q6dblqzlxoVrABhXXbI3cDptch3TGivI85/vkvZhyHSQ2js6XY9JkiRJ0ohUUpjfP2WutQ6YSl9f4qkNO3hwxWYeXLGZ+5/dxM2PPg9AbVkhc1rrOK21jrmT65g1vopCr1wnjWqGTAepvaOTyQ3lWZchSZIkSUMuLy+YMbaKGWOr+PMzWkkpsXrzrr2h08KVm7nt8fUAlBXlc3JLTf9op9Y6TmqpoazIj5zSaOIr/iCklGjv6HS6nCRJkqRRKSKYVF/OpPpy3j5nIgAbtu9h4cotLFzZHzx9a8HTpAQFecGs5mpOa61lbmsdZ0ytp7KkMONnIGkoGTIdhJ1dvezp7qOhwulykiRJkgTQVFXCG2eP442zxwGwfU83D63awsLcSKfr7l3Fd+9aQUVxAe+YO5EPzmtlQm1ZxlVLGgqGTAehfUcngCGTJEmSJL2MqpJCzju2ifOObQL6FxN/ePVWbly4mmvvXcm1967kDSeM48NnTWb2hJqMq5V0OBkyHYT2jlzI5MLfkiRJkjQgJYX5nDG1njOm1vOZi2Zw7T0ruOHBNfzi0ec5bXIdHz5rCvNnNHmlOmkEcOn/g7A3ZHJNJkmSJEk6aM01pfzNG4/jvs+dz+ffOJPntuzmw99fxAXfuJMf3r+K3V29WZcoaRAcyXQQNnZ0AdDodDlJkiRJOmSVJYX8xVlTeP+Zrfz6sXVcc9ezfP5nj/G/f/k49eVFVJUW9t9KCqkuLaSqtKD/a257VnMVx46pJMLRT9KRxJDpILTv6CQC6sodySRJkiRJg1WYn8elJ47nTbPH8eCKzfz28fVs293Ntt3dbN/dTduWXSxb28P23d3s6Ox5yWPHVBVz9vRGzjm2kddOa6CmzM9pUtYMmQ7Cxo5OasuKKMh3lqEkSZIkHS4RwelT6jl9Sv3LHtPT20dHZw+bdnaxaOVm/vBUO7cuXcd/PdRGXsCJE2v2hk4nTqgh3zWepGFnyHQQ2nd0uh6TJEmSJGWgID+PmrIiasqKmNpYwTvmttDT28ejbdu486mN/OGpjfzz757mWwueprq0kNMm1zG9qYJpudvUxgrKi/0ILA0lX2EHob2jk0avLCdJkiRJR4SC/DxOnVTLqZNq+dTrjmHrri7uXt7OnU9uZPHqLdzxxAZ6+tLe48dXlzB1n+BpWmMFM8dXUVVSmOGzkEYOQ6aD0N7RxcktNVmXIUmSJEk6gJqyIi6ZPZ5LZo8HoLu3j1WbdrJ8Q8eLt40d3PjgGnZ3v3glu8kN5RzfXM3s5mqOb67m+OYqKg2epINmyHQQ2js6afDKcpIkSZJ0VCjMz2NaUyXTmipfsr+vL7F2+x6eWr+Dpc9tY8lz23ho5WZ+8ejze4+ZkgueTmiuZu7kOmY3V5PnOk/SKzJkGqBdXT3s6uo1ZJIkSZKko1xeXtBcU0pzTSnnHdu0d397RyePPbeNJW39wdOilZu5ORc8NVQUM39GE/NnNvHa6Q2UFflxWtqfr4oBat/RBeDC35IkSZI0QjVUFHPusU2cu0/wtHFHJ/csb+f2Zeu5Zcla/nPRGooL8pg3rYH5M5uYP2MMY6tLMqxaOnIYMg3Qxo5OABpc+FuSJEmSRo3GymLefHIzbz65ma6ePhau3Mzty9azYNkGfvfEBv6GxzihuZpzj21kUn0542tKGF9dytjqEkoK8w/65+3p7iUCigsO/rFS1gyZBqg9FzI1Ol1OkiRJkkalotwIpnnTGvjbS45j+YYObssFTt++YzkpvfT4hooixlWXMr6mZO/XvgRbd3WzbXcXW3d1s2VXV267m627utnd3UtpYT5vPbWZD5w5mWlNFdk8WekQGDIN0Ashk2sySZIkSZIiguljKpk+ppK/PHcae7p7WbdtD89v283zW/ewduvuvfdXtO/knuWb6OjsAaAwP6gpK6KmtJCaskIm1JZxQnP//ZqyIla07+SmRW388P7VnH1MI/99XitnT2904XEd8QyZBuiFNZnqXZNJkiRJkrSfksJ8WhvKaW0of9ljtu/ppiAvKC3MJ+KVA6MrL57B9Q+s5gf3r+ID/76QKY3lfPDMVt5yygTKi/0oryNTXtYFHC3aOzqpKSukMN8mkyRJkiQdvKqSQsqKCl41YIL+WTR/NX8693z2fP7pHSdSUVzAF36+lDP+YQH/zy3LaNuyaxgqlg6O8ecAtXd0OlVOkiRJkjSsigry+G8nT+DNJzXz0Kot/Ps9K/m3u1fw3bueZVxVCeNrSvfemmv6t5tr+7erSgqzLl+jjCHTAPWHTE6VkyRJkiQNv4hgTmsdc1rreG7rbn66uI0V7bt4busuHlmzlV8/tpbu3peuPF5ZXEBjVTG1ufWfqssK995/Yf2nmrL+0VXbd3fT3tHJ5p1dbN7ZRXtHF5t3drJpZxebOrrYsquLk1tq+MyFMzhxYk1GraAjnSHTALV3dDFrfFXWZUiSJEmSRrnmmlKuOH/6S/b19SXaOzpp27qb53O357bspj0XEK3dtocn1u1gy64udnX1vuL5iwryqC8vor6iiLryYqY2VlBRXMAtS9Zy2VX38MYTxvHXFx7L5FdYf0qj05CGTBFxEfAtIB+4JqX0f/b7fgtwHVCTO+bKlNItue99DvgQ0Av8VUrp1qGs9dW073C6nCRJkiTpyJSXFzRVldBUVcIpLbWveGxnTy/bdnezdVf/bWdnD9VlhblgqZjyogMvTP7Zi2dw9R+e5Zq7nuXWpet412kt/NX86TRW+llZ/YYsZIqIfOAq4HVAG7AwIm5OKT2+z2GfB25KKf1LRBwH3AK05u6/E5gFjAduj4hjUkqvHLcOkT3dvezo7PGFI0mSJEk66hUX5NNUmU9TZclBPa6iuIBPve4Y3vuaFv7vguXc8OBqfry4jb84awqXnz2FCq96N+oN5aXSTgOWp5SeTSl1ATcCl+13TAJemINWDTyfu38ZcGNKqTOltAJYnjtfJjbu6ASg0ZFMkiRJkqRRrqmyhP/95uO57VPncN6xTfzzgqc55x/v4Lp7V9LV05d1ecrQUMaMzcCafbbbgNP3O+ZLwG8j4mNAOXDBPo+9f7/HNg9Nma+uvaM/ZGqodOFvSZIkSZIAJjeUc9V7TuHDa7byf369jC/evJR/XvA0LfVljKksYUxVMU1VJYytKmFMVf/2mOoSKosLDjgdT0e/oQyZDvQbk/bbfhdwbUrp6xFxBvCDiDh+gI8lIi4HLgdoaWkZZLkvr72jC8A1mSRJkiRJ2s9JE2u44cOv4fdPbeSXj65l/fY9PLOxg3ufaWf7np4/Ob60MJ8JtaVMqi+jpa6clrpSJtWX01JfxoTaUooL8jN4FjochjJkagMm7rM9gRenw73gQ8BFACml+yKiBGgY4GNJKV0NXA0wZ86cPwmhDpe9I5kMmSRJkiRJ+hMRwXnHNnHesU0v2b+rq4cN2ztZv30P63d0sn7bHtZt38OazbtYvXkX9z6z6SVXu4uAcVUltNSX0VpfzrSmCqY2VjCtqYLmmlLy8g5uBNSurh7Wb++ksbLYNaOGwVC28EJgekRMBp6jfyHvd+93zGpgPnBtRMwESoCNwM3A9RHxDfoX/p4OPDiEtb6i9tyaTPUVTpeTJEmSJGmgyooKaG0ooLWh/IDfTynR3tHF6s27WL15J6s29YdPqzft4rbH13PjwhdX4SkuyGNKYwVTG18MnybWlbF1Vxfrt+9h7bY9rNv24td12/ewbXc30L9o+Z/NmcgH57Uysa5sWJ77aDRkIVNKqScirgBuBfKB76WUlkbEl4FFKaWbgU8D342IT9I/He4DKaUELI2Im4DHgR7go1ldWQ76RzJVlRQ4ZE+SJEmSpMMoImisLKaxsphTJ9X+yfe37OzimY0dPLOxg+Ub+m9/bNvGr5asJaX9z9U/A2lsbiTU6VPqGFNVQlNlMfcsb+f7963k2ntXcNHxY/nQa6cc8OdpcIZ0rFhK6Rbglv32/e0+9x8H5r3MY/8e+PuhrG+g2ju6aKh0qpwkSZIkScOptryIOeV1zGmte8n+Pd29rGjfSduW3dSWFTK2uoSmyhKKCvIOeJ63z5nIZy+ewXX3ruL6B1Zxy5J1nNxSw1+8dgoXzhpDQf6BH6eD44TEAdjY0el6TJIkSZIkHSFKCvOZOa6KmeOqBvyYcdWlXHnxDD52/jR+vLiN7929go9ev5jmmlI+OK+VP5s7kaqSwkHXlnJDrEbjFfQMmQagvaOTmWMH/osrSZIkSZKOTOXFBfz5Ga285/RJLFi2nmvuXsFXfrWMr936JCdNrGFuax1zWms5ZVLtgEKn3r7EsrXbWbhyMwtXbubBFVvo7OnlktnjeOspEzh1Uu2oCZwMmQagfUcnDdNc9FuSJEmSpJEiPy94/ayxvH7WWJa0beOnDz/HolWb+Zc7n6H3jkQEzBhbxdzWWua01jG3tZZx1aXs6e7lj23bcoHSZhav2sKOzh4AmmtKOWt6Ayklfvbw89zw4Bpa6sp4yynNvOXkCbTUj+xFxw2ZXkVnTy/b9/Q4XU6SJEmSpBHqhAnVnDChGoCdnT08smYri1ZuYdGqzfz4oTa+f98qAMZWlbB5ZxddvX0ATG+q4NKTxnPa5DrmttYxvqZ07zl3dvbwm8fW8ZOH2/jWgqf55u1PM7e1lrecMoE3zh53WKbmHWkMmV7Fpo4uABf+liRJkiRpFCgvLmDetAbmTWsAoKe3jyfW7WDhys08smYrTZXFzG3tD5Vqy19+1lN5cQFvPXUCbz11As9v3c3PHnmOHz/Uxud+soQv3ryUC2Y2Ma2xgvqKYuoriqgvL6ahooj6imJqSgvJyzvwFLuunj46Onvo2NPDjs5uOvb00NHZw5lTGygtyh+SNhkoQ6ZX0d7RCeBIJkmSJEmSRqGC/DyOb67m+ObqQz7H+JpS/vLcafzPc6ay5Llt/GTxc/zmsXX85rF19KU/PT4voC4XOuVF9IdKuVtXT98Bf8Ydf30ukxvKD7nGw8GQ6VXk5wVnTW9gYl3pqx8sSZIkSZL0MiKC2RNqmD2hhi9dOovevsTWXV1s2tlFe0cnmzq62NTRmdvu39fXl6gsKaCipICK4sL++8W5W0kBlbmv46pLsn56hkyvZtb4an7wodOzLkOSJEmSJI0w+XmRmy5XzDFjKrMuZ9Dysi5AkiRJkiRJRz9DJkmSJEmSJA2aIZMkSZIkSZIGzZBJkiRJkiRJg2bIJEmSJEmSpEEzZJIkSZIkSdKgGTJJkiRJkiRp0AyZJEmSJEmSNGiGTJIkSZIkSRo0QyZJkiRJkiQNmiGTJEnSKBERF0XEkxGxPCKuPMD3z46IxRHRExFvy6JGSZJ09DJkkiRJGgUiIh+4CrgYOA54V0Qct99hq4EPANcPb3WSJGkkKMi6AEmSJA2L04DlKaVnASLiRuAy4PEXDkgprcx9ry+LAiVJ0tFtxIRMDz30UHtErBrCH9EAtA/h+XVgtns2bPds2O7ZsN2zcajtPulwFzKKNANr9tluA04/lBNFxOXA5bnNjoh4cpC1vRxfn9mw3bNhu2fHts+G7Z6NQ2n3Afe/RkzIlFJqHMrzR8SilNKcofwZ+lO2ezZs92zY7tmw3bNhu2ciDrAvHcqJUkpXA1cPrpxX5+9JNmz3bNju2bHts2G7Z2Oo2901mSRJkkaHNmDiPtsTgOczqkWSJI1AhkySJEmjw0JgekRMjogi4J3AzRnXJEmSRhBDpoEb8iHhOiDbPRu2ezZs92zY7tmw3YdZSqkHuAK4FVgG3JRSWhoRX46ISwEiYm5EtAFvB74TEUuzqxjw9yQrtns2bPfs2PbZsN2zMaTtHikd0lR8SZIkSZIkaS9HMkmSJEmSJGnQDJleRURcFBFPRsTyiLgy63pGqoj4XkRsiIjH9tlXFxG3RcTTua+1WdY4EkXExIi4IyKWRcTSiPh4br9tP4QioiQiHoyIR3Pt/ne5/ZMj4oFcu/9nbs0UHWYRkR8RD0fEL3PbtvswiIiVEbEkIh6JiEW5fb7X6GXZBxse9sGyYR8sG/bBsmUfbPhl0f8yZHoFEZEPXAVcDBwHvCsijsu2qhHrWuCi/fZdCSxIKU0HFuS2dXj1AJ9OKc0EXgN8NPc7btsPrU7g/JTSicBJwEUR8Rrgq8A/5dp9C/ChDGscyT5O/3o0L7Ddh895KaWT9rlsru81OiD7YMPqWuyDZcE+WDbsg2XLPlg2hrX/Zcj0yk4DlqeUnk0pdQE3ApdlXNOIlFL6A7B5v92XAdfl7l8HvHlYixoFUkprU0qLc/d30P+m34xtP6RSv47cZmHuloDzgR/l9tvuQyAiJgBvBK7JbQe2e5Z8r9HLsQ82TOyDZcM+WDbsg2XHPtgRZUjfZwyZXlkzsGaf7bbcPg2PMSmltdD/hxhoyuR2nhEAAASqSURBVLieES0iWoGTgQew7YdcbrjwI8AG4DbgGWBr7upP4PvNUPkm8BmgL7ddj+0+XBLw24h4KCIuz+3zvUYvxz5YtnxtDiP7YMPLPlhm7INlY9j7XwWH82QjUBxgn5fj04gTERXAj4FPpJS29/9jQUMppdQLnBQRNcBPgZkHOmx4qxrZIuISYENK6aGIOPeF3Qc41HYfGvNSSs9HRBNwW0Q8kXVBOqL52tSoYB9s+NkHG372wTI17P0vRzK9sjZg4j7bE4DnM6plNFofEeMAcl83ZFzPiBQRhfR3bv4jpfST3G7bfpiklLYCv6d/PYaaiHgh/Pf95vCbB1waESvpn3pzPv3/VbPdh0FK6fnc1w30d+pPw/cavTz7YNnytTkM7INlyz7YsLIPlpEs+l+GTK9sITA9t+p9EfBO4OaMaxpNbgben7v/fuDnGdYyIuXmQv8bsCyl9I19vmXbD6GIaMz994yIKAUuoH8thjuAt+UOs90Ps5TS51JKE1JKrfS/n/8upfQebPchFxHlEVH5wn3g9cBj+F6jl2cfLFu+NoeYfbBs2AfLhn2wbGTV/4qUHJH2SiLiDfSnrPnA91JKf59xSSNSRNwAnAs0AOuBLwI/A24CWoDVwNtTSvsvTKlBiIjXAncBS3hxfvT/on9NANt+iETEbPoX2cunP+y/KaX05YiYQv9/d+qAh4H3ppQ6s6t05MoN1f7rlNIltvvQy7XxT3ObBcD1KaW/j4h6fK/Ry7APNjzsg2XDPlg27INlzz7Y8Mmq/2XIJEmSJEmSpEFzupwkSZIkSZIGzZBJkiRJkiRJg2bIJEmSJEmSpEEzZJIkSZIkSdKgGTJJkiRJkiRp0AyZJI1YEXFuRPwy6zokSZJGE/tg0uhlyCRJkiRJkqRBM2SSlLmIeG9EPBgRj0TEdyIiPyI6IuLrEbE4IhZERGPu2JMi4v6I+GNE/DQianP7p0XE7RHxaO4xU3Onr4iIH0XEExHxHxERmT1RSZKkI4h9MEmHmyGTpExFxEzgHcC8lNJJQC/wHqAcWJxSOgW4E/hi7iHfBz6bUpoNLNln/38AV6WUTgTOBNbm9p8MfAI4DpgCzBvyJyVJknSEsw8maSgUZF2ApFFvPnAqsDD3D65SYAPQB/xn7pgfAj+JiGqgJqV0Z27/dcB/RUQl0JxS+ilASmkPQO58D6aU2nLbjwCtwN1D/7QkSZKOaPbBJB12hkySshbAdSmlz71kZ8QX9jsuvco5Xk7nPvd78X1PkiQJ7INJGgJOl5OUtQXA2yKiCSAi6iJiEv3vT2/LHfNu4O6U0jZgS0Scldv/PuDOlNJ2oC0i3pw7R3FElA3rs5AkSTq62AeTdNiZJkvKVErp8Yj4PPDbiMgDuoGPAjuBWRHxELCN/jUDAN4P/GuuA/Ms8MHc/vcB34mIL+fO8fZhfBqSJElHFftgkoZCpPRKox8lKRsR0ZFSqsi6DkmSpNHEPpikwXC6nCRJkiRJkgbNkUySJEmSJEkaNEcySZIkSZIkadAMmSRJkiRJkjRohkySJEmSJEkaNEMmSZIkSZIkDZohkyRJkiRJkgbNkEmSJEmSJEmD9v8D3dQT2sn3O30AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# plot accuracy and loss for the test set\n", "fig, ax = plt.subplots(1,2, figsize=(20,6))\n", "\n", "ax[0].plot(history.history['accuracy'])\n", "ax[0].plot(history.history['val_accuracy'])\n", "ax[0].set_title('Model accuracy')\n", "ax[0].set_ylabel('accuracy')\n", "ax[0].set_xlabel('epoch')\n", "ax[0].legend(['train', 'val'], loc='best')\n", "\n", "ax[1].plot(history.history['loss'])\n", "ax[1].plot(history.history['val_loss'])\n", "ax[1].set_title('Model loss')\n", "ax[1].set_ylabel('loss')\n", "ax[1].set_xlabel('epoch')\n", "ax[1].legend(['train', 'val'], loc='best')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We notice that the model starts to overfil after ~10 epochs." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 7. Now let's use the Network for what it was meant to do: Predict on the test set!" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "# type your code here along with instructor\n" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "These are the Network's predicted probabilities for each class for the first test image: \n", "[2.3815336e-17 2.2371180e-15 2.4300434e-17 7.7377087e-15 2.2632408e-20\n", " 3.4222462e-06 8.0396281e-14 4.1196345e-05 9.2724052e-18 9.9995542e-01]\n", "Our Oracle says this is a class 9.00, which is a Ankle boot\n" ] } ], "source": [ "predictions = model.predict(x_test)\n", "print(f'These are the Network\\'s predicted probabilities for each class for the first test image: \\n{predictions[0]}')\n", "print(f'Our Oracle says this is a class {np.argmax(predictions[0]):.2f}, which is a {class_names[np.argmax(predictions[0])]}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's see if our network predicted right! Does this item really look like what was predicted?" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS4AAAEKCAYAAACsfbhjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGTlJREFUeJzt3X2QXNV55/HvT4NAWAiQGEFkSSDijIsomJW8UyJbeBMSCCXxB5gq24W88cKGjVxlax02TgLxbmGWra1lnWDHqWIhQ9ACCQazWA7arGKBWdu8GBSNMBZ6iUAFAwwSesOWBDZgwbN/9B3Smuk+t2e6p7uP+H2quqb7Pveee+b26NG55557riICM7OcTOl0BczMxsuJy8yy48RlZtlx4jKz7DhxmVl2nLjMLDtOXGY2aSStkrRH0uY6cUn6S0k7JG2S9NFGynXiMrPJdAewNBFfBvQVrxXALY0U6sRlZpMmIh4BXkuscilwV1Q8CZwsaU5Zuce0qoKN6O3tjQULFrRzl2bvK0NDQ+zbt0/NlCFpPLfTbAHerPo8EBED49h+LvBy1efhYtmu1EZNJS5JS4GvAz3AX0fEjan1FyxYwODgYDO7NLOE/v7+du/yzYhoZqe1kmxp4pzwqaKkHuBmKueoC4HlkhZOtDwz6x6SGnq1wDAwv+rzPGBn2UbN9HEtAXZExPMR8TZwL5XzVTPL3JQpUxp6tcAa4N8WVxd/HTgQEcnTRGjuVLHWuem5o1eStILK1QJOP/30JnZnZu3SotYUku4Bzgd6JQ0DXwamAkTErcBa4GJgB/Az4N81Um4ziauhc9Oio24AoL+/33PomHW5Fp4GEhHLS+IBfH685TaTuCZ0bmpm3a9ViWuyNHOSugHok3SmpGOBy6mcr5pZ5trYOT8hE25xRcRhSSuBdVSGQ6yKiC0tq5mZdUy3t7iaGscVEWupdK6Z2VFCUquuGE6ato6cN7M8HNUtLjM7OjlxmVl2nLjMLDtOXGaWFXfOm1mW3OIys+w4cZlZdpy4zCwrnb6dpxFOXGY2hhOXmWXHVxXNLDtucZlZVtzHZWZZcuIys+w4cZlZdtw5b2ZZcR+XmWXJicvMsuPEZWbZceIys+w4cZlZVjyRoJllyS0uM8uOE5eZZceJy8yy4gGoZpYlJy4zy46vKppZdtziMrOsHPV9XJKGgEPAO8DhiOhvRaXMrLO6PXG14kT2tyJikZOW2dFjpNVV9mqwrKWStkvaIenaGvHTJX1P0o8kbZJ0cVmZPlU0szFa1TkvqQe4GfgdYBjYIGlNRGytWu0/A/dFxC2SFgJrgQXJ+jVZrwAelLRR0oo6FV8haVDS4N69e5vcnZlNtkZbWw22uJYAOyLi+Yh4G7gXuHTUOgGcWLw/CdhZVmizLa7zImKnpFOBhyT9U0Q8ckSNIgaAAYD+/v5ocn9m1gbj6OPqlTRY9Xmg+Dc/Yi7wctXnYeDcUWVcT6UB9B+A6cCFZTttKnFFxM7i5x5J36aSXR9Jb2Vm3W4ciWtfSf92rYJGN2CWA3dExE2S/hXwN5LOjoh36xU64VNFSdMlzRh5D1wEbJ5oeWbWPVp4qjgMzK/6PI+xp4JXAfcBRMQTwDSgN1VoM31cpwGPSfox8I/A/42I7zRRnpl1iRYmrg1An6QzJR0LXA6sGbXOS8AFxX5/lUriSnaIT/hUMSKeB/7FRLc3s+7UyokEI+KwpJXAOqAHWBURWyTdAAxGxBrgi8Btkv4jldPIKyMi2R/u4RBmNkYrB6BGxFoqQxyql11X9X4rcN54ynTiMrMxun3kvBOXmY3hxGVmWTnqb7I2s6OTE5fZJHnnnXeS8dSVsWb/Yb711lvJ+HHHHZeMP/fcc3VjfX19E6pTK3kiQTPLjltcZpYV93GZWZacuMwsO05cZpYdd86bWVbcx2VmWXLisq5WchN+abzslOKVV16pG3viiSeS2y5btiwZnz59ejI+mcrGaZVZvXp13dg111zTVNmt4MRlZtlx4jKz7DhxmVlWWjmR4GRx4jKzMdziMrPsOHGZWXacuMwsKx6AatlrtpP20UcfrRtbv359ctudO9NPYv/CF74woTq1wp49e5LxdevWJeMzZsxoZXVazonLzLLjq4pmlhWfKppZlpy4zCw7Tlxmlh0nLjPLim/5MbMsucVlXa3s2YTHHJP+E9mwYUMyvm3btrqx0047Lblt6tmDAJdddlkyPnPmzLqxN998M7ntGWeckYzv378/GT948GAyPnfu3GS807o9cZW2ByWtkrRH0uaqZbMkPSTpueJn/b8QM8vOyJCIslenNHIiewewdNSya4GHI6IPeLj4bGZHiewTV0Q8Arw2avGlwJ3F+zuBj7e4XmbWIY0mrU4mron2cZ0WEbsAImKXpFPrrShpBbAC4PTTT5/g7sysnbr9quKk1y4iBiKiPyL6Z8+ePdm7M7MW6PYW10QT125JcwCKn+lb5c0sK61MXJKWStouaYekmv3hkj4laaukLZK+UVbmRBPXGuCK4v0VwAMTLMfMukwr+7gk9QA3A8uAhcBySQtHrdMH/ClwXkT8GnB1WbmlfVyS7gHOB3olDQNfBm4E7pN0FfAS8MnS38A64t13303Gy8ZpvfHGG8n4/fffn4ynnj9YNpbq0KFDyXgzz4Qs23bLli3J+Lx585Lx1BgyKB8/12ktPA1cAuyIiOeLcu+lcnFva9U6vw/cHBE/AYiI0jO40sQVEcvrhC4o29bM8jSOzvleSYNVnwciYqDq81zg5arPw8C5o8r4MICkx4Ee4PqI+E5qpx45b2ZjjKPFtS8i+lNF1Vg2url7DNBH5cxuHvCopLMj4qf1Cu3ua55m1nYtHsc1DMyv+jwPGD0n9zDwQET8IiJeALZTSWR1OXGZ2RgtTFwbgD5JZ0o6FricysW9an8H/Fax314qp47Ppwr1qaKZjdGqzvmIOCxpJbCOSv/VqojYIukGYDAi1hSxiyRtBd4B/jgiknexO3GZ2RitHFwaEWuBtaOWXVf1PoA/LF4NceJqUOryedmXXDYkoWz7snjq0npPT09y2zK33nprMl42Nc20adPqxl588cXktmXDJcr2ffjw4bqxsmM6ffr0ZDw1zAPgwIEDyfhbb71VN1Y2BKWsbs2SJxI0sxx18naeRjhxmdkYTlxmlh0nLjPLjhOXmWWl01PWNMKJy8zG8FVFM8uOW1xdomwak2bHUqU0+79X2RQozYzVuueee5LxV199NRlfvHhxMp4aS/XTn9a9hxaAWbNmJeOnnHJKMr5v3766sddffz25barejSj7e/vZz35WN1b2WLZFixZNqE7j4cRlZllxH5eZZcmJy8yy4855M8uOW1xmlhX3cZlZlpy4zCw7TlxdotkvIjWnVtl8W2XjrMrq1sw4rVWrViXjzz77bDI+f/78ZHz//uRElcnxTD//+c+T286dOzcZL3t8Weq4fuADH0huWzYXWLPjAlPWrVuXjHsc1/socZlZYzyRoJllyS0uM8uOE5eZZceJy8yy48RlZlnxAFQzy5KvKrZQ2XiplLL/QcrG5aS+yMn+knfu3JmMr169um6sbKxUX19fMl42b1Xq+YCQHuc1derU5LZl31lqTqsyZd9Z2XMTy7Yve/Zh6nd7/PHHk9u2Q7e3uEr/xUlaJWmPpM1Vy66X9Iqkp4vXxZNbTTNrp5HTxbJXpzTSVLgDWFpj+dciYlHxWlsjbmYZajRpdTJxlZ4qRsQjkhZMflXMrFtkf6qYsFLSpuJUcma9lSStkDQoaXDv3r1N7M7M2mXKlCkNvTpWvwludwvwIWARsAu4qd6KETEQEf0R0T979uwJ7s7M2in7U8VaImL3yHtJtwF/37IamVlHdTopNWJCLS5Jc6o+XgZsrreumeUn+xaXpHuA84FeScPAl4HzJS0CAhgCPtvoDlPPCCybd2oyz6mb+RLK+u6GhoaS8e3btyfju3btSsaPPfbYurETTzwxuW3Zsw0PHjyYjP/iF79IxlPjvMq+77LjVvbsw5NPPrluLHXMoPxZlmXj/o4//vgJl3/CCSckt928uX47oWzcXqO6vcXVyFXF5TUW3z4JdTGzLpF94jKz95ccJhLs7tqZWUe0so9L0lJJ2yXtkHRtYr1PSApJ/WVlOnGZ2RitSlySeoCbgWXAQmC5pIU11psBfAFY30j9nLjMbIwWtriWADsi4vmIeBu4F7i0xnr/FfgKkH5KScGJy8zGGEfi6h25M6Z4rRhV1Fzg5arPw8Wy6n0tBuZHRMPjQdveOd/Mo7Z2795dN/biiy8mt33jjTeaiqcuM7/wwgvJbcumXznmmPTXMGPGjGQ8Nd3PgQMHktuWXT4vq1vZ75YaFlA2dczbb7+djM+ZMycZTw3lKKv3zJl172IDyqf7ee2115Lx1JCHV199dcJllw3jaMQ4x2jti4hUn1Stgt4bSyJpCvA14MqGK4ivKppZDS28qjgMVD+ccx5QPcHcDOBs4PtFsvwlYI2kSyJisF6hTlxmNkYLx3FtAPoknQm8AlwOfHokGBEHgN6q/X4f+KNU0gL3cZlZDa3qnI+Iw8BKYB2wDbgvIrZIukHSJROtn1tcZnaEVt+HWEw0unbUsuvqrHt+I2U6cZnZGL7lx8yy0+23/DhxmdkROj1lTSO6KnF997vfTcZTj+kqG29UNvVM2fiX1PizZsdhlY0JKhvXk5pipezxYWXjlcoeCVdW99RxLXuEV9n0Lqlpa6D8O29G2XEra7Gkxs+VjV8r+3trBScuM8uOE5eZZceJy8yy48RlZlnJYSJBJy4zG8MtLjPLjhOXmWXHiavKwYMHefDBB+vGb789/fCgs846q26sbG6mZua0gvTjrJp9lFVZ3crG9aT6Iw4dOpTctqxuZfN1lf2Bp45N2fi01PxrAFu3bk3GU8et2XmrysaYlc3vNm3atAmXfeqpp9aNTZ06NbltIzwA1cyy5M55M8uOW1xmlh0nLjPLivu4zCxLTlxmlh0nLjPLTvZXFSXNB+6i8tigd4GBiPi6pFnAN4EFwBDwqYj4Saqs6dOns2TJkrrxJ598MlmXZ555pm7sscceS25bpmz8S2qs1axZs5LblsVPOumkZLxsHFdqLNb+/fuT227fvj0ZL3v+YOrZhZD+n/vHP/5xcttzzjknGV+wYEEy/tBDD9WNlc1T1uw/3LI5sz74wQ/WjZ144onJbVNj8zrwXMWOaOTbOQx8MSJ+Ffh14POSFgLXAg9HRB/wcPHZzI4CrXrKz2QpTVwRsSsinireH6LyiKG5wKXAncVqdwIfn6xKmll7dXviGlcfl6QFwGJgPXBaROyCSnKTVP8+BDPLSrefKjacuCSdAHwLuDoiDjb6i0laAawAmDdv3kTqaGZt1u2Jq6EeSElTqSStuyNidbF4t6Q5RXwOsKfWthExEBH9EdHf29tbaxUz6yIjEwk28uqU0j2rknpvB7ZFxFerQmuAK4r3VwAPtL56ZtYJR0Mf13nAZ4BnJD1dLPsScCNwn6SrgJeAT5YV1NPTk3yk1HXX1Xwqd0PKHpO1fv36ZLxsWMAPf/jDurGhoaHktps2bUrGy6ZAKZt6JvUHVPa/YtlQjY985CPJ+IUXXpiMX3zxxXVjqaldWuGSSy6pG3vppZeS255yyinJeNmQhbKpilLDJY477rjkth/+8Ifrxlp1TLv9VLE0cUXEY0C93+KC1lbHzLpB9onLzN5fOn0a2AgnLjMbI/tbfszs/cctLjPLjhOXmWXFfVxmliUnrjYpe6TTBRekR26UxT/3uc+Nu07WWWvWrOl0FdquVZ3qrUxckpYCXwd6gL+OiBtHxf8Q+PdUZqLZC/xeRLyYKrO7Lx2YWUe06pYfST3AzcAyYCGwvJgWq9qPgP6IOAe4H/hKaf3G/RuZ2VGt0dt9GmyVLQF2RMTzEfE2cC+VKbHeExHfi4iRGSufBEpnYzhqThXNrHXGcarYK2mw6vNARAxUfZ4LvFz1eRg4N1HeVcA/lO3UicvMxhhH4toXEf2pomosq3nzraTfBfqB3yzbqROXmY3Rws75YWB+1ed5wM4a+7sQ+E/Ab0ZE+oEAOHGZWQ0tTFwbgD5JZwKvAJcDnx61r8XAXwFLI6LmvH6jOXGZ2RFGJhJshYg4LGklsI7KcIhVEbFF0g3AYESsAf4MOAH430XCfCki6s9JhBOXmdXQynFcEbEWWDtq2XVV79OTutXgxGVmY3jkvJllx4nLzLLim6zNLEueSNDMsuMWl5llx4nLzLLiPi4zy5ITl5llx4nLzLLjq4pmlhX3cZlZlpy4zCw7Tlxmlh0nLjPLTrcnrtJLB5LmS/qepG2Stkj6g2L59ZJekfR08bp48qtrZpNtZCLBVjyebLI00uI6DHwxIp6SNAPYKOmhIva1iPjzyauemXVCt7e4ShNXROwCdhXvD0naRuWRQ2Z2lOr2xDWutp6kBcBiYH2xaKWkTZJWSZpZZ5sVkgYlDe7du7epyppZe7TwgbCTouHEJekE4FvA1RFxELgF+BCwiEqL7KZa20XEQET0R0T/7NmzW1BlM5tMLX6S9aRo6KqipKlUktbdEbEaICJ2V8VvA/5+UmpoZm3X7bf8NHJVUcDtwLaI+GrV8jlVq10GbG599cysE46GFtd5wGeAZyQ9XSz7ErBc0iIqj9MeAj47KTU0s7br9s75Rq4qPgbU+i3W1lhmZpnrdGuqER45b2ZjOHGZWXacuMwsKyO3/HQzJy4zG8MtLjPLjhOXmWXHicvMsuPEZWZZ8TguM8uSryqaWXbc4jKz7HR74uru9qCZtV2r5+OStFTSdkk7JF1bI36cpG8W8fXFhKVJTlxmNkarEpekHuBmYBmwkMqsMgtHrXYV8JOI+BXga8D/KCvXicvMxmjhU36WADsi4vmIeBu4F7h01DqXAncW7+8HLlBJVmxrH9fGjRv3SXqxalEvsK+ddRiHbq1bt9YLXLeJamXdzmi2gI0bN66T1Nvg6tMkDVZ9HoiIgarPc4GXqz4PA+eOKuO9dSLisKQDwCkkjklbE1dEHDHpvKTBiOhvZx0a1a1169Z6ges2Ud1Wt4hY2sLiarWcYgLrHMGnimY2mYaB+VWf5wE7660j6RjgJOC1VKFOXGY2mTYAfZLOlHQscDmwZtQ6a4ArivefAP5fRCRbXJ0exzVQvkrHdGvdurVe4LpNVDfXrSlFn9VKYB3QA6yKiC2SbgAGI2INlYfx/I2kHVRaWpeXlauSxGZm1nV8qmhm2XHiMrPsdCRxld0C0EmShiQ9I+npUeNTOlGXVZL2SNpctWyWpIckPVf8nNlFdbte0ivFsXta0sUdqtt8Sd+TtE3SFkl/UCzv6LFL1KsrjltO2t7HVdwC8CzwO1Qug24AlkfE1rZWpA5JQ0B/RHR8sKKk3wBeB+6KiLOLZV8BXouIG4ukPzMirumSul0PvB4Rf97u+oyq2xxgTkQ8JWkGsBH4OHAlHTx2iXp9ii44bjnpRIurkVsADIiIRxg7nqX69og7qfzht12dunWFiNgVEU8V7w8B26iMzu7osUvUy8apE4mr1i0A3fTlBfCgpI2SVnS6MjWcFhG7oPIPATi1w/UZbaWkTcWpZEdOY6sVMw0sBtbTRcduVL2gy45bt+tE4hr38P42Oy8iPkrlbvbPF6dE1phbgA8Bi4BdwE2drIykE4BvAVdHxMFO1qVajXp11XHLQScSVyO3AHRMROwsfu4Bvk3l1Lab7C76Skb6TPZ0uD7viYjdEfFORLwL3EYHj52kqVSSw90RsbpY3PFjV6te3XTcctGJxNXILQAdIWl60WmKpOnARcDm9FZtV317xBXAAx2syxFGkkLhMjp07IopUW4HtkXEV6tCHT129erVLcctJx0ZOV9c7v0L/vkWgP/W9krUIOmXqbSyoHI71Dc6WTdJ9wDnU5n2ZDfwZeDvgPuA04GXgE9GRNs7yevU7XwqpzsBDAGfHelTanPdPgY8CjwDvFss/hKV/qSOHbtEvZbTBcctJ77lx8yy45HzZpYdJy4zy44Tl5llx4nLzLLjxGVm2XHiypikyySFpLMaXH+o1tNbJL0+zv2Oa/1EOVdK+mAryrL3FyeuvC0HHqOBqW671JWAE5eNmxNXpor73c6j8hTgy6uWny/p+5Lul/RPku4e/XBNScdL+o6k369R7h9L2lDc8PtfEvu/SdJTkh6WNLtYtkjSk8W23x65WbjWckmfAPqBu4s5qI5vyYGx9wUnrnx9HPhORDwLvCbpo1WxxcDVVB55/stUEtyIE4D/Q+WugNuqC5R0EdBH5V65RcC/rHOT+XTgqeJm9B9QGTUPcBdwTUScQ2V0eN3lEXE/MAj8m4hYFBE/n8hBsPcnJ658LacylxnFz+VVsX+MiOHipt2ngQVVsQeA/xURd9Uo86Li9SPgKeAsKolstHeBbxbv/xb4mKSTgJMj4gfF8juB36i3vOHf0qyGTj+ezCZA0inAbwNnSwoq93yGpD8pVnmravV3OPJ7fhxYJukbNZ5dJ+C/R8RfjbNKvm/M2sotrjx9gsqUyWdExIKImA+8AHysgW2vA/YD/7NGbB3we0X/GZLmSqo12d6Uog4AnwYei4gDwE8k/eti+WeAH9RbXrw/BMxooM5mR3DiytNy/nkWixHfopJEGnE1MK2Yv/49EfEg8A3gCUnPAPdTO7G8AfyapI1UWn43FMuvAP5M0iYqfWRly+8AbnXnvI2XZ4cws+y4xWVm2XHiMrPsOHGZWXacuMwsO05cZpYdJy4zy44Tl5ll5/8DbXF0lRSBnxIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "plt.imshow(x_test[0], cmap=plt.cm.binary)\n", "plt.xlabel(class_names[y_test[0]])\n", "plt.colorbar()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's see how confident our model is by plotting the probability values:" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "# code source: https://www.tensorflow.org/tutorials/keras/classification\n", "def plot_image(i, predictions_array, true_label, img):\n", " predictions_array, true_label, img = predictions_array, true_label[i], img[i]\n", " plt.grid(False)\n", " plt.xticks([])\n", " plt.yticks([])\n", "\n", " plt.imshow(img, cmap=plt.cm.binary)\n", "\n", " predicted_label = np.argmax(predictions_array)\n", " if predicted_label == true_label:\n", " color = 'blue'\n", " else:\n", " color = 'red'\n", "\n", " plt.xlabel(\"{} {:2.0f}% ({})\".format(class_names[predicted_label],\n", " 100*np.max(predictions_array),\n", " class_names[true_label]),\n", " color=color)\n", "\n", "def plot_value_array(i, predictions_array, true_label):\n", " predictions_array, true_label = predictions_array, true_label[i]\n", " plt.grid(False)\n", " plt.xticks(range(10))\n", " plt.yticks([])\n", " thisplot = plt.bar(range(10), predictions_array, color=\"#777777\")\n", " plt.ylim([0, 1])\n", " predicted_label = np.argmax(predictions_array)\n", "\n", " thisplot[predicted_label].set_color('red')\n", " thisplot[true_label].set_color('blue')" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADFCAYAAABjLIjfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAExRJREFUeJzt3Xm0XWV5x/HvQwJkhIQwFAEJtKGiiAEjDlSWFbRiLUqrrTisqtXapRaHVUVti51Wa7WDtsuWqlAnQGkMiiNDu5RBiBCUWVBJQGYCkoSZwNM/9g6e3PPue/e5JN4X8v2sdVfuee77nv3uk+R39t3vu/eJzESSNPW2muoBSJIaBrIkVcJAlqRKGMiSVAkDWZIqYSBLUiUMZEmqhIEsSZUwkCWpEtOnegDSVNtxxx1z4cKFUz0MVeaSS2D9+v7tp0+HZzxjuL5ixYrVmblTr+fovznpiWnhwoVcdNFFUz0MVSZitPbr10Ppn1FEXNf3OTxlIUmVMJAlqRIGsiRVYqRzyE5+aHNatWoVq1evHvHMnfTEMVIgO/mhzWnJkiVTPQRpSnnKQpIqYSBLUiUMZEmqhIEsSZUwkCWpEgayJFXCQJakShjIklQJA1mSKmEgS1IlDGRJqoSBLEmVMJAlqRIGsiRVwkCWpEoYyJJUCQNZkiphIEtSJQxkSaqEgSxJlTCQJakSBrIkVcJAlqRKGMiSVAkDWZIqYSBLUiUMZEmqhIEsSZUwkCWpEgayJFXCQJakShjIklQJA1mSKmEgS1IlDGRJqsT0qR6ANp2HH354qLbVVuX33Ijo/bwPPPDAUG3bbbcttv3xj388VFu0aFHvbUlbMo+QJakSBrIkVcJAlqRKGMiSVAkDWZIq4SqLTSQze9WgvPLhxhtvLLY9//zzh2qHH354se3s2bPHG+Kkda2oKFm2bNlQ7ZhjjtmUw5GesDxClqRKGMiSVAkDWZIqYSBLUiWc1NuMui5bLjnnnHOK9eXLlw/VbrrppmLbo48+uvf2RnHbbbcN1U4//fRi27lz526WMUhbAo+QJakSBrIkVcJAlqRKGMiSVAkDWZIq4SqLTaR0c/jp08sv74UXXjhUu+qqq4ptd9lll6Fa6SbwAEceeeRQbf78+cW2999//1Btzz33LLa94447hmpr164ttt1tt92KdUkT8whZkiphIEtSJQxkSaqEgSxJlXBSbxIeeeSRoVppAu+ee+4p9l+6dOlQreuew6XJt3Xr1hXbjnJP5lL9iiuuKLbdfffdh2pdk4WlyU1J/XiELEmVMJAlqRIGsiRVwkCWpEoYyJJUicfdKovS6oCIKLYtrYboaluqd60YmDZt2nhDfNRxxx1XrJcuh54xY0ax7XXXXTdUK6286Hre9evXF9uW9rfrU6tLK0DWrFlTbPvAAw8M1bpWm2yuT8mWHq88QpakShjIklQJA1mSKmEgS1IlqpjUG2WirqteMsqnPpcm8PpO3gGcfPLJQ7Vbbrml2PaAAw4YqnVNvt11111DtR122KHYdsGCBUO11atXF9vefffdvcdQ0nVJ9r333jtU67p/8+LFi3tvT9oSeIQsSZUwkCWpEgayJFXCQJakSlQxqTfKRF3p6rtSDcqTcl3bGmUC74QTThiqXXPNNUO1PfbYo9i/9KGhXZNk991331Ct64NES/dJ7trfWbNmDdW6rgAcZdK15PTTTy/WndSTNuYRsiRVwkCWpEoYyJJUCQNZkiphIEtSJTbbKouulQ8lpRn7rlUHpcuhR7lEustNN900VFu2bFmxbWnlw6JFi4ZqpcuToXzP4NLKC4Ctt956qNa1wqF02XKX0mvW9cnXpbZd9zIuje28887rPS5pS+YRsiRVwkCWpEoYyJJUCQNZkiox8qTe2PsGd11y/Fgn2ka5NPf2228v1letWjVUu/rqq4ttb7755qHaNttsU2y73XbbDdVK9y1eu3Ztsf9DDz00VCtN9EH59S3tF5TvZzxv3rxi29K+dX2oa2mCdebMmcW2peeYM2dOse3ll1++0ePSZKm0JfEIWZIqYSBLUiUMZEmqhIEsSZUwkCWpEiOvsuh7I/dbb711qHbdddcV295zzz29alCeiV+5cmWxbelS4unTy7s8d+7coVrX5d9r1qzpNa6ubZXG1bVqoXQ584MPPlhsu+uuuw7VulZ6lMYwf/78YtvSJeB33nlnsW1pRUXXp2+PfY6uVR7SlsIjZEmqhIEsSZUwkCWpEgayJFXiMd8P+ayzzirWS/cX7prkKl363DXBU5pUHGWirusexaWJp657Mpcucy5NiHVNCpbG0LW/pfsOd12KXLpMuuuy8lGU9q3r0vjS5GbXJGTX35u0pfIIWZIqYSBLUiUMZEmqhIEsSZUwkCWpEiNNc69du5Yzzjhjo9rxxx9fbPuUpzxlqFa6tBdGu2z5sd5YvbQtKK8E6FpJsG7dul7b6rrheunm+137UFr9UbosHeDKK68cqnWtcBjlMuXSqo6uS9tnzJjRqz/AzjvvvNHj0idsS1sSj5AlqRIGsiRVwkCWpEoYyJJUiZEm9WbPns1BBx20Ue2CCy4otr3sssuGaueee27vbXVN8JQm5XbYYYdi21J9++23L7YtTX51XTp9xx13DNVKn2ZduucwlO9R3PUp25dccslQbf/99y+2Xbhw4VDtzDPPLLYtXf49yieFd132/KQnPWmoVvqUbhieHPV+yNrSeYQsSZUwkCWpEgayJFXCQJakShjIklSJkVZZTJs2begm6Mcee2zv/l03h1++fPlQrbRqAeB73/veUG3VqlXFtpdeeulQreuS39KKiq6VD6XVCKUVHU9/+tOL/Q877LCh2ktf+tJi29KlyKM44ogjivXrr79+qLZgwYJi29Iqia5L0EurL0qfnA2wzz77bPT4se6r9HjnEbIkVcJAlqRKGMiSVAkDWZIq8Uv92N+u++IeeuihvWoAb3vb2zbpmJ7oTjvttKkeQm+jXLotPRH5P0CSKmEgS1IlDGRJqoSBLEmVMJAlqRIGsiRVwkCWpEoYyJJUCQNZkiphIEtSJQxkSaqEgSxJlTCQJakSBrIkVcJAlqRKGMiSVAkDWZIqYSBLUiUMZEmqhIEsSZUwkCWpEgayJFXCQJakShjIklQJA1mSKmEgS1IlDGRJqoSBLEmVMJAlqRIGsiRVwkCWpEoYyJJUiemjNF6xYsXqiLhucw1GW7w9p3oA0lQaKZAzc6fNNRBJ2tJ5ykKSKmEgS1IlDGRJqoSBLEmViMycXMfgSGAZsG8mP+rRfhWwJJPVY+p3ZzJnhO2O1H6c53kDcEYmNxV+9irgr4B9gYMyuWjgZx8A/gh4GDg6k9Pb+kuAjwPTgE9n8uG2fiLwdODrmXywrf0lcGkmX+0Y2wHA2zN580Dtq8DOmTy3x769APizTF5W2OclmbxjoueYTPtxnmce8JpM/qN9vBPw+Uxe8lied1OJiNuBUVcP7Qgb/1u232PqNxXb/GX127PvgoiRVlmMcRRwLvBqmvB6vHkDcDkMB3Jb/13gvwaLETyVZn+fBjwJOCuCfdoffwJ4EXADcGEEp9G+vpnsH8E5EWwPzKIJ+b8dZ2wfBP5uYLvzgAOBuyPYK5OVI+7rVJsHvA2aQM7k9ghujuDgTM6b2qFNbvVQRFyUmUvst2n6TcU2p2IfJzKpUxYRzAEOpjlSfPVA/QURfCeCpRH8KIITI4gxfWdG8O0I3lJ43vdGcGEEl0bw1+Ns/58juDiC/22PtohgcQQXtH1PjWB+Vz2CVwJLgBMj+GEEMwefP5OrMrm6sOmXA1/M5IE2FH8CHNR+/SSTazN5EPhi2/YhYGYEWwHb0BxV/w1w7Dj7NhfYP5NLBsq/B3ytfd7B1/szEfxbBN+L4Np2v8Y+37Mi+EEEe4+p7xTBl9vX+8IIDu4Y0h7t39fVEXxooP97Iri8/XrXBPUPA7/avtYfbWtfAV7b9TpIW6LJnkN+BfDtTK4B7ozgwIGfHQC8C3gqsDds9B99Dk2wnJTJpwafMIIXA4towm0x8MwIDilsezZwcSYHAt+FR0Pic8AxmewPXDZePZOlwEXAazNZnMl9Pfd7N+BnA49vaGvFeiZXAdcDFwOnAL8GRCY/GGcbS2iO0AcdBZzcfh015me7Ar8BvIwm+B4VwfOA44CXZ3LtmH4fB/41k2fRBP6nO8ZzEE1wLgZeFcGSCJ4JvBF4NvAc4C0RHNBVB94P/LR9rd/bPu9FwPPHeR2kLc5kT1kcBXys/f6L7eOL28ffz+QGgAh+CCykObUB8FXgI5mcWHjOF7dfG8JqDk1Anz2m3SPAl9rvvwAsa08FzMvku239s8D/dNVH29WNRKGWlN/YEiBzo6PHrwFvjeDPgWcAZ459Y6IJ2NsH+uxCE+TnZpIRrI9gv8xHQ/srmTwCXNm23WBf4JPAi0vnyYHDgKfGL/ZouwjmZrJuTLszM7mjHcsymvBP4NRM7hmoP5/m9SnVTyts/zaa0z6PV5+03ybtNxXbnIp9HNfIgRzBAuCFwH4RJM0kVkbwvrbJAwPNHx6zjfOAwyM4KZOxs4kB/EPmxudte5jcrOTk3ADsMfB4d35xDrqrDkAEL6c5KpwN7JfJ70dwdgQnZnLvQNP7gBkDj/8AmA+sbMNzO5rTFn/R/nzw9R58w7i5fZ4Dxo6ltRXw3B6/HYx9fZPyG9PY7U9kBvT+zaQ6mTmp/5T2q2ebU7GPE5nMKYtXAp/LZM9MFmayB7CS5shpIscCd9BO7oxxOvCm9vw0EewWwc4dY95wrvQ1NEeOa4CfRzz6K/Drge921dvv1wFze4x50GnAqyPYNoK9aI7gvw9cCCyKYK8ItqEJzEePCiPYGngn8FGaSb0NIbfh3PKgq2iOiDc4CnhJ+1ovBJ7JwHnkcdwF/Dbw9+2qi7HOgF+snohgccfzvCiCHdrz7K+geVM9G3hFBLMimA0cCZwzTr30Wu/D8KkZaYs2mVMWRzHmXCXwZZpw/NJw8yHvAk6I4COZjx5Vk8kZEewLnN8eCd4NvI7mV9tB9wBPi2AFsIbmCBLgD4HjIpgFXEtzLnO8+mfa+n2MOVKMZknfvwM7Ad+I4IeZ/FYmV0RwCnAlsJ5madrDbZ930LypTANOyOSKgTG/HfhsJvdGcCkQEVwGfDOTuwZ3LpMfRbB9O7m3AHgycMHAz1dGsDaCZ4/7Kjdtb43gd4BvRfCmMT8+GvhEO57pNGH6J4WnORf4PM2bxEkblgBG8BmaNyNolvn9YIL6eRFcDnyrPY/8m8A3JtoHaUsy6XXI2nwieDewLrNzou1xL4KzaSYbfz7VYxlFRIxZb55jD066+p1AM/F6W2buN8L29qCZmP4VmvmTT2bmx3v0m0HzJrstzRvu0sz80Pi9Nuo/jeYU242Z+bKJ2rd9VtH8NvQwsL7v0rCImEczqbwfzW+Pb8rM8yfo8+tsfAC4N3BsZn6so8tg33cDb263dRnwxsy8v0e/dwJvoTk196k+2xpZZvpV2RfkDMjXT/U4NuP+7QT5iqkex+jjZhrwU5r//NsAlwBP7dn3EJq15JePuM1dgQPb7+cC1/TZZhsac9rvtwaWA88ZYbvvAU4Cvj5Cn1XAjpN4XT8LvLn9fhtg3iT+Xm6huQBjora70Zxindk+PgV4Q49++9GcYptF8wZ3FrBoU/8b89LpCmVyfyafn+pxbC6Z3J7JV6Z6HJPQrjfPazNzcL35hDLzbODOUTeYmTdn5sXt9+to5hh269EvM/Pu9uHW7VevX4cjYnea+YfN/htaRGxH82Z1PEBmPpiZd43fa8ihwE8zs+/VltOBmRExnSZgS5PeY+0LXJCZ92bmepq5qCNHHOeEDGSpv6516L8UEbGQZtXM8p7tp0XED2nmYc7MzF79aJa0vo/mFMkoEjgjIlZExB/37LM3zTLP/46IH0TEpyNi9ojbfTXNGv2JB5h5I/BPNNcH3AysycwzenS9HDgkIhZExCzgpWy8smqTMJCl/rrWoW/+DUfMoZk8f1dmru3TJzMfzszFNMswD4qICc9dR8SG89wrJjHMgzPzQOBw4O0RUbqwa6zpNKdy/jMzD6CZtH9/3w1GxDbAEfS8viAi5tP8VrMXzTr42RHxuon6ZeZVwD8CZwLfpjldtb7vOPsykKX+xluHvtlExNY0YXxiZi4btX97CuA70OtmTgcDR7QTdF8EXhgRX+i5nZvaP28DTqU5xTORG4AbBo7el8JGV/5O5HDg4sy8tWf7w4CVmXl7Zj5Ec4O05/XpmJnHZ+aBmXkIzemnH48wzl4MZKm/dr157NUemW203nxziIigOb96VWb+ywj9dmpXLxARM2mCaMK7MmbmBzJz98xcSLN//5eZEx5BRsTsiJi74Xuaq24nXGeembcAP2tXTUBzPvjKifoN2HBbgb6uB54TEbPa1/ZQmvPyE4qInds/n0xz87FRttvLY7nbm7RFycz1ETFmvXleMUE3ACLiZOAFwI4RcQPwocw8vkfXg2kuaLqsPR8M8MHM/OYE/XYFPtsuX9sKOCUzv95nrJO0C3Bqk3FMB07KzG/37PunwIntm9zgtQLjas/lvgh4a99BZubyiFhKc6uH9TS3auh75d2XI2IBzU3D3p6Zm3zJpuuQJakSnrKQpEoYyJJUCQNZkiphIEtSJQxkSaqEgSxJlTCQJakS/w/hdVgHnuDyjgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "i = 0\n", "plt.figure(figsize=(6,3))\n", "plt.subplot(1,2,1)\n", "plot_image(i, predictions[i], y_test, x_test)\n", "plt.subplot(1,2,2)\n", "plot_value_array(i, predictions[i], y_test)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADFCAYAAABjLIjfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAExhJREFUeJzt3XuwXWV5x/HvQxIugWDAcImARIaU4KBoCMqlA9So9QLSi1istqgVtWOFolZp7YiMo6BFB6xgRQUvFQW8FfFSQKS0w0UT7lcJGDAQCAGBQOSS8PSPtcKcZL37nL2Tk3NeyPczc+ac8+R911p7n5PfXme977t2ZCaSpPG30XgfgCSpYSBLUiUMZEmqhIEsSZUwkCWpEgayJFXCQJakShjIklQJA1mSKjFxvA9AGm/Tpk3LGTNmjPdhaATXXgsrVvTXduJE2HPP9Xs8/Zo/f/7SzNymn7YGsjZ4M2bMYN68eeN9GBpBRP9tV6yAWn6kEXFnv229ZCFJlTCQJakSBrIkVWKga8gOfmh9WrhwIUuXLh3gSqH03DJQIDv4ofVpzpw5430I0rjykoUkVcJAlqRKGMiSVAkDWZIqYSBLUiUMZEmqhIEsSZUwkCWpEgayJFXCQJakShjIklQJA1mSKmEgS1IlDGRJqoSBLEmVMJAlqRIGsiRVwkCWpEoYyJJUCQNZkiphIEtSJQxkSaqEgSxJlTCQJakSBrIkVcJAlqRKGMiSVAkDWZIqYSBLUiUMZEmqhIEsSZUwkCWpEgayJFXCQJakShjIklSJieN9AM8VmdmpRcQ6b/dDH/pQp/a5z31unbdbUnoMveqj0XbChAkDHJ303OcZsiRVwkCWpEoYyJJUCQNZkiphIEtSJZxlMUoGmVFx7rnndmqnnnpqse2vfvWrTm3SpEnFtieeeGKntmzZsmLbyZMnd2obbVR+fe5VlzS6/J8mSZUwkCWpEgayJFXCQJakSmxwg3q9lvE+/fTTndq6Lu2dO3dusT5v3rxObeutty623XLLLTu1888/v9i2NKg3ZcqU4Q5xrR1xxBHF+qxZszq1/fbbr9j2wAMPHNVjkp7tPEOWpEoYyJJUCQNZkiphIEtSJQxkSarEs26WRWk2RK9ly6V6r7aDzKj46Ec/2ql99rOf7dSmTp1a7P+85z2vU+u1HHrTTTft1G666aZi28MPP7xT23///fs+hosvvrjY9sorr+zUFi1aVGy7xx57dGrXXHNNse1JJ5202vcLFiwotpM2FJ4hS1IlDGRJqoSBLEmVMJAlqRIDD+qtufS41yBZafCtVIPygFqv7a6ve/N+4hOf6NR6vbvzxIndp2369OmdWq+BuqeeeqpTKw2yQfl5mDlzZrHt2Wef3Vetl6222qpYLw1O7rjjjsW2d999d6d22WWXFduuuQT8lltuGekQpec0z5AlqRIGsiRVwkCWpEoYyJJUCQNZkiqxzrMsVq5cWd5wYSbC+pohccMNNxTrZ511Vqd2wgknFNuWlij3Wvq8xRZbdGql5+GBBx4o9j/ooIM6tc0337zYduHChZ1a6VgBZs+eXayXlGa29Lp5/9KlSzu1Bx98sNh2yZIlndqNN95YbHvIIYes9v3xxx9fbCdtKDxDlqRKGMiSVAkDWZIqYSBLUiUGHtRbc2BukIG60oAPlO+3+8tf/rLYtjRQ98QTTxTbPvbYY53atGnTim232WabTq3XY9t44407teXLl3dqvQbZjjzyyE7tuOOOK7YtLbPutQS99Pz2GnR9/PHHO7Veg3qlbey0007Ftg899FCndvPNNxfblu6dLG3IPEOWpEoYyJJUCQNZkiphIEtSJdb5TU5PPvnkYv3MM8/s1O65555i2z/84Q+dWq83HS3Ve61cK61+K60ghPLAYK+Bq8mTJ3dqpYGrOXPmFPtfeumlnVppoBAGe0PUXXbZpVMrDbIBLFu2rFPrtTKx9PMpDTYCPPnkk51arwHaww47rFiXNlSeIUtSJQxkSaqEgSxJlTCQJakSBrIkVWKgWRZLlizhi1/84mq1Y445pth2yy237NRKsxOgfH/hXsuWS8t4ey35LenVtjTL4r777iu2Lb3j8vbbb9+p3X///cX+pXd33nvvvYttb7vttk6t132WS0unS0u6ofyzKN33GMo/i16PrTQDpNcxSFqdZ8iSVAkDWZIqYSBLUiUMZEmqxECDesuXL+fqq6/uq21pIKjXfXxLg3qD6LXsOCI6tc0226zYdtttt+27bWlAq/SmnxdddFGxf2ng69FHHy227TXQ1q/S44LyoN706dOLbffcc89O7aUvfWmxbekNXB955JFhjlDSKp4hS1IlDGRJqoSBLEmVMJAlqRIGsiRVYqBZFlOnTuXQQw9drfaSl7yk2Pacc87p1G666aZi24cffrh7YD1uJF+aodBrlkZpG4sXLy62Ld1gvnRj9l5KS6dnzZpVbFuaiTB37txi29JN57feeuti21436h9LpWXdpRvyA8yYMWO173u9Q7a0ofAMWZIqYSBLUiUMZEmqhIEsSZUYaFBvwoQJnfsc77777sW2l112Wad26623Ftvecsstndp1111XbFvaRq/77ZbedbrXUuLtttuuU+s1KLfPPvv0vd11tWLFik6t172iS8uszzvvvGLbO++8s1MrvcM1lJ/zmTNnFtseffTRxXrJ7bffvtr3pXtSSxsSz5AlqRIGsiRVwkCWpEoYyJJUCQNZkioRg7xj85w5c3LevHmr1S655JJi24ceeqhT22uvvYptp06d2qlNmTKl7+Maa6WbyZduWv/YY48V+5dmTjz55JPFtqXl36Ub7/faRunG+VCeVfL4448X2y5btqxTK81gAVi4cGGn1mu5+lFHHbXa9/vttx/z588vP7j1qPR7rfr0+LXvaYBoW68iYn5mzumnrWfIklQJA1mSKmEgS1IlDGRJqsRAS6dLSvf27aXX0th77723U1u0aFGxbWmgrNcAU0lpQA3K78Lc637IpW1MmzatU+u1FLn07tu97mVcGtTrNQC45rJ26P2O3KX7Si9YsKDYtnSf4gkTJhTblgZuey2vX1OvwUppQ+EZsiRVwkCWpEoYyJJUCQNZkiphIEtSJdZ5lsUgNtlkk2J95513HsvDUA+77rrrQHVJo8szZEmqhIEsSZUwkCWpEgayJFXCQJakShjIklQJA1mSKmEgS1IlDGRJqoSBLEmVMJAlqRIGsiRVwkCWpEoYyJJUCQNZkiphIEtSJQxkSaqEgSxJlTCQJakSBrIkVcJAlqRKGMiSVAkDWZIqYSBLUiUMZEmqhIEsSZUwkCWpEgayJFXCQJakShjIklQJA1mSKmEgS1IlDGRJqoSBLEmVMJAlqRIGsiRVwkCWpEpMHKTx/Pnzl0bEnevrYLTB23m8D0AaTwMFcmZus74ORJI2dF6ykKRKGMiSVAkDWZIqYSBLUiUiM8dmR8HHgL8GVgJPA+/N5MpR3P5BwIczOXiUtncGcDCwJJM9htS3Bs4GZgALgbdk8vsIAjgFeAOwHHhHJldFsBtwFs0A6vsyuTyCicDPgTdlsrzH/k8GfpDJpREcDHyS5gV0EnBKJl8ejcc5ZH+PZrLFOvS/CDgsk9+P4mGNiYi4Hxh09tA0YOla7M5+9exzrPrt3PeEiMxc7x+Q+0JeDrlJ+/00yBeM8j4Ogjx/LftOLNQOgJwNecMa9c9CHtt+fSzkZ9qv3wD5M8iA3Afyyrb+ecjXQM6E/H5b+wDkEcMcz9aQV7RfT4K8B3LH9vtNIHdbDz+jR9eyX0BuBHkE5MfG4vephg9gnv1Gr9+z6VjX5TGO9DFWlyymA0szeQIgk6WZ3AMQwcIIjo/gqgiuj2BWW988gjMi+HUEV0dwaFufEcH/tu2vimC/NXcWwd5tn12G2c47Ijg3gh8DF6y5jUwuBR4sPJZDgW+0X38D+LMh9W+2z+sVwNQIpgNPAZsBk4GnIpgKHAJ8c5jn6800Z9AAU2jOrh9oj+uJTG5tH8PXI/hCBJdFcEcEbx7yHPxT+5ivi+D4IfUfRTA/ghsjeE/huZsWweURvLHXdtqfwc0RnAZcBewEnAe8dZjHJGkEYxXIFwA7RfCbCE6L4MA1/n1pJrOBLwEfbmsfAy7OZG/gT4B/i2BzYAnwmrb9XwFfGLqhNqD/Azg0kzuG2Q7AvsARmbxqgMeyXSaLAdrP27b1HYDfDWm3qK2dCnywPaZPAx8HPpXJcNeK9gfmt/t4kCbs7ozgOxG8LWK1n9t04I9pLq+c2D4HrwVmAq8AXgbsFcEBbft3ZbIXMAc4KoLnr9pQBNsBPwE+nslPRtjObjQvQC/P5M5sLlVsMnR7kgYzJoGcyaPAXsB7gPuBsyN4x5AmP2g/z6e5NgvwWuDYCK4BLgE2BV5Icw31KxFcD5wLvHjIdnYHTgcOyeSuEbYDcGEbeKMhCrXM5K5MDspkX5pryy8AbongWxGcHcEfFfpNp3me2o3wbmAu8CuaF6wzhrT9USZPZ3ITsF1be237cTXNGewsmmCFJoSvBa6gObNdVZ8E/AL4SCYX9rGdO9u/BIZa0j6+DcHp9hvVfuOxz/F4jMMaaKXeushkJU0gXtKG6RHA19t/fqL9vHLIMQXwl6v+PF8lgk8A9wF70rygPD7knxfTBO7LobkkMsx2Xgk8thYP5b4IpmeyuL0ksaStL6IJuFV2HHIMq3wK+FfgKODbNIOCxwFvW6PdH9rH8YxMrgeuj+BbwG/hmRe0J4Y0iyGfT8g1Bv7agc9XA/tmsjzimRcogBU0L4h/CvzPCNuZQfm527Q99ue8zFyr/5T2q2ef4/EYRzImZ8gR7BbxzJkVNH/+jjSq/d/AB9rZC0Tw8rb+PGBxJk8DfwNMGNLnIeCNwKfb8BluO2vrPJoXE9rP/zWk/rcRRAT7AA+vurTR7vdA4O5MbqO5nvw0zQvQ5MI+bgZ2bfttMeSxQP/P3bsimlkTEewQwbY0z93v2zCeBewzpE8C7wJmRXDsCNvpaJ/f7WleZCSthbE6Q94C+Pd2QGsFsAC6A0pr+CRwMnBd+599Ic110tOA70dwGPBL1jhTy+S+CA4BfhbBu4bZzrAi+A5wEDAtgkXAcZl8jeY67TkR/B1wF3BY2+WnNFPeFtBcmnjnkG0FzZnxW9rS6TRnyBOBvy/s/ifAe4Gv0pylfiSCL9OcfT4Gq13u6cjkggh2By6P5pz5UeDtNAOF74vgOuBWWP2SQyYrIzgc+HEEj2RyWo/trCzsdi/gikxWDHdsknobs3nIGkwE/wccnMlD430s/YjgFOC8TH4x3seyPkXE62jmm08AvpqZJ/bZb8i89txjpPZD+u1EMyNne5q/qk7PzFP66LcpcCmwCc0L//cy87gB9jsBmAfcnZl9ze2PiIXAMpoX7BWZOafPflNpTj72oP1LLTMvH6HPbjTrAVbZBfh4Zp7cx/6OAd7d7ut64J2Z+fjwvSAijgaOpDlJ+ko/+xrY+ppP58e6fUC+EvKl430cAxzvkeN9DOv/MTIBuJ3mP//GwLXAi/vsewAwG7hhwH1OB2a3X08BftPPPtvQ2KL9ehJwJbDPAPv9IM2Cpr7n9tP89TltLZ7XbwDvbr/eGJi6Fj+Xe2kWYIzUdgeaMZjN2u/PAd7RR789gBtoLjFOBC4CZo7275hLpyuVyZWZXDfex9GvTL4y3scwBl4BLMjMOzLzSeC7NPPPR5SZvea1j9RvcWZe1X69jGZ8YYc++mVmPtp+O6n96OvP4YjYkWYs5quDHu+gImJLmherrwFk5pOZOehfhXOB2zOz39WWE4HNImIiTcCuOfhesjtwRWYuz8wVNAPffz7gcY7IQJb612uu+ZiIiBk0M4j6uuVAREyIiGtoZgJdmJn93qrgZOAjNJdIBpHABRExPyJGGiNaZReaKZ5nRsTVEfHViNh8pE5rOBz4Tl8HmHk3cBLN+M9i4OHM7CwMK7gBOCAinh8Rk2nGi3Yaoc/ADGSpf8W55mOy44gtgO8D/5iZj/TTJzNXZubLaKZgviIiRrx2HRGrrnPPX4vD3D8zZwOvB94fEQeM1IHmbHU28KXMfDnNoPWxw3dZ7Xg3Bt5Esyahn/Zb0fxV8yKaOfObR8TbR+qXmTcDnwEupBkcvxZGfwDbQJb6189c81EXEZNowvjbmfmDkdqvqb0EcAnwuj6a7w+8qR2g+y7wqoj4zz73c0/7eQnwQ5pLPCNZBCwacvb+PZqA7tfrgasy874+278a+G1m3p+ZT9EsSuvcfqEkM7+WmbMz8wCay0+3DXCcfTGQpf79GpgZES9qz8wOp5l/vt5ERNBcX705Mz8/QL9t2tkLRMRmNEF0y0j9MvOfM3PHzJxB8/guzswRzyAjYvOImLLqa5oVnjf0sb97gd+1syaguR5800j9hngrfV6uaN0F7BMRk9vndi7NdfkRRcS27ecXAn8x4H77MmYr9aRnu8xcERH/QLNgZgJwRmbe2E/fiBgyrz3aee35tT667k+zAOr69nowwL9k5k9H6Dcd+EY7fW0j4JzMPL+fY11L2wE/bDKOicBZmfnz4bs84wPAt9sXuTsYMod/OO213NfQzNnvS2ZeGRHfo7kVwAqa2wL0u/Lu+xHxfJobhr0/M0f9VrPOQ5akSnjJQpIqYSBLUiUMZEmqhIEsSZUwkCWpEgayJFXCQJakSvw/8XWc8srkIzcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "i = 38\n", "plt.figure(figsize=(6,3))\n", "plt.subplot(1,2,1)\n", "plot_image(i, predictions[i], y_test, x_test)\n", "plt.subplot(1,2,2)\n", "plot_value_array(i, predictions[i], y_test)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The model is very confident! It predicts and ankle boot with 100% probability. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 8. Try our model on a sandal from the Kanye West collection!\n", "Let's see if our network can generalize beyond the MNIST fashion dataset. Let's give it a trendy shoe and see what it predicts. Here is the image:\n", "\n", "\"shoe\"
\n", "
In class discussion : What kinds of images can our model predict?
\n", "\n", "**Buzzword**: Generalization\n", "\n" ] }, { "cell_type": "code", "execution_count": 108, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(28, 28, 3)" ] }, "execution_count": 108, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Let'see the tensor shape\n", "shoe = np.array(Image.open('../fig/kanye_28.jpg'))\n", "shoe.shape" ] }, { "cell_type": "code", "execution_count": 109, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(28, 28)" ] }, "execution_count": 109, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# We need to delete the other 2 channels and make the image B&W. \n", "shoe = shoe[:,:,0]\n", "shoe.shape" ] }, { "cell_type": "code", "execution_count": 110, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 110, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAAEKCAYAAAB62GIGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3X+QXWWd5/H3Jz8JSSCEhBCSQAIkID80GSO4siiz6gywVqFb6w92FnF0B6mCWqniDxX/kHLKKndUHHV2nY1LBigRZYUoWogwwMJYDD8SiAQIP5KA0KRJyO+QQEwn3/3jnp66ye37PLf73O57T/J5VXXl9vnec87Tp29/c85znvN9FBGYmVXVqE43wMysDCcxM6s0JzEzqzQnMTOrNCcxM6s0JzEzqzQnMTOrNCcxM6s0JzEzq7QxI7kzScP2eICkUuuXeXKhk/suu//h3ncqvn///mHd93A+jTJ69OhkfN++fUPe9tixY5PxvXv3JuMRUeoDOci/099FxIVl9ldWqSQm6ULg+8Bo4P9ExLfa0qohyP3iR41Kn3Tu2bMnGU/9QYwZkz6MuQ/8O++8k4znjBs3rmkslyhyfxBl9p2L79y5s9S+c7/zvr6+prGyCXTy5MnJ+LZt24a87WnTpiXjvb29Q972MEg3dgQM+XJS0mjgfwIXAWcAl0o6o10NM7POkdTSVwvbmSPpQUmrJT0r6UvF8uslvS5pZfF1cd06X5W0RtILkv4yt48yZ2LnAGsiYl2x458BlwDPldimmXWB3JVLvxYum/uAayPiSUmTgRWS7iti34uI79S/uTgR+gxwJnAC8M+SFkRE0x2V6difBbxW931PsewAkq6QtFzS8hL7MrMR1K4zsYjojYgni9c7gdUMkCfqXAL8LCL2RMTLwBpqJ0xNlUliA/0EDR1HEbEkIhZHxOIS+zKzEdJqAhvsDSVJc4FFwGPFoqslPS1pqaRjimUtnRzVK5PEeoA5dd/PBtaX2J6ZdYlBJLFp/VdaxdcVTbY3CbgDuCYidgA/Ak4BFgK9wHf73zrA6sm7pWX6xJ4A5kuaB7xO7Tr2v5TYnpl1iUGcZW3KXWVJGkstgd0aEXcCRMSGuviPgd8U3w765GjISSwi+iRdDfyO2hCLpRHx7FC3V1YLY2c6tu9cPNeJmhsOkBsekpIbppDruM3tOxXP/aHk2pZz1FFHNY1NmDAhue6uXbuS8dwQiilTpgx5/c2bNyfXTR23dn3Oy459rNuOgBuB1RFxQ93ymRHRP1bkE8Azxeu7gJ9KuoFax/584PHUPkqNE4uIu4G7y2zDzLqLpJbvTrbgPOAyYJWklcWy66gNyVpI7VLxFeCLABHxrKTbqY1y6AOuSt2ZhBEesW9m1dCuM7GI+D0D93M1PfmJiG8C32x1H05iZtagXUlsJDiJmVkDJzEzqzQnMTOrrDZ37A87JzEza+AzsSHqZF2sMsrWtcqV6smVu/nTn/7UNDZ+/PjkukcccUQy/vbbbyfjuTJCZcY0pX6uVqTWz43zyv1OjznmmGQ8N8btpJNOahqbMWNGct2XX365aWzr1q3JdVvlJGZmleYkZmaVNZSHuzvJSczMGjiJmVml+e6kmVWaz8TMrLLcJ1ZCJ4dJlDl9zpXKyQ1jyA1TKDMjUW6IRC5eVmqIR9lZnoZTaggEwGmnnZaM9/T0JOOnnHJK09isWclCpsnP6qpVq5LrtspJzMwqzUnMzCrNHftmVlnuEzOzynMSM7NKcxIzs0qrUhKrTu+dmY2Ydk2eK2mOpAclrZb0rKQvFcu/Len5YvLcZZKmFMvnSnpb0sri6x9z+/CZWItyY8FScuOhcmVbJk+enIxPnDhxyPt+8803k/GyhnMsWO4OWmqs14IFC5Lr5sb27dy5Mxk/66yzkvFU23PT5B133HFNY2PGlP+TbnNRxD7g2oh4UtJkYIWk+4D7gK8WUz/+D+CrwJeLddZGxMJWd+AkZmYN2jjbUS+1Gb6JiJ2SVgOzIuLeurc9Cvznoe7Dl5Nm1qBdl5MHbXMusAh47KDQ54Hf1n0/T9JTkh6SdH5uuz4TM7MGg0hQ0yQtr/t+SUQsGWB7k4A7gGsiYkfd8q9Ru+S8tVjUC5wYEZslvRf4paQz69c5mJOYmR1gkGdZmyJicWZ7Y6klsFsj4s665ZcDHwM+HMWD0xGxB9hTvF4haS2wAFjesOGCk5iZNWhXn5hqG7oRWB0RN9Qtv5BaR/6HImJ33fLpwJaI2CfpZGA+sC61DycxM2vQxruT5wGXAaskrSyWXQf8ABgP3FckzEcj4krgg8A3JPUB+4ArI2JLagdOYmbWoI13J38PDLSxu5u8/w5ql54tK5XEJL0C7KSWMfty18aQzvBlxmKV1cl9p2pLQX5MU+oDl5v2LFerbPv27cn4hg0bkvHNmzc3jU2aNCm57pFHHpmMH3XUUcn41KlTm8YmTJiQXDcnd6aSa/uUKVOaxnJ19VLHtK+vL7luKw7HB8D/PCI2tWE7ZtYlDrckZmaHmMMpiQVwr6QA/vdA40PMrHoOp6KI50XEeknHUbvL8HxEPFz/BklXAFeU3I+ZjZCq9YmVSrcRsb74dyOwDDhngPcsiYjFrXT6m1l3GI7HjobLkJOYpInFU+lImgj8BfBMuxpmZp1TpSRW5nJyBrCs+EHGAD+NiHva0ioz66huSVCtGHISi4h1wHsGs44kRo8e3TReZqxWriNyOMeBHX300cn4ySefnIzPmDEjGc99oLZt29Y0tmfPnuS6xx57bDI+b968ZHz27NnJeOq458Y05X7ucePGJeOpMXK5+TZzNdzOOOOMZDz1O4H0OLGtW7cm133uueeaxtpVv+2wSGJmdmhqc1HEYeckZmYNfCZmZpXmJGZmleYkZmaV1U3DJ1rhJGZmDZzEmoiItpQKGcj48eOT8dwt9ZxU6ZYTTjghuW6ulE5O7gOVmvJt165dyXXfeuutZHzLlmQ9uuwUYamSNLk7YLt3707Gc2WCUr+zuXPnJtedPn16Mp5re27oyhtvvNE09sILLyTXzQ3BaAffnTSzSvOZmJlVlvvEzKzynMTMrNKqlMSq03tnZiNm1KhRLX3lSJoj6UFJqyU9K+lLxfKpku6T9FLx7zHFckn6gaQ1kp6W9GfZtpb+ac3skNJqGZ4Wz9b6gGsj4l3A+4GrJJ0BfAW4PyLmA/cX3wNcRG2uyfnUiqn+KLcDJzEza9CuJBYRvRHxZPF6J7AamAVcAtxcvO1m4OPF60uAW6LmUWCKpJmpfYxon5ikZPmU3PRiqamsciVncnKnxqlxRe9+97tLbXvmzOTviI0bNybjqbFYuRJEufF1ZcffTZs2rWls3brkxM7ZsVa5sjOpz1puurf169cn47lxZscff3wyniqn88ADDyTXTY0LbNc4zEH0iU2TtLzu+yXN5tqQNBdYBDwGzIiIXqgluqLEPdQS3Gt1q/UUy3qbNcAd+2bWYBBJbFMrpeclTaI2Ke41EbEjsf2BAsmJOH05aWYN2lmeWtJYagns1oi4s1i8of8ysfi3/3KjB5hTt/psIHla7CRmZgfoL4rYpruTAm4EVkfEDXWhu4DLi9eXA7+qW/7Z4i7l+4Ht/Zedzfhy0swatHGc2HnAZcAqSSuLZdcB3wJul/QF4FXgk0XsbuBiYA2wG/jr3A6cxMysQbuSWET8noH7uQA+PMD7A7hqMPtwEjOzBlUase8kZmYH8APgCRGRHAuWq021d+/eprHceKgy03tBeixXbizVvn37kvFc2ydNmpSM9/Y27/fMjVfK1RPLjQPLtf31119vGssdt9zPffrppyfjqd/p5s2bk+vu3LkzGc/VWTvttNOS8Vydt5TU30G7OImZWaW5KKKZVZYvJ82s8pzEzKzSnMTMrNKcxMyssvofO6oKJzEza3BInYlJWgp8DNgYEWcVy6YCPwfmAq8An4qIlibDS9UEG84Dl5qDEMqNE8uNQUuNlQKYNWtWMp6rXZUa65Wq5wX5MUe5ulu5sV6p8VRHHHFEct3cWK3cGLXU2URu7F7ud3LGGWck47m2vfTSS8l4p1UpibVyzngTcOFBy5qVljWzQ0A7S/EMt2wSi4iHgYP/O21WWtbMDgFVSmJD7RNrVlrWzCqumxJUK4a9Y1/SFdRmLTGzijgc7k5ukDSzOAurLy3boJg0YAmApGStbDPrDlU6Extqum1WWtbMDgGHVJ+YpNuAC6hNzdQDfJ3mpWXNrOK6KUG1IpvEIuLSJqGG0rJlDWedpN27d5daP/VLzdVBy5k6dWoyPnv27CFve/To0cl42Q/r2rVrk/HhmmcU8p+X445rfr9p4sSJyXVzfUJHH310Mr5t27ZkvMw4sdTYvNwxbdUhlcTM7PDTro79JoPlfw70V42cAmyLiIXF5LqrgReK2KMRcWVuH05iZtagjWdiNwH/ANzSvyAiPl23n+8C2+vevzYiFg5mB05iZnaAdvaJRcTDxRnWQPsR8CngP5TZR3UGg5jZiBnE3clpkpbXfQ1mTOj5wIaIqO8gnCfpKUkPSTq/lY34TMzMGgziTGxTRCwe4m4uBW6r+74XODEiNkt6L/BLSWdGxI7URpzEzKzBcN+dlDQG+E/Ae/uXRcQeYE/xeoWktcACYHlqW12VxHK31MvI3Y4vUxZm8uTJyXVzt/PXrVuXjP/2t79NxlNtzx3T889Pn7GfeOKJyfhrr72WjI8dO7ZpbNOmTcl1c2WAckNbUvH169cn133xxReT8Vwpnlypn1yZoZQRSDAj8djRR4DnI6Knbr/TgS0RsU/SycB8IP3HgfvEzGwA7RqxXwyW/1fgNEk9xQB5gM9w4KUkwAeBpyX9AfgFcGVEpCf4pMvOxMysO7Tx7uSAg+Uj4nMDLLsDuGOw+3ASM7MGHrFvZpXmJGZmlXXIPQBuZoefw6Eoopkdwnwm1gG5g54bL3XkkUcOed+5MUG5/9VeffXVZPyhhx4adJta9dGPfjQZP+GEE5Lxs88+OxlPlaTJTWuWm27unXfeGXJ8xYoVyXVz0+zl9p37vJUpUZT7vLWDk5iZVZb7xMys8pzEzKzS3LFvZpXmMzEzqyz3iZlZ5TmJmVmlOYl1QNlaZLkxSzNmzBjyurl6Yrm6Wccff3wyvmvXrqaxXD2wXD2x1atXD3nfkP69LFiwILnunj17kvFcTbBUvbLe3t7kujlvvPFGMp6aVg3SU+nlEshIdLo7iZlZZY1QUcS2cRIzswY+EzOzSnMSM7NKcxIzs0qrUhKrTu+dmY2IVicJaXGikKWSNkp6pm7Z9ZJel7Sy+Lq4LvZVSWskvSDpL1tpr8/EzKxBG+9O3gT8A3DLQcu/FxHfqV8g6QxqsyCdCZwA/LOkBRGRrD2UTWKSlgIfAzZGxFnFsuuBvwHeLN52XUTcndtWJ+XmlczVh0qN1erp6Wkag3TtKIC33norGS8zh+Gpp56aXPfcc89Nxp944olkPPezpY57rm3Lli1Lxn/yk58k42XkxvZNmDAhGd+6dWsyXiZJVGmcWEQ8LGlui2+/BPhZMYnuy5LWAOdQm/KtqVaOxk3AhQMs/15ELCy+ujqBmdngtOtyMuFqSU8Xl5vHFMtmAfWzMfcUy5KySSwiHgayE1ia2aFhkH1i0yQtr/u6ooVd/Ag4BVgI9ALf7d/1AO/NPopTpk/sakmfBZYD10ZE+vzZzCpjEGdZmyJi8WC2HREb6vbzY+A3xbc9wJy6t84G0s+WMfS7k80yaQNJV/Rn6SHuy8xG2KhRo1r6GgpJM+u+/QTQf+fyLuAzksZLmgfMBx7PbW9IZ2KJTDrQe5cAS4r3lntK28xGRLs69iXdBlxA7bKzB/g6cIGkhdQuFV8BvggQEc9Kuh14DugDrsrdmYQhJjFJMyOivwxAfSY1s4prZ1HEiLh0gMU3Jt7/TeCbg9lHK0MsWs6kZnZoqNKI/WwSG2wmTZGUrLP0rne9K7l+am7I3FitHTt2JOPvec97hrx+bpzX9OnTk/G9e/cm48cdd1wyPnny5KaxpUuXJtd94IEHkvGc7du3J+NTpkxpGtu4cWNy3fvvvz8Zz/2hjRnT/OOdO+a5uR/ffvvtZDw1dg9g9+7dTWO52ni5fbfDIZXEzOzw4yRmZpXloohmVnk+EzOzSnMSM7NKcxIzs0pzEmti7NixyZI2Z555ZnL9WbOaP9CeuyWeK2dz7LHHJuOpjs5XX301uW5uarFc2ZdFixYl4xdddFHT2Nq1a5Prbtu2LRnPTU1W5rjfc889yXW3bEnXHcgNRcgNo0jp6+tLxnN/5Ln1y04xOJw8A7iZVZ7vTppZpflMzMwqzUnMzCrLfWJmVnlOYmZWae7YN7PK8uVkwrhx45g7d27TeG5szUsvvdQ0lht3kyoBBPnxUqkpuiZNmpRcN1V2BfJlW44++uhkPOXll19Oxl988cVkPHdcRo8enYynjvsjjzySXHf//v3JeBm5P9Lc5yk37rDMGLVu4CRmZpXmJGZmlValJFad3jszGzHtmjy3mBx3o6Rn6pZ9W9LzxeS5yyRNKZbPlfS2pJXF1z+20lYnMTM7QH9RxDZN2XYTcOFBy+4DzoqIdwMvAl+ti62NiIXF15Wt7MBJzMwatOtMLCIeBrYctOzeiOi/i/cotUlyh8xJzMwatCuJteDzwG/rvp8n6SlJD0k6v5UNuGPfzBoMIkFNk7S87vslxYTZrezja9Qmyb21WNQLnBgRmyW9F/ilpDMjIjlV2Ygmsb6+PjZs2NA0nhpDBukp2/bs2ZNcNzdOLCc1TVZuLFWuVlluHFmuXllqarN58+Yl1/3jH/+YjL/zzjvJeG46uddee61p7M0330yuO27cuGS8jOGu59XN9cJyBnmWtSkiFg9hH5cDHwM+HMXBiog9wJ7i9QpJa4EFwPKmG8JnYmY2gOF87EjShcCXgQ9FxO665dOBLRGxT9LJwHxgXW57TmJm1qBd48Qk3QZcQO2yswf4OrW7keOB+4r9PFrcifwg8A1JfcA+4MqISJf3xUnMzAbQriQWEZcOsPjGJu+9A7hjsPtwEjOzA/gBcDOrPCcxM6s0JzEzq7RDqiiipDnALcDxwH5qg9m+L2kq8HNgLvAK8KmI2Jra1v79+5PjrU488cRkW1I1vVavXp1cNzc/4kknnZSMjxnT/FA9//zzyXVz9cKOOuqoIe8bYPLkyU1ja9asSa6bq4WWq4uV+7D/+te/TsZTcr+znNTYwNy4wpzUZ7GssrXO2rH/Kp2JtZJu+4BrI+JdwPuBqySdAXwFuD8i5gP3F9+b2SFgBB87Ki2bxCKiNyKeLF7vBFYDs4BLgJuLt90MfHy4GmlmI6tKSWxQfWKS5gKLgMeAGRHRC7VEJyn9/ImZVUa3JKhWtJzEJE2iNhDtmojY0eoPKekK4ArI12M3s+5wyCUxSWOpJbBbI+LOYvEGSTOLs7CZwMaB1i2eaF8CMH78+Oo+FWt2mOgvilgV2ZaqlpJvBFZHxA11obuAy4vXlwO/an/zzKwTDrU+sfOAy4BVklYWy64DvgXcLukLwKvAJ3Mb2r9/f7LszKpVq5LrH3/88U1jqWEGrdi+fXsynioDNG3atOS6mzZtSsbXr1+fjE+fPj0ZHzt2bNNY7oOWi5966qnJ+FNPPZWMp6bZyw0t2bEjWUYqq8zZRG7d3LCXMn/gqd8nlB960opuSVCtyCaxiPg90Own+nB7m2Nm3eCQSmJmdnjppkvFVjiJmVmDKnXsO4mZWQOfiZlZpTmJmVlluU/MzCrPSayJvr4+Nm4ccGA/APfee29y/XPOOadp7OKLL06umys5k5u6LFW6Zf/+/cl1Z8yYkYznpkXLjYFLjRuaOXNmct2tW5PVk5JT7AE88sgjyXhK2cfQcp3PqbJPObnfaW6avX379g15390w3VsbJwpZSm1qto0RcVaxbMAyXsXA+u8DFwO7gc/1F59Iqc4tCDMbMaNGjWrpqwU3ARcetKxZGa+LqE3TNp/a89Y/aqmtrbzJzA4frT5y1MrZWkQ8DBw87VqzMl6XALdEzaPAlOK57CQnMTNrMMzPTh5QxgvoL+M1C6ifMr6nWJbkjn0zazCIBDVN0vK675cUlWuGtNsBlmU7CJ3EzKzBIJLYpohYPMjNNyvj1QPMqXvfbCBdHQFfTprZAIb5crJZGa+7gM+q5v3A9v7LzhSfiZnZAdpZFFHSbcAF1C47e4Cv07yM193UhlesoTbE4q9b2UdXJbFdu3Yl4w8++GDT2OOPP55cd86cOcn4ueeem4x/4AMfaBrLjevp6elJxj/ykY8k47kxbKecckrT2JYtB98YOlBu6rJf/OIXyfgbb7yRjKds27ZtyOtCvqZXavxc7o80N04sV9OrzDixMuu2S7vGiUXEpU1CDWW8ovaHdNVg99FVSczMuoNH7JtZpTmJmVll+QFwM6s8F0U0s0rzmZiZVZqTmJlVVtX6xDSStYskdb5Q0hBNnDixaWz8+PHJdRcvTj+VMWXKlGQ8Nw/hm2++2TT24osvJtd95ZVXknGrnogolYHOPvvsWLZsWUvvnT9//oohPHbUVj4TM7MGVToTcxIzswa+O2lmlVW1PjEnMTNr4CRmZpXmJGZmleYkZmaVdkglMUlzgFuA44H91Gpof1/S9cDfAP2DlK6LiLtz20vd9cjNQ9jX19c0Ntzj3VLzDKbaBfn5NHNyd4pSdbVyH8bcGLS9e/cm43boaWdRxJHQyplYH3BtRDwpaTKwQtJ9Rex7EfGd4WuemXXCIXUmVtS47p9eaaek1bQwjZKZVVeVktigzhklzQUWAY8Vi66W9LSkpZKOabLOFZKWHzStk5l1sWGeKKStWk5ikiYBdwDXRMQOalOMnwIspHam9t2B1ouIJRGxuNPPV5lZa9o5A7ik0yStrPvaIekaSddLer1u+cVDbW9LdycljaWWwG6NiDsBImJDXfzHwG+G2ggz6y7t6tiPiBeoneggaTTwOrCM2kxGbelTz7ZUtXR7I7A6Im6oWz6z7m2fAJ4p2xgz6w7DdDn5YWBtRKSn7xqkVs7EzgMuA1ZJWlksuw64VNJCatOMvwJ8MbchSclb+rmDkvrfITfFVtmhAqkhHLlpz8aNG5eM56b/KjN9WG4IRW5YS9npw3Jtt+40TP1dnwFuq/v+akmfBZZTGwGxdSgbHdF6YqNGjYrUH3TuwKXaOtxJrIyySayMskmsbNucxEZe2XpiixYtigceeKCl906dOvWPwKa6RUsiYsnB75M0DlgPnBkRGyTNKNYL4G+BmRHx+aG01yP2zazBIM7ENrV40+4i4Mn+vvR29qlXZ1iumY2YYegTu5S6S8l29qn7TMzMDtDux44kHQl8lAP7zf9usH3qzTiJmVmDdnbsR8Ru4NiDll3Wru07iZlZg24Zjd8KJzEza+AklpA6OLnhHql1c9fwuWEOuXI6Kbl254Z35IZB5H621P5zbcsNgchNR5cqAwSwc+fOZNy6k5OYmVVWNz3c3QonMTNrcKgVRTSzw4zPxMys0pzEzKyy3CdmZpXnJGZmlValjv0RLcUj6U2gviDaNA4s49FNurVt3doucNuGqp1tOykippfZgKR7qLWpFZsi4sIy+ytrRJNYw86l5d1ae79b29at7QK3bai6uW1VUJ1zRjOzATiJmVmldTqJNZSx7SLd2rZubRe4bUPVzW3reh3tEzMzK6vTZ2JmZqV0JIlJulDSC5LWSPpKJ9rQjKRXJK0qZiVe3uG2LJW0UdIzdcumSrpP0kvFv8d0UdvaNqtzybbNkfSgpNWSnpX0pWJ5R49dol1dcdyqasQvJ4tZgF+kVnO7B3gCuDQinhvRhjQh6RVgcUR0fEyRpA8CbwG3RMRZxbK/A7ZExLeK/wCOiYgvd0nbrgfeasesziXbNpPaFGBPSpoMrAA+DnyODh67RLs+RRcct6rqxJnYOcCaiFgXEX8CfgZc0oF2dL2IeBjYctDiS4Cbi9c3U/sjGHFN2tYVIqI3Ip4sXu8EVgOz6PCxS7TLSuhEEpsFvFb3fQ/d9YsM4F5JKyRd0enGDGBGRPRC7Y8COK7D7TnY1ZKeLi43O3KpW0/SXGAR8BhddOwOahd02XGrkk4ksYGeLO2mW6TnRcSfUZvs86rissla8yPgFGAh0At8t5ONkTQJuAO4JiJ2dLIt9QZoV1cdt6rpRBLrAebUfT+b2vTmXSEi1hf/bgSWUbv87SYb+iceLf7d2OH2/JuI2BAR+yJiP/BjOnjsJI2llihujYg7i8UdP3YDtaubjlsVdSKJPQHMlzRP0jjgM8BdHWhHA0kTiw5XJE0E/oISMxMPk7uAy4vXlwO/6mBbDtDOWZ1LtkPAjcDqiLihLtTRY9esXd1y3KqqI4Ndi1vIfw+MBpZGxDdHvBEDkHQytbMvqJUp+mkn2ybpNuACahUFNgBfB34J3A6cCLwKfDIiRryDvUnbLqB2SfRvszr390GNcNv+PfAvwCqgfzqn66j1P3Xs2CXadSldcNyqyiP2zazSPGLfzCrNSczMKs1JzMwqzUnMzCrNSczMKs1JzAYk6QJJv2nxvXPrq1mYjSQnMTOrNCexipH0y+Lh9GebPaAu6X2SHpH0B0mPS5os6QhJ/1TUSntK0p8X7x1weWL/ZxbbXFk8sDy/CI2W9OOiXfdKmlC8f6GkR4v3Lut/uFnSKZLuKX6Wf5F0ehsPkx1OIsJfFfoCphb/TqD2eMqxB8XHAeuA9xXfH0Xt6YNrgX8qlp1ObcT6EYnlFwC/GWD/PwT+qm5fE4C5QB+wsFh+O/Bfi9dPAx8qXn8D+Pvi9f3A/OL1ucADnT62/qrml2cAr57/LukTxes5wHxgc138NKA3Ip4AiKJ6Q/HIyw+LZc9L+iOwAGi2vJl/Bb4maTZwZ0S8VHskkJcjYmXxnhXAXElHA1Mi4qFi+c3A/y2qOHygeN2/3fGDPxRmOIlViaQLgI8A/y4idkv6f9TOmg54GwOXNhqoBFJq+YAi4qeSHgP+I/A7Sf+N2pnfnrq37aN2htbMKGBbRCwczL7NBuI+sWo5GthaJLDTgfcP8J7ngRMkvQ+g6A8bAzwM/FWxbAG1h6BfSCwfUPGQ/LqI+AGV4se8AAAAqUlEQVS1qhDvbvbeiNgObJV0frHoMuCh4uzwZUmfLLYpSe9p8RiYHcBJrFruAcZIehr4W+DRg98QtZLfnwZ+KOkPwH3Uztb+F7XO91XAz4HPRcSexPJmPg08I2kltT60WzJtvhz4dtHmhdT6xaCWOL9QtPFZXKLchshVLMys0nwmZmaV5iRmZpXmJGZmleYkZmaV5iRmZpXmJGZmleYkZmaV5iRmZpX2/wEgXPib3CXA7QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "plt.imshow(shoe, cmap=plt.cm.binary)\n", "plt.xlabel('a cool shoe')\n", "plt.colorbar()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`tf.keras` models are optimized to make predictions on a batch, or collection, of examples at once. Accordingly, even though you're using a single image, you need to add it to a list:" ] }, { "cell_type": "code", "execution_count": 111, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1, 28, 28)\n" ] } ], "source": [ "# Add the image to a batch where it's the only member.\n", "shoe_batch = (np.expand_dims(shoe,0))\n", "print(shoe_batch.shape)" ] }, { "cell_type": "code", "execution_count": 147, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]\n", "8 Bag\n" ] } ], "source": [ "predictions_single = model.predict(shoe_batch)\n", "print(predictions_single[0])\n", "print(np.argmax(predictions_single[0]), class_names[np.argmax(predictions_single[0])])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That was not classified right! Maybe it's because the colors are not the ones that the network is expecting. All images in our training set had a white background. Let's change it and see if we fair better." ] }, { "cell_type": "code", "execution_count": 148, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 148, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAAEKCAYAAAB62GIGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHttJREFUeJzt3XuwXWWZ5/Hvk4QkJAFyJYRcPAECBCmMwxEcGDVANwIz1YglCtU66DgdrZKatso/tOmqkeopq6xuL+1oDz1hoIEqRelGlKJQSNPdQpcKJBADJFwSSCAXcgWSEMj1mT/2OrqTfdbz7r3X2peV/D5Vu87Z69lrrXevvc9z1uVZ72vujohIVY3odQNERIpQEhORSlMSE5FKUxITkUpTEhORSlMSE5FKUxITkUpTEhORSlMSE5FKG9XNlU2dOtUHBgY6suzUnQep+IgR7efzXq67meVHzKyj647inX7fRd9b5ODBg2F85MiRbS97//79Yfy4447Lja1du5Zt27YVeuNm1soX6iF3v6LI+ooqlMTM7Arge8BI4P+5+zej1w8MDPDkk09Gy2u7Lfv27QvjqS/dmDFjwnjUtgMHDoTzpuLHH398GE/Zu3dvbiyVKKI/CEgnitR2j+ITJkwI501J/bFHiaRIkgF44403wvikSZPaXvbGjRvD+KmnnpobGxwcbHu9bZra7RUeqe1/hWY2Evg74ErgHOB6MzunrIaJSO+YWVOPflBkT+wCYLW7vwxgZj8GrgZWltEwEemdZg/1U0c43VDkpMRM4LW65+uzaYcxs0VmttTMlm7durXA6kSkW6q0J1YkiQ33DhpOoLj7YncfdPfBadOmFVidiHRDswmsX5JYkcPJ9cDsuuezgPiMpIhUQr8kqGYU2RN7EphnZnPNbDRwHXB/Oc0SkV46JvbE3P2Amd0IPEStxOJ2d3+utJYNv87c2KhR8VtJlRIU+UCKrjt1cjR1kjVVHhJJlSkUXXcUP3ToUDhvqjQlZefOnbmxd955J5w3Vf6RKqEoUoIxdWpctZDabmXolwTVjEJ1Yu7+IPBgSW0RkT5gZoULkbupqxX7IlINx8yemIgcnZTERKTSlMREpNKUxESksnRiX0QqT3tigWjjFKl/6fR/jqhGrWi/Vqn3neruZvTo0bmxqJsegHfffTeMp7oJSsWj95b6zKL31Yxo/lSdV+oz2bFjRxhP1bitW7cuN7Z58+Zw3rlz57a93mZVKYlVZ59RRLqmrIp9M7vdzLaY2bN1035iZsuzx1ozW55NHzCzd+pif99MW3U4KSKHKfmWojuAHwB3DU1w90/VrevbwFt1r1/j7gtaWYGSmIg0KCuJufujZjaQsw4DPglcWmQdOpwUkQYjRoxo6lHQh4DN7v5S3bS5Zva0mf3KzD7UzEK0JyYiDVrYE5tqZkvrni9298VNzns9cHfd803AHHffbmbnAz8zs/e6e/6d/CiJicgRWjwnts3dWx6dxMxGAR8Hzh+a5u57gb3Z78vMbA1wJrB02IVk+iqJ9fKybpG+wlMj56S6fUmVKaS68omMGzeuULyoqMSj6ChPRaTKYqISCIAXX3wxjM+c2dBT+2Fefvnl3Nj69evDeaPvaqqkplld+Fv8I+B5d//9mzWzacAOdz9oZqcB84D8DZXROTERaVBiicXdwG+As8xsvZl9Pgtdx+GHkgAfBlaY2e+AfwK+6O5xQR59ticmIv2hrOJxd78+Z/pnh5l2L3Bvq+tQEhORw/RT19PNUBITkQZKYiJSaUpiIlJpSmIiUmlKYm3q5IZL1QWlFLlak6qHSg2bFg09BrBnz57c2NixY8N5U8ODFf1MOlkLlqrti2q9XnrppdwYpLsoSg3p9txz8eiFUdtTQwBu3bo1N5b6LjVDnSKKSOVpT0xEKk1JTEQqTUlMRCpLxa4iUnlKYiJSabo6KSKVdszsiZnZWmAXcBA40EznaFF9TKpfriJSH0on152yevXqMJ6qaYpq4FJ9kaWGRTvppJPC+PTp08P4lClTcmO7d+8O53377bfD+K5du8L49u3bc2OpPt5SUnWHqba/+eabubHUXtDkyZNzY6kas2Yci+fELnH3bSUsR0T6xLGWxETkKHMsJTEHHjYzB/5vCwMEiEgfO5ZO7F/s7hvN7GRgiZk97+6P1r/AzBYBiwDmzJlTcHUi0mlVOydWKN26+8bs5xbgPuCCYV6z2N0H3X1w2rRpRVYnIl1SVh/73dB2EjOz8WZ2wtDvwOXAs2U1TER6p8SBQm43sy1m9mzdtJvNbIOZLc8eV9XF/sLMVpvZC2b20WbaWuRwcjpwX/ZGRgE/cvdfFlieiPSJEvey7gB+ANx1xPTvuvu3jljnOdRGQXovcCrwz2Z2pruHfS61ncTc/WXgfS3Ow6FDh3LjRWq1Un1LdbIO7K233grja9asCeNbtmwJ46mapIkTJ+bGUnVgUS0VwI4d8YhZr732WhiPtnvRzyQ1xuKYMWNyY6l+zlI1aCtXrgzj0WcC8Xdm0qRJ4bznnHNObizVf1yzykpi7v6omQ00+fKrgR9ng+i+YmarqZ2i+k00U3UuQYhIVwx1itjMo4AbzWxFdrg5lLVnAvX/Fddn00JKYiLSoIVzYlPNbGndY1ETi78FOB1YAGwCvj202mFem+ySWcWuItKghcPJbc3cbljP3TfXredW4IHs6Xpgdt1LZwEbU8vTnpiINOhkiYWZzah7eg1/qGq4H7jOzMaY2VxgHvBEannaExORw5RZA2ZmdwMLqR12rge+Diw0swXUDhXXAl8AcPfnzOweYCVwAPhS6sokKImJyDBKvDp5/TCTbwte/w3gG62so6tJzMw6VuqQutyeuqSe+tCiYdE2bNgQzpvqSiclVWIRDdM1bty4cN4TTjghjEfdvkC6tCXabql5x48fH8ZnzowvXEXd7axduzacd9u2uGOWqFSomfmjLozOOuuscN5Od8UDx9a9kyJyFOqXW4qaoSQmIofpp/sim6EkJiINlMREpNKUxESk0nRiX0QqS+fERKTylMRyuHtY05QaXizaxY26XYH0h5KqWYrqip555plCy960aVMYTw2LFg0Plnrf+/btC+NF6++2bt2aGzv99NPDeVO1VqluZ6LvWqqrnVNPPTWMp+rMUp9p1J3OZZddFs4bva9UTWGzlMREpNKUxESk0pTERKSyhjpFrAolMRFpoD0xEak0JTERqTQlMRGpLBW7BswsrAVL1VNFJxtT/ZSl6qFSQ5tFdT+pWqrUSdJU23fv3h3GZ8yYkRt7/fXXw3lTfXal6sBS723WrFm5sdR2i+rfAJ5//vkwHn3XpkyZEs6b6mctNazaCy+8EMYnTJgQxiPR+yqxR9ZSltMN2hMTkQa6OikilVW1w8nqpFsR6ZqyRjvKBsfdYmbP1k37GzN7Phs89z4zm5hNHzCzd8xsefb4+2baqiQmIg1KHLLtDuCKI6YtAc519/OAF4G/qIutcfcF2eOLzaxASUxEGpSVxNz9UWDHEdMedvcD2dPfUhskt21KYiJymKHbjpp5lOC/Ab+oez7XzJ42s1+Z2YeaWYBO7ItIgxZO7E81s6V1zxe7++Im1/GX1AbJ/WE2aRMwx923m9n5wM/M7L3uvjNaTjKJmdntwH8Btrj7udm0ycBPgAFqI/h+0t3faKbhUfY+cOBAbqyoaAxCKFYnlqpBS/VNtXHjxjCe6rsqqjmK+vOC9DiFO3eG35/ke4/GSHz33XfDeVO1VKn6uqjuMLUXsX79+jC+cuXKMJ5a/hlnnBHGe62FJLbN3QfbWP4N1PLKZZ51gubue4G92e/LzGwNcCawNHdBNHc4eQeNJ+a+Bjzi7vOAR7LnInKUKPHE/nDLvgL4KvAn7r6nbvo0MxuZ/X4aMA94ObW8ZBIb7sQccDVwZ/b7ncDHmmq9iFRCiSUWdwO/Ac4ys/Vm9nngB8AJwJIjSik+DKwws98B/wR80d2PzD0N2j0nNt3dNwG4+yYzO7nN5YhInymz2NXdrx9m8m05r70XuLfVdXT8xL6ZLQIWAcyZM6fTqxORElTptqN2W7rZzGYAZD+35L3Q3Re7+6C7D06bNq3N1YlIN3XynFjZ2k1i9wM3ZL/fAPy8nOaISD+oUhJrpsTibmAhtXqQ9cDXgW8C92Qn6V4Fru1kI0Wke/opQTUjmcRyTswBxIPjtSFVs1TEuHHjOrbsovVtO3bEF2Bee+21tped6qOtqNNOOy2MR2MkpmrzUudlUt+XN97IL13cs2dPbgzg0KFDYTxVPzdx4sQwfuaZZ4bxSNQPm8adFBGhWif2lcREpIH2xESkso66c2IicuxREhORSlMSE5FKUxILRJeAi1wRSV1ajoa5gnRXPdEQXqnL7anL+akyhSuvvDKMR13apL6Mjz32WBh/9dVXw/js2bPDeFRiMXXq1HDe1HZNlbZE8VT3SPPmzQvjqa54Ut0EpYaEi0TlH2WUWAx1ilgV2hMTkQbaExORSlMSE5FKUxITkUpTEhORylKxq4hUnq5OikilaU+sQ6IamFR9TOpDSdVyRVJdwqS6dUl12/2Rj3yk5TY1a8mSJWE8NZzcihUrwvikSZNyY6nPZPv27WF87NixbcfPP//8cN6ZM2cWWnfqvUVD3aVqGqPvW1nJp8TlND3ko9VW+j3gKmAP8Fl3fyq1jursM4pIVzTbq2uTie4Omh/y8Upqw7TNozYuxy3NrEBJTEQalJXEWhzy8WrgLq/5LTBxaCyPSKUOJ0WkOzp8Yj9vyMeZQH03xuuzaZuihSmJiUiDFs6JTTWzpXXPF7v74nZXO8y05M2gSmIicpgW68S2uftgi6vYbGYzsr2w+iEf1wP1PQrMAuIrS+icmIgMo8NDtuUN+Xg/8F+t5oPAW0OHnRHtiYlIgxJLLFoZ8vFBauUVq6mVWHyumXV0PYkV2TjRvEU3eupE5ubNm9ued/fu3WE81W/Wpk3xP6MJEybkxtatWxfOm+pPbP78+W2vO+Wll14K42PGjAnjqT7Bov7KTjnllHDelNT80bBqEPd1VrTusAxlJbFWhnz0WrHnl1pdh/bEROQw6hRRRCpPtx2JSKUpiYlIpSmJiUilKYmJSGWpU0QRqbyj6upkTn9ANwN/BmzNXnaTuz/YqUaWITWuZKp/qNdffz03lup7Khp7EWD8+PFhPFU3FI1huGbNmnDexx9/PIwPDsZ3lET9YkE8JmaqTuzjH/94GP/0pz8dxot4++23w3iq/7nJkyeH8SLjQx48eLAjy61XpT2xZtLtHTT2BwTwXXdfkD36OoGJSGs6fNtRqZJ7Yu7+qJkNdL4pItIP+ilBNaPIge+NZrbCzG43s/w+iEWkcqq0J9ZuErsFOB1YQK3Dsm/nvdDMFpnZUjNbunXr1ryXiUgfGTFiRFOPftBWK9x9s7sfdPdDwK3ABcFrF7v7oLsPTps2rd12ikgXHfV7Ykf0e30N8Gw5zRGRXit5oJCOa6bEYrj+gBaa2QJqXceuBb7QwTaKSJf1S4JqRjNXJ4frD+i2dlZ26NChsF5r1apV4fxRbc7s2bNzYxDXUkF6/MQTTzyx7WVv2bIljI8ePTqMR32ZQdwf2ec+F/crd8kll4Tx1Jf5pJNOCuNvvvlmbmz69OnhvJdeemkYT/WrFdVTpcZ2TH0m48aNC+OpftaOP/743Fhqm0frLus81VGVxETk2KMkJiKVpU4RRaTytCcmIpWmJCYilVbiaEdnAT+pm3Qa8D+BiZTUiYSSmIg0KHG0oxeo3dmDmY0ENgD3URuO7bvu/q2i6+hqEtu/f3/Ypc3KlSvD+Tds2JAbS10yT3Vns3379jAeXa5PlXekhhZLdeuyfPnyMP7gg/n/wM4444xw3okTJ4bxVBlEartHJ4ivuGK4zlH+YMqUKW0vOxVPdVkzcuTIMJ4q7yiyXXqtg4WslwFr3H1dmcvv3y0pIj3Twr2TU4fujc4ei4LFXgfcXfe8lE4klMREpEELtx1tG7o3OnsszlneaOBPgH/MJjXdiUSKzomJSIMOHE5eCTzl7puh1olE3bpuBR5od8HaExORw3ToBvDrqTuULLMTCe2JiUiDMvfEzGwc8Mcc3lHEX5fViYSSmIg0KPPqqbvvAaYcMe0zZS1fSUxEDtNPfYU1o6tJbN++faxbty43nqrlimqeUhs9NbRYql4q6kIoNbxXqtuWVFc+b731VhiPzJ07N4zPmzcvjKe2S6peau/evbmxiy66KJy3k7VUqTqx1LpT39VUvN8piYlIpSmJiUilKYmJSKUpiYlIZalTRBGpPO2JiUilKYmJSKUpieU47rjjOPnkk3Pja9euDeeP6rHGjBkTzhvVKzUjGmIrVUu1bdu2MD5+/PgwPmfOnDB+2WWX5cZeeeWVcN6BgYEwPnbs2DCeGk4uantqRPhUbV8RnT7nUyQJpGrYOp1gVOwqIpWnE/siUmnaExORSlMSE5HK0jkxEak8JTERqTQlMRGptKPq6qSZzQbuAk4BDgGL3f17ZjaZ2si+A9S6l/2ku7+RWFZYb/Xqq6+GbYn69Jo/f344b6qOLFWjFo07efbZZ4fznnjiiWE81V9YavzF3bt358ZS/YXt2rUrjKfGT0zVNF111VVhPDJ69Oi254W4NjD1fUiJvotFqU6sNc2k2wPAV9x9PvBB4Etmdg7wNeARd58HPJI9F5GjQAcGCumY5J6Yu2+iNi4c7r7LzFYBM4GrgYXZy+4E/g34akdaKSJdVfJAIWuBXcBB4IC7D7ZzJJenpQNfMxsA3g88DkzPEtxQosu/n0hEKqUDe2KXuPsCdx/Mnpd2JNd0EjOzCcC9wJfdfWcL8y0aGuJ8x44d7bRRRLqsC4eTV1M7giP7+bF2F9RUEjOz46glsB+6+0+zyZuHBsDMfm4Zbl53Xzw0xPnkyZPbbaeIdMlQp4jNPICpQzsp2WPRMIt04GEzW1YXL+1IrpmrkwbcBqxy9+/Uhe4HbgC+mf38ebuNEJH+0sJe1ra6Q8Q8F7v7RjM7GVhiZs8Xa93hmqkTuxj4DPCMmS3Ppt1ELXndY2afB14Frk0taOTIkWG3M+eee244/+uvv54b27mz6SPcYaW609mzZ09ubOvWreG8qS5nZs6cGca3bBl2J/f39u/fnxtLXa5PWb16dRhfsGBBGI9KPFKfWao0JSUqiyk6b7TNIb3do/iBAwfCeYuWnjSjzBP77r4x+7nFzO4DLiA7knP3TdGRXDOauTr570DeO8rvyEpEKqusJGZm44ERWWXDeOBy4K8o8UhOFfsicpiSa8CmA/dlyxsF/Mjdf2lmT9LikVweJTERaVDWbUfu/jLwvmGmb6ekIzklMRFp0C/V+M1QEhORBkpiIlJZ/XRfZDOUxESkgZJY3spGjQqHbPvoRz8azv/444/nxn7xi1+E80bd1QC85z3vCeNRbU7qJGhqWLPUsGiptkdt27hxYzhv6i6K6dOnh/GLLroojEdS9VApqVquqNunlNRnOm7cuDA+alT8pxUliX5IIP3QhmZpT0xEGhxVnSKKyLFF58REpPKUxESk0pTERKTSlMREpNKUxESksoY6RayKvkpiUV9jAJdeemlu7MILLwznTQ0H98QTT4TxX//617mx1H+tWbNmhfElS5aE8YGBgTC+Zs2a3NikSZPCeVNDl117bdy5wIwZM8J41G9Wqg+3lFSd2MiRIzsyL6T79ErNH+mHBKI9MRGpNCUxEak0JTERqSwVu4pI5fXDeblmKYmJSAPtiYlIpVUpiVVnn1FEuqLZ0b+bSXRmNtvM/tXMVpnZc2b259n0m81sg5ktzx5Xtdveo2ZPLFVjNn/+/DB+9tlnh/FPfOITubF33303nHfZsmVh/M033wzj+/btC+PnnXdebiwa9xHSNWipL2pqfMVO9ptVZPzFInVcADfeeGOh+SNF21aGEvfEDgBfcfenzOwEYJmZDRVGftfdv1V0BUdNEhOR8pSVxNx9E7Ap+32Xma0C4tGiW6TDSRFpMGLEiKYerTCzAeD9wFAXzTea2Qozu93M4ltLora2O6OIHJ1aPCc21cyW1j0W5SxzAnAv8GV33wncApwOLKC2p/btdturw0kRadDC4eQ2dx9MLOs4agnsh+7+UwB331wXvxV4oM2mak9MRBqVeHXSgNuAVe7+nbrp9T0HXAM8225btScmIg1KvDp5MfAZ4BkzW55Nuwm43swWAA6sBb7Q7gqUxESkQYlXJ/8dGG5hD5ayAppIYmY2G7gLOAU4BCx29++Z2c3AnwFbs5fe5O7JhkX9OB06dCicN6qfKXqvV+pDi8YwTI0xePnll7fVpiGpvq+ieKqOKzX2Y5HxE6WajsZOETterCYi/aVK/5ySSawbxWoi0l+qlMRa2mdsp1jNzBYN1ZBs3bp1uJeISJ8p6+pkNzSdxNotVnP3xe4+6O6D06ZNK6HJItJJZd4A3g1NXZ3sdLGaiPSXKp3YT7a0G8VqItJfjrY9sdKK1dw9vKSfKrGI4qn/HKlSgZRo+alhz1Jd6RQd/iuK79+/P5w3VWJR9D9yJ/+j98sf0dGoStu2mauTHS9WE5H+0U97Wc1Qxb6INFASE5FKUxITkco6Gm87EpFjjPbERKTSlMREpNKUxHK4e6Far1QdWSRVL1VkmKzUB56qUUu1LfW+iwyLlnrfe/fuDeOpboImTJgQxqU/KYmJSGWpTkxEKk9XJ0Wk0qq0J1addCsiXVPmDeBmdoWZvWBmq83sa2W3VUlMRA5TZn9iZjYS+DvgSuAcah1HnFNme5XERKRBiXtiFwCr3f1ld98H/Bi4usy26pyYiDQo8cT+TOC1uufrgQvLWjh0OYk9/fTT28aNG7eubtJUYFs329CCfm1bv7YL1LZ2ldm29xRdwLJlyx4ys6lNvnysmS2te77Y3RfXPR9udy0eR7BF3S52PayTfTNb6u6D3WxDs/q1bf3aLlDb2tVvbXP3K0pc3Hpgdt3zWcDGEpevc2Ii0lFPAvPMbK6ZjQauA+4vcwU6JyYiHePuB8zsRuAhYCRwu7s/V+Y6ep3EFqdf0jP92rZ+bReobe3q57YV5u4P0sHu7M291HNsIiJdpXNiIlJpPUlinb4NoQgzW2tmz5jZ8iMuHfeiLbeb2RYze7Zu2mQzW2JmL2U/J/VR2242sw3ZtltuZlf1qG2zzexfzWyVmT1nZn+eTe/ptgva1Rfbraq6fjiZ3YbwIvDH1C6/Pglc7+4ru9qQHGa2Fhh0957XFJnZh4HdwF3ufm427a+BHe7+zewfwCR3/2qftO1mYLe7f6vb7TmibTOAGe7+lJmdACwDPgZ8lh5uu6Bdn6QPtltV9WJPrOO3IRwt3P1RYMcRk68G7sx+v5PaH0HX5bStL7j7Jnd/Kvt9F7CKWuV4T7dd0C4poBdJbLjbEPrpg3TgYTNbZmaLet2YYUx3901Q+6MATu5xe450o5mtyA43e3KoW8/MBoD3A4/TR9vuiHZBn223KulFEuv4bQgFXezu/4HaXfdfyg6bpDm3AKcDC4BNwLd72RgzmwDcC3zZ3Xf2si31hmlXX223qulFEuv4bQhFuPvG7OcW4D5qh7/9ZHN2bmXoHMuWHrfn99x9s7sfdPdDwK30cNuZ2XHUEsUP3f2n2eSeb7vh2tVP262KepHEOn4bQrvMbHx2whUzGw9cDjwbz9V19wM3ZL/fAPy8h205zFCCyFxDj7ad1fqIuQ1Y5e7fqQv1dNvltatftltV9aTYNbuE/Lf84TaEb3S9EcMws9Oo7X1B7W6GH/WybWZ2N7CQWi8Hm4GvAz8D7gHmAK8C17p710+w57RtIbVDIgfWAl8YOgfV5bb9J+Ax4BlgaKiom6idf+rZtgvadT19sN2qShX7IlJpqtgXkUpTEhORSlMSE5FKUxITkUpTEhORSlMSk2GZ2UIze6DJ1w7U92Yh0k1KYiJSaUpiFWNmP8tuTn8u7wZ1M/uAmf3azH5nZk+Y2QlmNtbM/iHrK+1pM7ske+2w04P1vzdb5vLshuV5WWikmd2atethMzs+e/0CM/tt9tr7hm5uNrPTzeyX2Xt5zMzOLnEzybHE3fWo0AOYnP08ntrtKVOOiI8GXgY+kD0/kdrdB18B/iGbdja1ivWxwfSFwAPDrP/7wJ/Wret4YAA4ACzIpt8DfDr7fQXwkez3vwL+Nvv9EWBe9vuFwL/0etvqUc1HrwcKkdb9DzO7Jvt9NjAP2F4XPwvY5O5PAnjWe0N2y8v3s2nPm9k64Ewgb3qe3wB/aWazgJ+6+0u1WwJ5xd2XZ69ZBgyY2UnARHf/VTb9TuAfs14cLsp+H1rumNY3hUjvRzuSFpjZQuCPgP/o7nvM7N+o7TUd9jKG79pouC6QounDcvcfmdnjwH8GHjKz/05tz29v3csOUttDyzMCeNPdF7SybpHh6JxYtZwEvJElsLOBDw7zmueBU83sAwDZ+bBRwKPAn2bTzqR2E/QLwfRhZTfJv+zu/5tarxDn5b3W3d8C3jCzD2WTPgP8Kts7fMXMrs2WaWb2via3gchhlMSq5ZfAKDNbAfwv4LdHvsBrXX5/Cvi+mf0OWEJtb+3/UDv5/gzwE+Cz7r43mJ7nU8CzZrac2jm0uxJtvgH4m6zNC6idF4Na4vx81sbnUBfl0ib1YiEilaY9MRGpNCUxEak0JTERqTQlMRGpNCUxEak0JTERqTQlMRGpNCUxEam0/w/nTRdAuaTOXAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "shoe = np.ones(shoe.shape) * 255 - shoe\n", "plt.figure()\n", "plt.imshow(shoe, cmap=plt.cm.binary)\n", "plt.xlabel('a cool shoe')\n", "plt.colorbar()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's try our model with this changed shoe" ] }, { "cell_type": "code", "execution_count": 149, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1, 28, 28)\n" ] } ], "source": [ "# Add the image to a batch where it's the only member.\n", "shoe_batch = (np.expand_dims(shoe,0))\n", "print(shoe_batch.shape)" ] }, { "cell_type": "code", "execution_count": 150, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n", "9 Ankle boot\n" ] } ], "source": [ "predictions_single = model.predict(shoe_batch)\n", "print(predictions_single[0])\n", "print(np.argmax(predictions_single[0]), class_names[np.argmax(predictions_single[0])])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Well, not exactly, but good enough, the best would be sandal; one student got that in her prediction." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
In class discussion : How did our model perform?
\n", " \n", "**Buzzword:** Convolutional Neural Networks!\n", "\n", "Let's now try a different boot:" ] }, { "cell_type": "code", "execution_count": 151, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 151, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAAEKCAYAAAB62GIGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHjBJREFUeJzt3XuQXOV55/Hvo9FlRhdAZAArSEIEyxXjm/BOCLV4CcTGBayrMJsyBZW1IaEsUkZ22BACZqvWuLbYpWwDtmNDIowM2mBsUoCtOCwXE8cC1mB0sy4WNiqQhNBY0oiL7peZefaPcyZpaea8b0/36cs7+n2quqb7PH3OefvM9DPn8pz3NXdHRCRV41rdABGReiiJiUjSlMREJGlKYiKSNCUxEUmakpiIJE1JTESSpiQmIklTEhORpI1v5sq6u7t99uzTmrlKkWPKypUrdrp7dz3LMLPR3MbzpLtfVM/66lVXEjOzi4BvAB3Ad9z99tD7Z88+jeef/3/1rFJEAiZP7tzU5FUGE6aZzQIWA+8CBoGF7v4NM7sV+CywI3/rLe7+eD7PF4FrgAHgC+7+ZGgdNScxM+sAvg1cCGwBXjKzJe7+q1qXKSLtwcyqel8V9173Aze4+wozmwYsN7On89hd7v61o9Z7JnAF8D7gd4GfmNl73H2gaAX1nBM7G9jg7q+6+yHg+8CldSxPRNrEuHHjqnrEuHuvu6/In+8G1gOnBma5FPi+ux9099eADWS5pritVX+q4U4FXq94vWWkxpnZfDNbZmbL+vp2HB0WkTZkZlU9RrnMOcBZwIv5pAVmttrMFpnZ9HxaVXmlUj1JbKRPMGzf0t0XunuPu/d0d59Ux+pEpBmqTWB5Euse2knJH/MLljkVeAS43t13AfcAZwDzgF7gjqG3jjB78Ji1nhP7W4BZFa9nAlvrWJ6ItIlR7GX1uXtPZFkTyBLYg+7+KIC7b6uI3wv8OH856rxSz57YS8BcMzvdzCaSnYxbUsfyRKRNlHU4admb7gPWu/udFdNnVLztMmBt/nwJcIWZTTKz04G5wC9C66h5T8zd+81sAfAkWYnFIndfV+vyZGwKXb0a7TmVZopddXMfrGv5ZsX7D+2wXUpsw7nAp4E1ZrYqn3YLcKWZzSM7VNwIXAvg7uvM7GHgV2RXNq8LXZmEOuvE8rqOx+tZhoi0FzOr6spjNdz9OUY+z1WYN9z9NuC2atfR1Ip9EUlDO+wNVktJTESGURITkaQpiYlI0pTERCRZZZ7YbwYlMREZRntiMmb09x8OxkP1Tlm8ODYYKbUaHAzXao2u26vR6egIfzUmTpwYjMc6dxgMfPgqeoZoOCUxEUmakpiIJKuWHipaSUlMRIZREhORpOnqpIgkTXtiIpIsnROTpMT+WKdNm9qklrSXgYFw/cdbb70djE+YEC7B6OycNOo2DWlGCYaSmIgkTUlMRJKmE/sikiydExOR5CmJiUjSlMREJGlKYiKSNCUxaRuxP8b+/v5g/LFHnwrGX3v11WB8z969hbEPfPADwXkHB4IjdbGjb2cwvnf37sJYrNaqt/e3wfjaNWuC8WAfRMBpp80ujH31jq8E5+3q6gyvu07qFFFEkqc9MRFJmpKYiCRNSUxEkqViVxFJnpKYiCRNVydFJGnHzJ6YmW0EdgMDQL+795TRKBmdgUA91dSpk4PzvvhCuN7pjq98NRg/cPBgMH4oEH/k4X8Mznv4cHi4uMORGrd6voixeTsnhfsDC9XHAbz91luFscOHDwXnnTy58XVix0wSy13g7n0lLEdE2sSxlsREZIw5lpKYA09ZNhTz37v7whLaJCItdiyd2D/X3bea2cnA02b2srsvrXyDmc0H5gPMmjWrztWJSKOldk6srnTr7lvzn9uBx4CzR3jPQnfvcfee7u6T6lmdiDTJUCKLPapYziwz+6mZrTezdWb2l/n0E83saTN7Jf85PZ9uZvZNM9tgZqvN7MOxddScxMxsiplNG3oOfBxYW+vyRKR9lJXEgH7gBnd/L3AOcJ2ZnQncDDzj7nOBZ/LXABcDc/PHfOCe2ArqOZw8BXgs/yDjge+5+xN1LE9E2kRZh5Pu3gv05s93m9l64FTgUuD8/G0PAP8K3JRPX+xZX0kvmNkJZjYjX86Iak5i7v4q8KFa55f2sPRnS4PxCRPD4ydOjNRL7d+/vzA2OBge27GzqysYj/UJFvoi1jt242Bk/imRJGCBE+cHDoRr7048sSMULmVQylEksW4zW1bxemHRBT4zmwOcBbwInDKUmNy9Nz+vDlmCe71iti35tPKTmIiMTaPsFLGvmiJ3M5sKPAJc7+67AklypEAwMadzHVVEmqbEc2KY2QSyBPaguz+aT95mZjPy+Axgez59C1BZxjAT2BpavpKYiAxT4tVJA+4D1rv7nRWhJcBV+fOrgB9VTP9MfpXyHOCd0Pkw0OGkiIygxDqxc4FPA2vMbFU+7RbgduBhM7sG2Ax8Ko89DlwCbAD2AX8WW4GSmIgcocxiV3d/jpHPcwF8dIT3O3DdaNahJCYiw6RUsa8kloDBwfDQZZ2dxWUO27eHhzVbuyZcnzx16tRg/M033wzGDx0q7lam3i9KrEwiFI7N29FR3+ni8R3hr9Zbge22Y/v2whjAzJkzamrTaBxL906KyBikPTERSVZqN4AriYnIMEpiIpI0JTERSZpO7ItIsnROTESSpyQmpYp1WTN+fHHXLL9ctTo471uBocMADkaGZDtw4EAwHhpOrqMj2KVMsM4ri9fe64xHau+I1InFDreyYSeK7du3rzC2cuUvg/Oe9eHG94ClJCYiSVMSE5GkKYmJSLJG2SliyymJicgw2hMTkaQpiYlI0pTERCRZKnaV0nVE+qYKlUste2lZcZBwHReEh1yr1+Bg7UOuVcM9UF8XWXY9w8FBvI4sFH/pF+Hf2Z9f85lgvAxKYiKSNF2dFJFk6XBSRJKnJCYiSVMSE5GkKYmJSLJ025GIJG9M7YmZ2SLgE8B2d39/Pu1E4AfAHGAjcLm7hzumkkKxmqSJEycE41u39hbG1q1dV1ObhsT6Mov1CTbQ318Yc8LLNgsvO8as9r2J2OeK94UW/p2ecPzxhbG1a8NjgW7btiMULmXHJKUkVs1v+X7goqOm3Qw84+5zgWfy1yIyRgyVWcQe7SCaxNx9KXD0cMWXAg/kzx8APllyu0SkhVJKYrXuep7i7r0A7t5rZieX2CYRaaF2SlDVaPiJfTObD8wHmDVrVqNXJyIlSOnqZK0t3WZmMwDyn9uL3ujuC929x917urtPqnF1ItJMKR1O1prElgBX5c+vAn5UTnNEpB2klMSqKbF4CDgf6DazLcCXgNuBh83sGmAz8KlGNlJEmqedElQ1oknM3a8sCH205LYcs+oZVxJg9eriuqLYuJLjx8f6KgvXO9V17iTaZ1d49tgXLbT4wci4kxMmhGvzjg/UeVUjtN16t24Nzvvrl38TiFpnjU06ciklJbGCOtNbgc8CQwVvt7j743nsi8A1wADwBXd/MrYOVeyLyDAlnti/H/gWsPio6Xe5+9cqJ5jZmcAVwPuA3wV+Ymbvcffgf5x0LkGISNOUdU6soM60yKXA9939oLu/BmwAzo7NpCQmIkeoNoHVeci5wMxWm9kiM5ueTzsVeL3iPVvyaUFKYiIyzCiSWLeZLat4zK9i8fcAZwDzgF7gjqHVjvDe8IlTdE5MREYwir2sPnfvGc2y3X1bxXruBX6cv9wCVFbEzwTCVznQnpiIjKCRh5NDhfK5y4Chy+tLgCvMbJKZnQ7MBX4RW572xJqg0TU3zy19vjDW2Rm+4n7w4MFgPHaVKlaCEWLj6uvuJjbcXEdHcdtjv5Kurq5gvLu7OxiPlbYcOnSoMLZ//4HgvG+8Udz1EjAxOHMVyuwUsaDO9Hwzm0d2qLgRuBbA3deZ2cPAr4B+4LrYlUlQEhOREZT1j7egzvS+wPtvA24bzTqUxERkmDFVsS8ixx4lMRFJmpKYiCRrzN0ALiLHnpQ6RVQSE5FhtCd2jIn9wvsDw5YBTJkSrklav/6VYHztmjWFscmTJwfnjdUz1asj0tVPSKwGLbbdQ/FYDVqsfm7Dhg3B+L69e4PxgcBni3XNtGv37lC4lF0oJTERSZbOiYlI8pTERCRpOrEvIknTnpiIJEvnxEQkeUpiIpI0JbFjTKyup96hx773Dw8F44cCNU2xWqtQv1bVzB9re+gE8cBAeLvFxNYd6m8sNm+sTiymK1KfFxoqbzBSV/j65s2h8KTgzFVSEhORZJXZKWIzKImJyDDaExORpCmJiUjSlMREJGlKYiKSLBW7ikjyxtTVSTNbBHwC2O7u78+n3Qp8FtiRv+0Wd3+8UY2sRj3jH1YjVgsWMnVquGboH3/wWDD+4s9/HoyfMH16YWzXrl3BeWN/rLGxHWPbPbTdYv/sY8uOtT3Ul1qoTqsZQns6U6dNC8676+13QuFwR2lVSmlPrJp0ez9w0QjT73L3efmjpQlMRMrVyBHAyxb9d+TuS81sTuObIiLtoJ0SVDXqOfBdYGarzWyRmRUfz4hIclLaE6s1id0DnAHMA3qBO4reaGbzzWyZmS3r69tR9DYRaSPjxo2r6tEOamqFu29z9wF3HwTuBc4OvHehu/e4e09390m1tlNEmmjM74mZ2YyKl5cBa8tpjoi0WrUJrF2SWDUlFg8B5wPdZrYF+BJwvpnNAxzYCFzbwDaKSJO1S4KqRjVXJ68cYfJ9DWhLtCYpJDaOYD39XgGMH1+8/HHjwsv+8ZIngvHv3rcoGD/u+OOD8dBnnzhxYnDeAwcOBOOxfrUOHw73fRUS+550dnYG411d4fE6Q20/fPhwcN5YHVm954NC8w8Ohuvjph13XChc+5eowphKYiJy7FESE5FkqVNEEUleSnti6aRbEWmasq5O5sXw281sbcW0E83saTN7Jf85PZ9uZvZNM9uQF9J/uJq2KomJyDAllljcz/B7r28GnnH3ucAz+WuAi4G5+WM+WVF9lJKYiAxTVhJz96XAm0dNvhR4IH/+APDJiumLPfMCcMJRNakjavo5sVD3KlOmhLusCW2z/v7wleVYqcCePeFSgx07dhbG/uWZfwnO+8xTPwnGJ0VKCWJCpSmxspXYdonF+yPLnxQo8Qh1lQPxMoff9vYG4x2B+Y8LlylEuwGKbddY102hspj+yJBtkXKiuvukakIh6ynu3gvg7r1mdnI+/VTg9Yr3bcmnBX/ROrEvIsOM4upkt5ktq3i90N0X1rjakTJnNCkriYnIMKPYE+tz955RLn6bmc3I98JmANvz6VuAWRXvmwlsjS1M58REZJgG3zu5BLgqf34V8KOK6Z/Jr1KeA7wzdNgZoj0xETlCmefECu69vh142MyuATYDn8rf/jhwCbAB2Af8WTXrUBITkWHKSmIF914DfHSE9zpw3WjXoSQmIsPotiMRSVY79RVWjaYmsXHjjEmTiuuGNrzyanD+n7/wYmFs22+3Befdt3dvML579+5gvK+vrzC2N7LsWB3YoUOHgvHYf8X9+/cXxvbs2ROcN9YlzWCkXmpypDucKVOmFMZC7QbYvHlzMH7xJRcH4+dfcH5h7O5v3R2cN/Y7idWwxerEQknCB8M1aM0Ybk5JTESSpiQmIklTEhORpCmJiUiy1CmiiCRPe2IikjQlMRFJmpJYgX379vPLVcXj7H7xpi8G5+8IHKdPDtQjQXxIt1h8woQJhbEpk8PrrrfmKNan165duwpjsVqs2PBgof7AID5s2ttvv1MY279/X3DeG2/6m2B8wefDw51u2vRGYezbf/vt4Lwxsf7GYnVi9ZxzCtVaAuEVV0HFriKSPJ3YF5GkaU9MRJKmJCYiydI5MRFJnpKYiCRNSUxEkjamrk6a2SxgMfAushqUhe7+DTM7EfgBMAfYCFzu7m+FlrWzbyeL719cGN/6RnFdD8Cs2bMLY7E+vWJ1YLG6n9AYibGaoFit1oED4TEvY/HQ+mOfa9y48H/cUH0cwM5AP2sAXYHt9q27/zY478cuvCAYj3w09uwprp+rd1zJRu6pxNo2Pvw7SWHcyVJVk277gRvc/b3AOcB1ZnYmxUORi0jiGjzaUamiSczde919Rf58N7CebFTeoqHIRSRxKSWxUZ0TM7M5wFnAixQPRS4iiWuXBFWNqpOYmU0FHgGud/dd1X5IM5sPzAeYNnVaLW0UkSZLKYlVdQnCzCaQJbAH3f3RfPK2fAhyjhqK/AjuvtDde9y9p6ur+CSviLSHoU4Rq3m0g2grLEvJ9wHr3f3OilDRUOQikrixdk7sXODTwBozW5VPu4XiocgLTeqcxLvnvrswvnr16uD827YVD8sW61ImVkoQE7ucX4962xYc/ivS8Fh8+/YRd7D/zZw5pwXjX//m1wtj7//Ae4Pzvv12eBi9448Pn57o6CguRYjtRcTi9ZbshOaPJYdx1vg9oHZJUNWIJjF3fw4o+kTDhiIXkfSNqSQmIseWdjpUrIaSmIgM0y4n7auhJCYiw2hPTESSpiQmIsnSOTERSZ6SWIGTTz6Jzy0oHmbrjz/2x8H5l/7s2cLY8mXLg/Nu2rgpGH/77WAvQhwKDJsW64qnXrGao3p0RIaLO++P/igYv/GmG4Lx0wJ1ZJs2h7teitViDUa2y65dxXVmb+7cGZz3YGSYvYmRLopiv7OJgaHw3nwr/Lc4MNAfjJdBSUxEklbm1Ukz2wjsBgaAfnfvqaU/wiLpXEcVkaao9pajUe6tXeDu89y9J39dWn+ESmIiMkwT7p0srT9CJTERGWYUSazbzJZVPOaPsDgHnjKz5RXxI/ojBGruj1DnxERkmFHsZfVVHCIWOdfdt+Ydpz5tZi/X17ojaU9MRIYp83DS3bfmP7cDjwFnU2V/hNVQEhORI5TZKaKZTTGzaUPPgY8DaymxP8KmHk4ODg6yd2/x8GUzZ54anP+KKy8vjF348XCvQJs2bQ7Gf/PrV4Lxja+9Vhjb+sbW4Lw7IzVJhw8fDsbjdWih/4jheqUPzftQMH7Zn/yXYHxCoN4JYPu2HYWxSZ2TgvPGeKQPuZNO6i6MXX3NNcF5Y0O2TZwYrhOLfcEnTSr+7F1dncF5//CccwpjN970V+8EZ65SiXVipwCP5csbD3zP3Z8ws5cYZX+ERXROTESGKSuJufurwLD/lO6+k5L6I1QSE5FhVLEvIsnSDeAikjx1iigiSdOemIgkTUlMRJKlc2IBZsaECbWvMtRHU6zGbPbsmcH4eeedG4z39xfXDR06FK7zOnSouC8ygMOHwzVJ9fRXNn58uE+uzkhNkgVr0Ij+PkN9gjWynzSA446bWhj76xu/0NB1N1LobxH8QBnrUBITkaQpiYlI0nR1UkSSpXNiIpI8JTERSZqSmIgkTUlMRJI2ppKYmc0CFgPvAgaBhe7+DTO7FfgsMNRh1C3u/nhoWe6Nqw2K9f8UCUeFfqmTJoX71OrqCvebFfuDqecPKra9BwbCNWix+ePLr33Dx5Yd2y6hdR8MjCPaau7h30nkymHdlxWHOkVMRTV7Yv3ADe6+Iu+hcbmZPZ3H7nL3rzWueSLSCmNqTywfiWRoVJLdZrYeCJfHi0jSUkpio9pnNLM5wFnAi/mkBWa22swWmdn0gnnmDw3n1NdX3FWxiLSPJow7WZqqk5iZTQUeAa53913APcAZwDyyPbU7RprP3Re6e4+793R3n1RCk0WkkRo0AnjDVHV10swmkCWwB939UQB331YRvxf4cUNaKCJNl9KJ/WhLLUu39wHr3f3OiukzKt52GdkwTCIyBoy1PbFzgU8Da8xsVT7tFuBKM5tHNibYRuDahrSwSvVu0HpKCfr7w13xtDOz+v7jNvIPud5lh+YPdRHUenW1rZQapnZJUNWo5urkc4w8sGGwJkxE0tROe1nVUMW+iAyjJCYiSVMSE5FkjcXbjkTkGKM9MRFJmpKYiCRNSSxB9fzSzNq55khk9JTERCRZqhMTkeTp6qSIJC2lPbF00q2INE2ZN4Cb2UVm9msz22BmN5fdViUxETlCmf2JWXbV69vAxcCZZB1HnFlme5XERGSYEvfEzgY2uPur7n4I+D5waZlt1TkxERmmxBP7pwKvV7zeAvxhWQuHJiexlStX9E2e3LmpYlI30NfMNoxCu7atXdsFalutymzbafUuYPny5U+aWXeVb+80s2UVrxe6+8KK1yPtrpU6bmNTk5i7H9HJvpktc/eeZrahWu3atnZtF6httWq3trn7RSUubgswq+L1TGBricvXOTERaaiXgLlmdrqZTQSuAJaUuQKdExORhnH3fjNbADxJ1u/2IndfV+Y6Wp3EFsbf0jLt2rZ2bReobbVq57bVzd0fp4Hd2VtsgAwRkXamc2IikrSWJLFG34ZQDzPbaGZrzGzVUZeOW9GWRWa23czWVkw70cyeNrNX8p/T26htt5rZG/m2W2Vml7SobbPM7Kdmtt7M1pnZX+bTW7rtAu1qi+2WqqYfTua3IfwGuJDs8utLwJXu/qumNqSAmW0Eety95TVFZnYesAdY7O7vz6d9BXjT3W/P/wFMd/eb2qRttwJ73P1rzW7PUW2bAcxw9xVmNg1YDnwSuJoWbrtAuy6nDbZbqlqxJ9bw2xDGCndfCrx51ORLgQfy5w+QfQmarqBtbcHde919Rf58N7CerHK8pdsu0C6pQyuS2Ei3IbTTL9KBp8xsuZnNb3VjRnCKu/dC9qUATm5xe462wMxW54ebLTnUrWRmc4CzgBdpo213VLugzbZbSlqRxBp+G0KdznX3D5PddX9dftgk1bkHOAOYB/QCd7SyMWY2FXgEuN7dd7WyLZVGaFdbbbfUtCKJNfw2hHq4+9b853bgMbLD33ayLT+3MnSOZXuL2/Nv3H2buw+4+yBwLy3cdmY2gSxRPOjuj+aTW77tRmpXO223FLUiiTX8NoRamdmU/IQrZjYF+DiwNjxX0y0BrsqfXwX8qIVtOcJQgshdRou2nWV9xNwHrHf3OytCLd12Re1ql+2WqpYUu+aXkL/Ov9+GcFvTGzECM/s9sr0vyO5m+F4r22ZmDwHnk/VysA34EvBD4GFgNrAZ+JS7N/0Ee0Hbzic7JHJgI3Dt0DmoJrftI8CzwBpgMJ98C9n5p5Ztu0C7rqQNtluqVLEvIklTxb6IJE1JTESSpiQmIklTEhORpCmJiUjSlMTaTN6LRrWDNFS7zKvN7FslLOcEM/tcIP6FvIeGB+tdVyOUtR2kvSiJlcQyY317ngAUJrE8dom7/2nlRDNrdQ/CMoaN9S9dQ5nZnHzP425gBTDLzO4xs2V5f1FfrnjvRjP7spmtyPsr+/18+u+Y2VNmttLM/p6Ke0vN7K/MbG3+uL5inS+b2Xfy6Q+a2cfM7Pm8n6yiW1ZmmdkTlvXj9qXQOgLTbwfOyPu8+upR2+LvgN8DlpjZf8v7yFpoZk8Bi82s08y+m3/2lWZ2QT7f1Wb2QzP7JzN7zcwW5OteaWYvmNmJR62nw8xezf9pnGBmg0P3t5rZs2b27vzOi0Vm9lK+nMpeUkbcDpIwd9ejxgcwh6zy+pyKaSfmPzuAfwU+mL/eCHw+f/454Dv5828C/yN//p/Jqra7gf9AVtk9BZgKrCPr9WAO0A98gOyf0HJgEVnyuxT44QjtvJrsxuLfAbrIbmvpCawjtO61ge2xEejOn9+at60rf30D8N38+e+TVcx35m3bAEwDTgLeAf4if99dZDdJH72eJ4D3AZ8gu43tvwOTgNfy+P8C/mv+/ASy/uumFG2HVv8d6VHfQ3ti9dvk7i9UvL7czFYAK8m+aGdWxIZuRF5OlhAAzgP+AcDd/xl4K5/+EeAxd9/r7nvyef9THnvN3dd4dsPwOuAZz76xayqWe7Sn3X2nu+/Pl/WRwDpC6x6NJfn6hj7P/8k/58vAJuA9eeyn7r7b3XeQJbF/yqcXfZ5nybbbecD/zpf9B2QJDbJ7Xm82s1Vk/0g6yW41KtoOkjAlsfrtHXpiZqcDfw181N0/CPwz2RdoyMH85wBHjjQ10r1fI3VZdPRyINsTPFjxvOj809Hr8MA6Qusejb0Vz8v8PM+SJdWzyUbROYHsvs2lFev6E3eflz9mu/v6PDbSdpCEKYmV6ziyL+47ZnYKWZ9kMUuBPwUws4uB6RXTP2lmk/MeNS4j+/LW6kLL+pjvIuvR9PnAOoqm7yY77KtF5ed8D9me0a9rXNaLwH8EBt39ALAKuJZ/3z5PAp/Pe43AzM6qmHek7SAJ01WjErn7L81sJdkh3qtU9wX5MvBQfgj6M7JzRXjWD/v9wC/y933H3Vda1iNoLZ4jO5x7N1nvHMsARlpHZPrzlg0O8n/d/cZRrP9u4O/MbA3ZOb2r3f1gnmdGJZ/vdWDoMP5Zsp4g1uSv/ydZLymr80S2kez8GRRsB0mXerEQkaTpcFJEkqYkJiJJUxITkaQpiYlI0pTERCRpSmIikjQlMRFJmpKYiCTt/wPqGx7viEL80AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "boot = np.array(Image.open('../fig/random_boot.png'))\n", "plt.figure()\n", "plt.imshow(boot, cmap=plt.cm.binary)\n", "plt.xlabel('random boot from web')\n", "plt.colorbar()" ] }, { "cell_type": "code", "execution_count": 152, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(28, 28)" ] }, "execution_count": 152, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# make into one channel\n", "boot = boot[:,:,0]\n", "boot.shape" ] }, { "cell_type": "code", "execution_count": 153, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(28, 28)\n" ] } ], "source": [ "boots = (np.expand_dims(boot,0))\n", "print(boot.shape)" ] }, { "cell_type": "code", "execution_count": 172, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n", " 2.7374996e-24 0.0000000e+00 1.0000000e+00 3.6208326e-32 9.4738127e-11]\n", "7 Sneaker\n" ] } ], "source": [ "predictions_single = model.predict(boots)\n", "print(predictions_single[0])\n", "print(np.argmax(predictions_single[0]), class_names[np.argmax(predictions_single[0])])" ] }, { "cell_type": "code", "execution_count": 157, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "We did better this time!\n" ] } ], "source": [ "# if it's either a sneaker or a boot we are good\n", "if np.argmax(predictions_single[0]) in [7,9]: print(f'We did better this time!')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Regularization\n", "Let's try adding a regularizer in our model. For more see `tf.keras` [regularizers](https://www.tensorflow.org/api_docs/python/tf/keras/regularizers).
\n", "\n", "1. Norm penalties: `kernel_regularizer= tf.keras.regularizers.l2(l=0.1)`\n", "2. Early stopping via `tf.keras.callbacks`. Callbacks provide a way to interact with the model while it's training and inforce some decisions automatically. Callbacks need to be instantiated and are added to the `.fit()` function via the `callbacks` argument.\n", "3. Dropout" ] }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 40199 samples, validate on 19801 samples\n", "Epoch 1/50\n", "40199/40199 - 5s - loss: 2.6520 - accuracy: 0.7177 - val_loss: 0.9317 - val_accuracy: 0.7763\n", "Epoch 2/50\n", "40199/40199 - 4s - loss: 1.0647 - accuracy: 0.7302 - val_loss: 1.4198 - val_accuracy: 0.6379\n", "Epoch 3/50\n", "40199/40199 - 4s - loss: 1.0388 - accuracy: 0.7340 - val_loss: 1.2246 - val_accuracy: 0.6660\n", "Epoch 4/50\n", "40199/40199 - 4s - loss: 1.0125 - accuracy: 0.7390 - val_loss: 0.9323 - val_accuracy: 0.7721\n", "Epoch 5/50\n", "40199/40199 - 4s - loss: 1.0084 - accuracy: 0.7401 - val_loss: 1.2886 - val_accuracy: 0.6326\n", "Epoch 6/50\n", "40199/40199 - 4s - loss: 1.0013 - accuracy: 0.7385 - val_loss: 1.1757 - val_accuracy: 0.6909\n", "Epoch 7/50\n", "40199/40199 - 4s - loss: 0.9864 - accuracy: 0.7453 - val_loss: 1.0294 - val_accuracy: 0.7437\n", "Epoch 8/50\n", "40199/40199 - 4s - loss: 0.9900 - accuracy: 0.7432 - val_loss: 0.9308 - val_accuracy: 0.7728\n", "Epoch 9/50\n", "40199/40199 - 4s - loss: 0.9877 - accuracy: 0.7418 - val_loss: 1.5178 - val_accuracy: 0.5823\n", "Epoch 10/50\n", "40199/40199 - 3s - loss: 1.0050 - accuracy: 0.7404 - val_loss: 1.1217 - val_accuracy: 0.7037\n", "Epoch 11/50\n", "40199/40199 - 4s - loss: 0.9929 - accuracy: 0.7413 - val_loss: 1.0637 - val_accuracy: 0.6975\n", "Epoch 12/50\n", "40199/40199 - 4s - loss: 0.9952 - accuracy: 0.7441 - val_loss: 1.0190 - val_accuracy: 0.6955\n", "Epoch 13/50\n", "40199/40199 - 3s - loss: 0.9690 - accuracy: 0.7490 - val_loss: 1.0681 - val_accuracy: 0.6973\n", "Epoch 14/50\n", "40199/40199 - 4s - loss: 0.9784 - accuracy: 0.7471 - val_loss: 0.9325 - val_accuracy: 0.7420\n", "Epoch 15/50\n", "40199/40199 - 4s - loss: 0.9663 - accuracy: 0.7455 - val_loss: 0.9807 - val_accuracy: 0.7505\n", "Epoch 16/50\n", "40199/40199 - 4s - loss: 0.9591 - accuracy: 0.7469 - val_loss: 1.0491 - val_accuracy: 0.7014\n", "Epoch 17/50\n", "40199/40199 - 4s - loss: 0.9707 - accuracy: 0.7461 - val_loss: 0.9409 - val_accuracy: 0.7291\n", "Epoch 18/50\n", "40199/40199 - 4s - loss: 0.9733 - accuracy: 0.7467 - val_loss: 1.0317 - val_accuracy: 0.7103\n", "Epoch 19/50\n", "40199/40199 - 4s - loss: 0.9743 - accuracy: 0.7451 - val_loss: 0.9768 - val_accuracy: 0.7537\n", "Epoch 20/50\n", "40199/40199 - 4s - loss: 0.9638 - accuracy: 0.7446 - val_loss: 1.1004 - val_accuracy: 0.6942\n", "Epoch 21/50\n", "40199/40199 - 4s - loss: 0.9686 - accuracy: 0.7440 - val_loss: 1.2571 - val_accuracy: 0.6854\n", "Epoch 22/50\n", "40199/40199 - 4s - loss: 0.9535 - accuracy: 0.7489 - val_loss: 0.9024 - val_accuracy: 0.7748\n", "Epoch 23/50\n", "40199/40199 - 4s - loss: 0.9529 - accuracy: 0.7490 - val_loss: 0.9575 - val_accuracy: 0.7711\n", "Epoch 24/50\n", "40199/40199 - 4s - loss: 0.9643 - accuracy: 0.7444 - val_loss: 0.9397 - val_accuracy: 0.7550\n", "Epoch 25/50\n", "40199/40199 - 4s - loss: 0.9661 - accuracy: 0.7471 - val_loss: 1.7217 - val_accuracy: 0.5002\n", "Epoch 26/50\n", "40199/40199 - 3s - loss: 0.9625 - accuracy: 0.7457 - val_loss: 1.0638 - val_accuracy: 0.7241\n", "Epoch 27/50\n", "40199/40199 - 4s - loss: 0.9605 - accuracy: 0.7429 - val_loss: 0.9840 - val_accuracy: 0.7463\n", "Epoch 28/50\n", "40199/40199 - 4s - loss: 0.9574 - accuracy: 0.7464 - val_loss: 0.9174 - val_accuracy: 0.7680\n", "Epoch 29/50\n", "40199/40199 - 4s - loss: 0.9442 - accuracy: 0.7509 - val_loss: 0.9042 - val_accuracy: 0.7563\n", "Epoch 30/50\n", "40199/40199 - 4s - loss: 0.9364 - accuracy: 0.7510 - val_loss: 0.9537 - val_accuracy: 0.7506\n", "Epoch 31/50\n", "40199/40199 - 4s - loss: 0.9459 - accuracy: 0.7507 - val_loss: 1.2036 - val_accuracy: 0.6440\n", "Epoch 32/50\n", "40199/40199 - 3s - loss: 0.9669 - accuracy: 0.7425 - val_loss: 0.8378 - val_accuracy: 0.7792\n", "Epoch 33/50\n", "40199/40199 - 4s - loss: 0.9670 - accuracy: 0.7424 - val_loss: 0.9400 - val_accuracy: 0.7351\n", "Epoch 34/50\n", "40199/40199 - 4s - loss: 0.9599 - accuracy: 0.7454 - val_loss: 1.1212 - val_accuracy: 0.6596\n", "Epoch 35/50\n", "40199/40199 - 4s - loss: 0.9547 - accuracy: 0.7468 - val_loss: 0.8319 - val_accuracy: 0.7840\n", "Epoch 36/50\n", "40199/40199 - 4s - loss: 0.9484 - accuracy: 0.7481 - val_loss: 0.9867 - val_accuracy: 0.6978\n", "Epoch 37/50\n", "40199/40199 - 4s - loss: 0.9706 - accuracy: 0.7417 - val_loss: 1.0093 - val_accuracy: 0.7357\n", "Epoch 38/50\n", "40199/40199 - 4s - loss: 0.9364 - accuracy: 0.7497 - val_loss: 0.8835 - val_accuracy: 0.7536\n", "Epoch 39/50\n", "40199/40199 - 4s - loss: 0.9294 - accuracy: 0.7500 - val_loss: 0.9051 - val_accuracy: 0.7595\n", "Epoch 40/50\n", "40199/40199 - 4s - loss: 0.9471 - accuracy: 0.7453 - val_loss: 1.0749 - val_accuracy: 0.7112\n", "Epoch 41/50\n", "40199/40199 - 4s - loss: 0.9329 - accuracy: 0.7490 - val_loss: 1.1296 - val_accuracy: 0.6971\n", "Epoch 42/50\n", "40199/40199 - 4s - loss: 0.9469 - accuracy: 0.7468 - val_loss: 0.8840 - val_accuracy: 0.7557\n", "Epoch 43/50\n", "40199/40199 - 4s - loss: 0.9208 - accuracy: 0.7519 - val_loss: 0.9376 - val_accuracy: 0.7614\n", "Epoch 44/50\n", "40199/40199 - 4s - loss: 0.9374 - accuracy: 0.7470 - val_loss: 0.8816 - val_accuracy: 0.7590\n", "Epoch 45/50\n", "40199/40199 - 4s - loss: 0.9442 - accuracy: 0.7456 - val_loss: 0.9593 - val_accuracy: 0.7444\n", "Epoch 46/50\n", "40199/40199 - 4s - loss: 0.9600 - accuracy: 0.7487 - val_loss: 0.8555 - val_accuracy: 0.7755\n", "Epoch 47/50\n", "40199/40199 - 4s - loss: 0.9480 - accuracy: 0.7448 - val_loss: 0.8525 - val_accuracy: 0.7757\n", "Epoch 48/50\n", "40199/40199 - 4s - loss: 0.9248 - accuracy: 0.7484 - val_loss: 0.9819 - val_accuracy: 0.7089\n", "Epoch 49/50\n", "40199/40199 - 3s - loss: 0.9479 - accuracy: 0.7435 - val_loss: 1.1471 - val_accuracy: 0.6752\n", "Epoch 50/50\n", "40199/40199 - 4s - loss: 0.9320 - accuracy: 0.7458 - val_loss: 1.0043 - val_accuracy: 0.7126\n" ] } ], "source": [ "# callbacks\n", "# watch validation loss and be \"patient\" for 50 epochs of no improvement\n", "es = tf.keras.callbacks.EarlyStopping(monitor='val_loss', verbose=1, patience=10)\n", "\n", "model_regular = tf.keras.models.Sequential([\n", " tf.keras.layers.Flatten(input_shape=(28, 28)),\n", " tf.keras.layers.Dense(154, activation='relu', \n", " kernel_regularizer= tf.keras.regularizers.l2(l=0.1)),\n", " tf.keras.layers.BatchNormalization(),\n", " tf.keras.layers.Dropout(0.4),\n", " tf.keras.layers.Dense(64, activation='relu', \n", " kernel_regularizer= tf.keras.regularizers.l2(l=0.1)),\n", " tf.keras.layers.BatchNormalization(),\n", " tf.keras.layers.Dense(10, activation='softmax')\n", "])\n", "\n", "# compile\n", "loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()\n", "optimizer = tf.keras.optimizers.Adam()\n", "\n", "model_regular.compile(optimizer=optimizer,\n", " loss=loss_fn,\n", " metrics=['accuracy'])\n", "# fit\n", "history_regular = model_regular.fit(x_train, y_train, validation_split=0.33, epochs=50, \n", " verbose=2) #, callbacks=[es])\n", " " ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Test accuracy for regularized model=0.7746999859809875\n" ] } ], "source": [ "test_loss, test_accuracy = model_regular.evaluate(x_test, y_test, verbose=0)\n", "print(f'Test accuracy for regularized model={test_accuracy}')" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJkAAAGDCAYAAACIv8FxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd8nmXZ//HPmT3bpBld6aRQWmgpHVD2VpYsEREUUAFRVEB4FBV9wPE8Po6fk6EgIsqQJRtkFbFQKF3QXdrSNqNt0pU2q1nn74/zupo0zbj3SL7v1yuvK7mvdWQ0ve8jx3GcxlqLiIiIiIiIiIhIOFLiHYCIiIiIiIiIiCQ/JZlERERERERERCRsSjKJiIiIiIiIiEjYlGQSEREREREREZGwKckkIiIiIiIiIiJhU5JJRERERERERETCpiSTyABhjLHGmAkhnjvaGFNnjEmNcEwbjDGnR/KakbqnMWas9zVLi0VcIiIiIt3Rc7jg7tnXc7h4xC4ykCjJJBJD3n9qjd5/9luMMQ8YY/LiHVdfrLWbrLV51tq2WN3T+9pYY8x5XR7/jff4VbGKRURERAY2PYcLnJ7DiQxsSjKJxN6nrLV5wDTgSOC7cY6nV3Gu5FkDXNklls8A6+IWUQIwjn5/i4iIxJaewwVOz+FEBii9SBGJE2vtFuBfuCcqABhjMo0xvzTGbDLGbDXG3GOMye60/9vGmM3GmCpjzNWdy6eNMW8aY67udOxVxpi53d3bGHOOMWaxMWa3MabcGHN7p31+ifGXjTGbgDc6lx0bY47x/ornvzUZYzZ456YYY241xqwzxmw3xjxmjBnS6dpfMMZs9PZ9P4Av03PAccaYQu/jM4EPgS2drplijLnNu261MeZBY8zgQO7ZV7y96XTeHmPMCmPMhV32X2OMWdlp/3Tv8VHGmKeMMTXePf/gPX67Mebv3Xwf0ryP3zTG/NQY8zbQAIw3xnyx0z3WG2O+0iWG840xS7zv8zpjzJnGmM8YYxZ2Oe5mY8zTgXzeIiIiA52ewyX3c7gu18k0rsKqynv7jTEm09tXbIx53hizyxizwxjzH+P9kc8Y8x1jTKX3HGy1Mea0YO8t0l8pySQSJ8aYMuAsYG2nh/8POAT3pGUCMBL4oXf8mcC3gNO9fSeFcft64AqgADgH+Kox5oIux5wETAI+2flBa+08r+w6DygE3gUe8XZ/E7jAO3cEsBO404t/MnA38AVvXxFQ1kecTcCzwKXex1cAD3Y55irv7RRgPJAH+Imbvu7ZY7wBWAecAAwG7gD+bowZ7t33M8DtXryDgPOA7cbNQ3ge2AiMxX1/Hw3wfnifx7VAvneNauBc7x5fBH7dKZl1FO5r9V+47/OJwAbc13OcMWZSp+t+HvhbEHGIiIgMWHoOl/TP4Tr7PjAb9307AjgKuM3bdzNQAZQAQ4HvAdYYMxH4OjDLWpuP+zpvCOHeIv2TtVZvetNbjN5w/wHVAXsAC7wOFHj7DO6Jw0Gdjj8G+Nh7/37gfzvtm+BdY4L38ZvA1Z32XwXM7fTxvmO7ies3wK+998d6x47vtN9/LK3LeXcDLwAp3scrgdM67R8OtABpuCdaj3balws0A6f3ENMDwE+A44F5uGTOViAbmAtc5R33OvC1TudNDPSefcTb7efcy/d2CXC+9/6/gBu6OeYYoKa7a+KSUn/v6WvufX9/1EcMT/v3Bf7of0+7Oe5u4Kfe+4fhnphlxvvfh970pje96U1vifqGnsP1m+dw3vfSv8464OxO+z4JbPDe/xHwTNevvff9q8YlDdPj/bOpN70l2psqmURi7wLr/upxMnAoUOw9XgLkAAu9stxdwMve4+D+SlPe6Tqd3w+KMeZoY8wc41q2aoHrOsUR0PW91qyTgcuste3ew2OAf3aKfyXQhvvrz37xW2vrge19xWqtnYv7GtwGPG+tbexyyAhcVY9vI+4JRiD37C3eXhljrvBa0fxzD6fjaziK7mcOjAI2Wmtb+7p+D/b7nhhjzjLGvOuVcO8Czg4gBoC/ApcZYwzuL4SPWWv3hhiTiIjIQKHncCT/c7gAYhjhvf8LXLXaK8aNJbjVi2UtcCPuD4TVxphHjTEjEBFA7XIicWOt/TfuLz2/9B7aBjQCh1lrC7y3wdaVNANsZv8y4VFdLlmPe4LjG9bL7R/GlTCPstYOBu7B/RVuvxB7OtkYcwLwY1zlTm2nXeXAWZ3iL7DWZllrK734R3W6Rg6u9DkQf8eVLHctswaowj3R8I0GWnF/Mevrnr3F2yNjzBjgXlypdJG1tgBYRsfXsBw4qJtTy4HRpvtBnIF8//Z9T7x5AU/ifn6GejG8GEAMWGvfxf018ATgMtQqJyIiEjA9h0ve53ABxlAFYK3dY6292Vo7HvgU8C1/9pK19mFr7fHeuRbXLikiKMkkEm+/Ac4wxkzz/pJ0L26uTimAMWakMcbvp38M+KIxZpL3H+0Pu1xrCXCRMSbHuEGSX+7lvvnADmttkze757JAAzbGjAL+AVxhrV3TZfc9wE+9JAzGmBJjzPnevieAc40xxxtjMnAlyIH+DvodcAbwVjf7HgFuMsaMM24p4f8B/uFVC/V1z97i7U0u7glFjXfeF3GVTL77gFuMMTOMM8G7x3zck6afGWNyjTFZxpjjvHOWACcaY0YbN/SyrxVrMoBML4ZWY8xZwCc67f8z7uflNG845khjzKGd9j+Im3vQ6v2lUURERAKn53CBSbTncN3FcJt3fjHue/N375rnes/hDLAbVynVZoyZaIw51fuDXxMuwdgWwr1F+iUlmUTiyFpbg3ux/wPvoe/gynLfNcbsBl7D9adjrX0J9x/1HO+Yed45fpvTr3HVKVtx7VAP9XLrrwE/Msbswf1n+lgQYZ+G+wvbE6ZjdZLl3r7f4v669op37XeBo734lwPX4/4Ctxk3B6gikBtaa3dYa1+31nb3l7n7cZU4bwEf4/6z/0aA9+wx3j7iWQH8Cvc92ApMAd7utP9x4KfefffgZiUNsda24f4SNgHY5MXyWe+cV3FP/D4EFuIGhPcWwx7c0MvHvM/rMu9z8ffPxxsGDtQC/2b/v9T9DZcYUxWTiIhIkPQcLjmfw3XjJ8AC3POvpcAi7zGAg3Hfxzrc9+wua+2buD/y/QxXwbYFKMUNBRcRwHT/711EEp1xq4Mtww1sDnXGjwxQxi2rXA1Mt9Z+FO94REREBgo9hxOR/kyVTCJJxBhzoTEmwxhTiOv9fk5PTiREXwXeV4JJREQk+vQcTkQGCiWZRJLLV3AzeNbher+/Gt9wJBkZYzYAN+AGcYqIiEj06TmciAwIapcTEREREREREZGwqZJJRERERERERETCpiSTiIiIiIiIiIiELS3eAURKcXGxHTt2bLzDEBERkShauHDhNmttSbzjkA56DiYiItK/BfP8q98kmcaOHcuCBQviHYaIiIhEkTFmY7xjkP3pOZiIiEj/FszzL7XLiYiIiIiIiIhI2JRkEhERERERERGRsCnJJCIiIiIiIiIiYes3M5m609LSQkVFBU1NTfEOJeqysrIoKysjPT093qGIiIiIiIiI9BsDJbcQibxCv04yVVRUkJ+fz9ixYzHGxDucqLHWsn37dioqKhg3bly8wxERERERERHpNwZCbiFSeYV+3S7X1NREUVFRv/0h8BljKCoq6vdZVREREREREZFYGwi5hUjlFfp1kgno1z8EnQ2Uz1NEREREREQk1gbCa+5IfI79PskUb7t27eKuu+4K+ryzzz6bXbt2RSEiEREREREREUkWyZRXUJIpynr6YWhra+v1vBdffJGCgoJohSUiIiIiIiIiSSCZ8gr9evB3Irj11ltZt24d06ZNIz09nby8PIYPH86SJUtYsWIFF1xwAeXl5TQ1NXHDDTdw7bXXAjB27FgWLFhAXV0dZ511FscffzzvvPMOI0eO5JlnniE7OzvOn5mIiIiIiIiIRFsy5RUGTJLpjueWs6Jqd0SvOXnEIP77U4f1eszPfvYzli1bxpIlS3jzzTc555xzWLZs2b5p7ffffz9DhgyhsbGRWbNm8elPf5qioqL9rvHRRx/xyCOPcO+993LJJZfw5JNP8vnPfz6in4uIiIiIiIiI9C4euYVkyiuoXS7GjjrqqP2WA/zd737HEUccwezZsykvL+ejjz464Jxx48Yxbdo0AGbMmMGGDRtiFa6I9FcNO2BXebyjEBHp0cfb6pmzujreYYiIiCScRM4rDJhKpr4qjmIlNzd33/tvvvkmr732GvPmzSMnJ4eTTz652+UCMzMz972fmppKY2NjTGIVkX7s+Rth/b/hK29B4Zh4RyMicoAnFpZz95vrWPc/Zw+IFX1ERCQ5JEJuIZHzCqpkirL8/Hz27NnT7b7a2loKCwvJyclh1apVvPvuuzGOTkQGrPL50LQLHrsCWg78T0hEJN5yMtJot7C3tT3eoYiIiMRVMuUVBkwlU7wUFRVx3HHHcfjhh5Odnc3QoUP37TvzzDO55557mDp1KhMnTmT27NlxjFREBozdm2HPZphwOqx9DV7+Dnzqt/GOSkRkP9npqQA0NreR5b0vIiIyECVTXkFJphh4+OGHu308MzOTl156qdt9fn9kcXExy5Yt2/f4LbfcEvH4RGSA2bzEbU+4BYYeDm//BkbNhmmfi29cIiKd5Ga6xFJDSxuFcY5FREQk3pIlr6Akk4jIQFO1BEwKDJsCZbOgciE8fxMMnwpD499jHlPVKyE1A4oOinckItJFdoZ7mtrY3BrnSERERCRQmskkIjLQVC2G4omQmQepaXDx/ZA1GP7xBWiqjXd0sdO4E+4/E/5yFjTuinc0ItJFjtci19DcFudIREREJFBKMomIDCTWuiTTiCM7Hssrhc/8BXZugGeud8cMBG/90iXV6mvg1R/GOxoR6SInQ0kmERGRZKMkk4jIQLK7Cuqr908yAYw5Fs64A1Y+B/P+EJ/YYmnHenjvj3Dk5XDM9bDor7BhbryjEpFOsjM6Bn+LiIhIclCSSURkIKla7LZdk0wAx3wdJn0KXv1v2PhObOOKtdduh9R0OOU2OPl7UDgWnv0mtDTFOzIR8eR4M5nqNZNJREQkaSjJJCIykFQtBpMKww4/cJ8xcP6dLuHy+FWwZ2uso4uNTe/CimfguBtg0HDIyIFzfwM71sFbP493dCLiUbuciIhI8lGSKcHk5eXFOwQR6c82L4HSSZCe3f3+rMHw2b9B02544kvQ1s8qCKyFf30f8obBsd/oePygU2Da5fD2b2HL0vjFJyL7qF1OREQkNPHMKyjJJCIyUOwb+j2t9+OGHgbn/ho2zoU3fhyb2GJl+VNQuQBOvQ0ycvff94mfQHYhPPsNaNeL2pCtfE5thxIRqmQSERFJPkoyRdl3vvMd7rrrrn0f33777dxxxx2cdtppTJ8+nSlTpvDMM8/EMUIRGTBqy6Fhe/fzmLqa9jmYcRW8/RvYuiLqocVES5ObxTT0cJh22YH7c4bAWf/nEnHv3RPz8PqFj16Df3we3r0z3pFIP5CV5lcy9bOKShERkSAlU14hLd4BxMxLt0a+BWLYFDjrZ70ecumll3LjjTfyta99DYDHHnuMl19+mZtuuolBgwaxbds2Zs+ezXnnnYcxJrLxiYh01tvQ7+7M/BIsfAC2r4Whk6MWVszM/yPs2gRfeBpSUrs/5rCL4MPH4I2fwKHnuPlUEpj6bfD0V6F0Msy+Pt7RSD+QkmLITk9VJZOIiCSWOOQWkimvMHCSTHFy5JFHUl1dTVVVFTU1NRQWFjJ8+HBuuukm3nrrLVJSUqisrGTr1q0MGzYs3uGKSH9WtRhS0l0lTyByS922vjp6McVK/XZ461cw4Qw3f6knxsA5v4I7j4bnb4LPP+Uek95ZC898HZpq4YqnIT0r3hFJP5GTkUpDi5JMIiIysCVTXmHgJJn6qDiKposvvpgnnniCLVu2cOmll/LQQw9RU1PDwoULSU9PZ+zYsTQ1aX6FiERZ1WI39DstM7Djc4vdtq4mejHFyr//D5r3wCcCmDE1uAxO+2946b9cVdMRn41+fMluwf2w5iU482duppdIhGRnpGrwt4iIJJY45RaSJa+gmUwxcOmll/Loo4/yxBNPcPHFF1NbW0tpaSnp6enMmTOHjRs3xjtEEenvrIWqJYG3ygGkpkP2EKhP8iTTtrWw4M8w/UqXZAvErC9D2VHw8q2uDSxSKhbCe3+M3PUSQc0at2LfQafCUV+JdzTSz+RkpNKgmUwiIiJJk1dQkikGDjvsMPbs2cPIkSMZPnw4l19+OQsWLGDmzJk89NBDHHroofEOUUT6u50boGlXcEkmgLzS5G+Xe/WHkJYFp3wv8HNSUuG838HePfDydyMTR3MDPHEVvPRtl/jqD1qb4ckvQ3o2XHA3pOhphURWdkaaZjKJiIiQPHmFgdMuF2dLl3YMBisuLmbevHndHldXVxerkEQkXM9+0yVuLnkw3pH0Ldih377ckuRul9swF1a/AKf+wCXMglE6CU64Gf79M5h6CRx8RnixvPULN3jcpMDiB+GMH4V3vUQw5yew5UO49GHI11zBRGeMGQU8CAwD2oE/WWt/2+WYy4HveB/WAV+11n4Q00A7yVW7nIiIyD7JkFfQnxxFREJV8T589Cq0JUErR9ViSM1wK38FI7ckeSuZ2tvhX9+DQSNh9tdCu8YJ34LiiW4IeFNt6LFUr4J3fgfTLoeJZ8OSh10VUDJb/294+3cw44tuJT5JBq3AzdbaScBs4HpjTNdfCh8DJ1lrpwI/Bv4U4xj349rllGQSERFJFkoyiYiEqrYCWhqgZmW8I+lb1WK3qlxaRnDn5ZUmbyXT0sdg8wdw2g8hIye0a6Rlwvl/gN1V8Ow33GyrYFkLL9wMGXmuemn6FW7O1ZqXQ4spETTsgH9eB0UT4JM/jXc0EiBr7WZr7SLv/T3ASmBkl2Pesdbu9D58FyiLbZT7y85Io1Gry4mIiCSNqCaZjDFnGmNWG2PWGmNu7Wb/r40xS7y3NcaYXZ32/dwYs9wYs9IY8ztjtIa0iCSQplrYu9u9X/F+fGPpS3u7S7YE2yoHrpKpeQ+0NEY+rmhqaYTXfwTDp8GUS8K71qij4PT/hhXPwPwQijo+eBQ2zoUz7nAr9h10GuSPgEVJ0GbZHWvhuRtchdun74WM3HhHJCEwxowFjgTe6+WwLwMvxSKenuSka/C3iIhIMolakskYkwrcCZwFTAY+17Uk21p7k7V2mrV2GvB74Cnv3GOB44CpwOHALOCkUOKwofzVOQkNlM9TJGHUVnS8X7EgfnEEYsd6lxAbMS34c/05Rsm2wtymd2F3JZz0ncgMoz7mG3DIWW4VtYqFgZ/XsANe+b5bqe7IK9xjqWlw5Odh7Wv7/xwliyUPwcpn4dTbQktcStwZY/KAJ4EbrbW7ezjmFFyS6Ts97L/WGLPAGLOgpiZ6vx+y1S4nIiIJYiC85o7E5xjNSqajgLXW2vXW2mbgUeD8Xo7/HPCI974FsoAMIBNIB7YGG0BWVhbbt2/v9z8M1lq2b99OVlZWvEMRGTj85EBuaeJXMm1e4rYhVTJ5SaZka5mr9loYy2ZG5nopKXDBXZA/HB6/Chp39nkKAK/fAY274Nz/t3+y68jPu+3iv0cmvljZvg5e/DaMPQGO/Wa8o5EQGGPScQmmh6y1T/VwzFTgPuB8a+327o6x1v7JWjvTWjuzpKQkavHmeIO/+/tzORERSWwDIbcQqbxCNFeXGwmUd/q4Aji6uwONMWOAccAbANbaecaYOcBmwAB/sNYGPfSkrKyMiooKovkXtkSRlZVFWVlcxyaIDCy13q+3yefB+/e5REJ2QXxj6knVYkjLgpIQljXN9V48Jtvw7+oVkFMc/IpyvckZAp95AO7/JPzzq/C5R6C3Tu7y92HhA3DM12HYlP33FY6B8Se7JNOJ/wUpqZGLM1raWuCpa10l1oX3JEfMsh9v9MCfgZXW2v/XwzGjcZXlX7DWrollfN3JyUiltd3S3NZOZpp+5kREJD4GSm4hEnmFaCaZunvm3VPa71LgCWttG4AxZgIwiY5hk68aY0601r613w2MuRa4FmD06NEHXDQ9PZ1x48aFFr2ISG9qKyEl3a2q9f59ULkQJpwW76i6V7XYJTlS04M/N89LMtUlYZKpdFLkr1s2ww26funb8M7v4bgeqnnaWt2KdPkj4OQDRhI6M650VVHr58CE0yMfa6Qt+AtULoCL/wKD9UeNJHUc8AVgqTHGK3Hke8BoAGvtPcAPgSLgLm8cZqu1NkIlgcHLznBPVRub25RkEhGRuFFuIXDRbJerAEZ1+rgMqOrh2EvpaJUDuBB411pbZ62tww2dnN31pFiVaouIHKC2AgaNgJEzAZO4c5na20If+g0d7XLJVMnU3g7Vq2DoYdG5/lHXwuTz4bXb3eyn7sz/I2xdCmf9DDLzuz9m4tmQUwQL/xqdOCNt/RwYchAcflG8I5EQWWvnWmuNtXaqPxPTWvuitfYeL8GEtfZqa21hp/1xSzCBq2QCNJdJREQkSUQzyfQ+cLAxZpwxJgOXSHq260HGmIlAITCv08ObgJOMMWne7ICTcMvsiogkhtoKV82RNci1oVUmaJJp+1porgs9yZSeBZmDoH5bZOOKpl0boaU+OpVM4Frkzvs9FIyGx7944NemthLm/A9MOAMmndfzddIy4YjPweoXE3/mlbVQPh9Gddv1LhI1SjKJiIgkl6glmay1rcDXgX/hEkSPWWuXG2N+ZIzp/Kz7c8Cjdv8JWk8A64ClwAfAB9ba56IVq4hI0PwkE7jh0hXvuxfiiaZqsdsOD2FlOV9uSXK1y/lDv0ujVMkEkDUYLvkrNGyHp65x1VO+f30X2lvh7F/0PrMJYPoV7tgPHun9uHjb+TE0bINRs+IdiQww2ekuydSoJJOIiEhSiGYlE14J9iHW2oOstT/1HvuhtfbZTsfcbq29tct5bdbar1hrJ1lrJ1trvxXNOEXionoVfPxW38dJ4mlvg92V+yeZGnfCjvXxjas7VUsgPQeKDwn9GrklUJ/glTadVS9329IQBp0HY/gRcNb/wbo34D+/co999CqseAZOvAWGBNC3XzIRRs2GRQ8mZpLSVz7fbVXJJDGW481kamhujXMkIiIiEoioJplEpBdzfgIPXgAb5sY7EgnWni1g2zolmbzqjkScy1S1GIZNdSuChSovCSuZCkb3PAspkmZcBVMugTf/B9a8Ai/eAkUHw7E9DATvzvQrYPtHsGle38fGS/l8yMgPbYVCkTBk++1yLapkEhERSQZKMonEi5+oeOxK13olyWN3pdsO9tY2KDkUMvJcy1wiaWuFLR+GPo/Jl1uaXIO/t66IbqtcZ8bAub+Gognw8CWwcwOc8ys3bylQh13g5l4tejBqYYatYr5bWS9Fq3tJbPkzmdQuJyIikhyUZBKJl7pqVwHTuhf+8QVoaYp3RBKo2nK39SuZUlJdIifRkkzb1kBLQ/hJprxS1w7Y1hKZuKKptdlVBUVr6Hd3MvPgkgddW+IRn4PxJwV3fkYuTLkYlj8NjbuiE2M49u6BrcvVKidxocHfIiIiyUVJJhHfqhfdC6lYsNYlmUYdDRfeA1WL4IWbE3smi3TwK88Gjex4rGwWbF0GLY3xiak7/tDvsCuZStw2GVaY2/6RG6Q9NEaVTL7SSXDTMjj/ztDOn34FtDbC0scjG1ckVC4C2w5lR8U7EhmA/JlMjZrJJCIikhSUZBIBl9x56hp47sbY3K+5zr2gzCuFSefCid+GJX+HBX+Ozf0lPLUVkDkYsgZ1PFY2yyU3Nn8Q2jXb2yKfZKxa7Nr4iiaEd528UrdNhpa5fSvLxbCSyZczJPR2shFHutlZidgyV+EN/S6bEd84ZEBSJZOIiEhyUZJJBFz7U3OdezG1dUX07+cPUc4b6rYnfxcO/gS89B3YmMDDf8WpreholfOVzXTbUFrm2tvh7mPhjZ+EH1tnm5e4FdBSwvxV71cy1SXBCnNbl0NKmhu+nWymX+FmaFUtiXck+yuf7+aOZRfGOxIZgLLTlWQSERFJJkoyiQBUr+p4f9Ffo38/P8nkv3hPSYGL7nUrYj12Beyuin4MErra8gOTTHml7vsXygpzm96BmlWw9tXIxAduftKWpeG3ykGndrkkqWQqOhjSMuIdSfCmfAbSsmLzOyhQ1rrEqb+CokiMpaQYstJTaNTqciIiIklBSSYRgBqvxeag0+CDR6I/V6duq9v6lUwA2QVw6cNuUPNjV7iB4JKYuqtkAvdCPJQk04f/cNsty6C5IbzYfDWroLUpMkmmfe1ySVDJVL0chk6OdxShyS6AyRfA0ieguT7e0Tjb17qh76M0j0niJycjjQbNZBIREUkKSjKJANSsdgmf42+EplpY8Wx07+e/WPdfvPtKJ8EFd7vKgZe+Hd0YJDTN9e5Fd3dJppEzYXcF7N4c+PVammD5M26IuG1zLW6REKmh3+DmOqVld1TgJaq9e2DXpvjMY4qUGVfC3t2w4pl4R+KUv+e2WllO4ig7PVXtciIiIklCSSYRcC02JYfC2BNgyHhY+EB071e3FUwK5BQduG/yeXDCzS6GBX+JbhwSvNpKt+2pkgmgMohqpo9egb21cPod7uPy+eHF56ta7IaTF44L/1rGQF5J4lcy+W2vpTFeWS6SRh/jBrUvTJCWufL5kDU4OWdcSb+Rk5FKw14lmURERJKBkkwi7e2ukql0knsxPf1Kb0bO6ujds64acop7XonqlO/DhNPhxf+KXNJBIqO23G27SzINnwqpGcEN//7wH66K7vCLXEIolMHh3ala7OIJd+i3L7ck8SuZqr2h/clcyWSMGwBe/m7HSnnx5M9jitTPkUgIcjJSadBMJhERkaSgZ40iteXQUu8qmQCmXQ4p6dFdSryu+sBWuc5SUuHT98HgkfCPL0D9tujFIsGprXDb7pJMaZkwbErgc5kad7pKpsMvdt/zUUe5F/XWhhdja7NbZS0SrXK+3NIkqGRaAem5UDAm3pGEZ9rlkJEPz38L2uP4wrqp1iW6yjSPSeIrOyOVRs1kEhERSQpKMonU+C02XvVDXgkceg4sedjNy4lJ16vyAAAgAElEQVSG+j6STOCWC//sQ+6F/Zz/iU4cErzaCtfqmD+8+/1ls1wVUVsAL4hWPANtzTD1Mx3n1m3tqJYKVfUKd91IJpnykqSSqfTQ5K+6yS2Gs3/uKirf+V384qhYAFgN/Za4c4O/VckkIiKSDJL8mbhIBPhJppKJHY/NuBIad8Cq56Nzz7pqVxnSl2GHw8wvuflMNWuiE4sEp7bCJZhS07vfXzbLrRDot2715sPHoPgQGD7NO3em24bbMhfJod++3FJo2ObaSxPV1hVQmqQry3V1xOdg0nnwxk9h8wfxiaHifcDAyBnxub+Ix1UyKckkIiKSDJRkEqleBXnDXOWQb9zJruUmGgPAre27Xa6zk2+F9Bx47fbIxyLB213Rfaucz39B3leiaFc5bHwbpl7i5vAADD3creJWHoEkU1YBFI4N7zqd5ZWCbXfJ10RUV+OSYP0lyWQMfOq3bnGAp66FlsbYx1A+3309swbF/t4ineRodTkREZGkoSSTSM1K12LTWUqKq2ba8B/Ytjay92uqhba9gSeZcovh+Bth9Quw8Z3IxiLBq62AQSN73l841g11r1zY+3WWPu62Uz7T8Vhquqs+ikQl04gjO5JXkZBb4raJ2jJXvdxth/aTJBNAzhC44E5XbfnaHaFdY8d6ePNnwSep2ttdu5xa5SQB5GSk0qCZTCIiIklBSSYZ2PyV5Uq6WY1q2uVgUmFRhJcS94cn5w0N/JzZX4P8EfDKbeEPhZbQtbdDbWXvlUzGuJa53hJF1rpWuVGzD6w2KpsJWz6E1r2hxdjS5Fr1RkwL7fye+Emm+kRNMnkrsfWXSibfhNPhqK/Ae3fDujeCO7dyEdx3Brz5v7DkoeDO3bYa9tYqySQJITsjjUatLiciIpIUlGSSga223M3P6VrJBJA/DCae5QaAtzZH7p51W93Wf9EeiIwcOPU2Vx2z/KnIxSLBadjmqtAGj+r9uLIZsG2NWz2uO1uXuQq6qZ85cN+oo9zQ7lDn8GyYC+2tMPqY0M7viV95V5egK8xtXe4qyAKtEEwmZ9wBxRPh6a9BQ4DtiuvegAfOda22JZPgvT8GN0+rfL7bamU5SQA5Gam0tFla2hJ4JpyIiIgASjLJQLdv6Hc3SSaAGVe5xMLqFyJ3T7/dKJhKJoAjLnUze167I/QqFwmPv+pbb5VM4CqZoOeWuQ//ASlpcNhFB+4bGebw7zUvu7lO404M7fye7KtkStAkU/XKjhUi+5v0bLjoT+5r/8K3+q5m/PBxeOgSGDIOvvwKnPAtl/QMphKqfD5kD4Gig8KLXSQCcjJSATSXSUREJAkoySQDm99i01OS6aBTXdXKwgi2zO1LMgVZcZGSCmf8CHZthPfvi1w8ErjaCrftK8k0YjpgoKKbJFN7Gyx9Ag7+hJu509Wg4e5nLpQkk7UuyXTQKS4xEUnZhZCSnpjtcu3t7t/y0MPiHUn0jJgGp3wPlv/TtVr25J0/wFNXw+jZ8MUX3c/T5Avc4gbv3R34/Srmu6q6SM71EglRTkYagFaYExERSQJKMsnAVrPKLUefXdD9/pRUmH4FrJ8DOz6OzD3rq92sp+xuEgx9mXCaS3z9++c9t2JJ9NRWum1fSaasQS5x2V2iaMNc2LN5/4HfXZXNCm2FueoVrtrqkDODP7cvxrhqpkRsl6vdBC31/beSyXfcja4N8sVbYNem/fe1t7uZba98HyafD5c/AVmD3b60DJh1Nax9DWrW9H2fhh2u8smvyBOJs45KJg3/FhERSXRKMsnAVr2y5yom37TLwaTAogcjc8+6re7FekqI//zO+LFboe4/v4pMPBK42go34ya7sO9jy2ZC5YIDW5s+fAwy8t28rx7PnQW7K2B3VXDxrX7JbQ/5ZHDnBSqvJDErmbaucNvSflzJBC7pfeE97mfqn9e5qjiAthZ4+jp45/cumXTxXyA9a/9zZ34RUjPhvXv6vk/FArcddXRk4xcJUbba5URERJKGkkwycLW3u7/W95VkGjwSDv6kW52prSX8+9bVhDeceNjhMO0yN8h358bw45HA1Za7KqZAWojKZrlqsx3rOx5raYQVz8Dk83pvZ/MrSPwX+4Fa8y8YcaQbWh8NuSUd7Z6JpNpPMvXxb7k/KBwLZ/0fbHzbJZX21sHDn3Vzvk69Dc7+pUtGdZVb7KrnPnik7yrIivmu2nLk9Kh8CiLB8iuZtMKciIhI4lOSSQau2k09ryzX1YwrXQXSmpfDv2/d1vBXwDrl++5F4Os/Cj8eCVxtRd+tcr6ybgZ4r3kZmvfA1Et6P3f4VEjNcC/2A1VX4+4VjVY5X24p1G+L3vVDVb0CCkZDZn68I4mNaZfBpE/BGz+B+z/p2nnP+z2c+F+9J0BnX+d+5/VVlVk+3823ysiNbNwiIdLgbxERkeShJJMMXNX+ynIBzHGZcAbkj4CFD4R/3/qa4FeW62rwSDjmelj2BFQuCj8mCUwwSaaSQyEjb/8k04ePuRlgY0/o/dy0TBh+RHCVTGtfBWx0k0x+u1xfq5vFWvVKKJ0c7yhixxg497ducPz2tXDpw252XF+GTXE/e/PvhbYeZtu0t7lVEdUqJwkkO90N/m7Yq5lMIiIiiU5JJhm4avyV5Sb2fWxqGkz/Aqx9/cCBu8Gw1rUb+cvBh+O4GyCnGF75QeK96O+PWve6BMvgUYEdn+K1G/mJooYd8NErcPinu29n6qpsFlQtDrxFc/VLLoE1/IjAjg9Fbim0NbuZYNFSuRCaGwI/vrXZtb0OpCQTQG4RfPkVuO7t3ud7dTX7q67tc9Xz3e+vXgHNdW5lOZEEoUomERGR5KEkkwxcNatddVJPK8t1deTn3XbR30K/Z+NOaG8Jv5IJ3ApmJ98KG+dGpo0vkTXscNUX7XF8gbE7wJXlOhs5E7Yuc0mT5f+E9laY+tnAzi2bBa1NsGVp38e2NsO6N9zA72guOe+3edZHaYW5Te/BvafCi/8V+Dnb17qv60BLMoGbz1Q8IbhzDjkTCsb0PAC83GvR1MpykkD2JZk0k0lERCThKckkA1f1ysCqmHwFo2HC6bD4b6FXDvlDk8OdyeSbcRUUTYBXf9hz+0uw6rdH7lqRsvyfbtn29W/GL4baCrcdNDLwc8pmuQTI5g9cq1zJoa5lKdBzIbCWuY1zXfVJNFvlwA2PhugM/25rhRdvdu9/+GjH17sv/tDvoQMwyRSKlFQ4+iuwaZ6rlOuqfL6rWCscG/PQJPqMMaOMMXOMMSuNMcuNMTd0c4wxxvzOGLPWGPOhMSbuE+D91eUamxPs/yYRERE5gJJMMjD5K8uVBjCPqbODPwF7Nof+Irs+wkmm1HQ4/Q73uSwOo8LK19YCvz8S3r8v/GtFkl9FtOzJ+MXgJz2CqWTyh38vexLK33UDvwOtNBpc5trfOs906snqlyEtC8adFHhsocj1K5mikGRacL+r2vrET1wSd96dgZ1XvQJS0qDo4MjH1F8d+Xk3L+zdbqqZKua7VrloVsRJPLUCN1trJwGzgeuNMV0ztGcBB3tv1wJ3xzbEA+VkeDOZ1C4nIiKS8JRkkoFp10a3ylJJkEueF47xzg9xLpOfnMqNUJIJ4NBzXDXTR6+Ef62G7W7eztZl4V8rknZXue3K59xspHgIpZIpr9RVwC2433085TOBn2uMS1L1tcKcta5dctxJkJET+PVDsa9dLsIrzNXVuJXSxp8Mx3zdfZ0WPuCq6vqydYVLMKVlRDam/ixrMEy73CU/92zteLx+G+xYr1a5fsxau9lau8h7fw+wEuj6S+184EHrvAsUGGOGxzjU/aSmGDLSUmhUkklERCThKckkA1ONt7JcsJVMBaPddtfG0O4b6XY5cMmIQSMj88Lfv0ZtefjXiqTaCleps3c3rH0tTjGUu+RgelZw55XNAtsGo4/t+PkJ5tydG1wSpic1q9zP48Qot8oB5BSBSYl8u9xrt7uk71m/cD/Px9/oPp7/p77PrV4R/L9jcS1z7a0dCVDomMekleUGBGPMWOBI4L0uu0YCnf8TqODARFTM5WSkqpJJREQkCSjJJAOTn2QqPiS48/yVxUKuZNoKKemQXRja+T3JLYaGCCSZGrzKkXBW0IuG3VVw8BkuyRGvlrnaiuBa5Xx+VcjUS0I411vhq7KXuUz+0Pdoz2MCN88npyiy7XLl82HJ3+GYr0GJ9++xdBJMPMcNp95b1/O5e/e4BJvmMQWv6CA3KH7BnzuqAyvmu9bDEdPiG5tEnTEmD3gSuNFau7vr7m5OOWAQoTHmWmPMAmPMgpqaKC0G0ElOupJMIiIiySCqSSZjzJnGmNXe8Mhbu9n/a2PMEu9tjTFmV6d9o40xr3jDKVd4f3ETiYzqVcGtLOfLzHMvskOtZKqvcVVMkZ53klMcWGtRX/xEVW2Fm1uVCKx1M5kKxsDk82H1S9BcH/s4Qk0yHXYhTL8Splwc/LnDj3Av+st7aZlb/TIMmwqDRgR//VDklvZeWRWM9jY30D1/BJz47f33HX8TNO1ybXM9qVnttgNxZblIOPo69zvJT9yWv+9+ltKz4xuXRJUxJh2XYHrIWvtUN4dUAKM6fVwGVHU9yFr7J2vtTGvtzJKSkugE20l2RiqNLRr8LSIikuiilmQyxqQCd+IGSE4GPtd1uKS19iZr7TRr7TTg90DnJzsPAr/whlMeBURh0qwktDX/il4yoWYllAY5j8lXMCa8mUy5UXgynlsMe2vd4O5w+ImqtmZXdZUIGndCa5NL8Bz+addG5VfvxIq1UFsZWpIpfxic9zvIzA/+3IwcGHp4z8O/67e76pOJZwV/7VDlFkeukmnhX9zKe5/8iUvgdjZqFow9Aeb9oec5XFuXu62STKEZfzKUTIJ373K/OyoXqlWunzPGGODPwEpr7f/r4bBngSu8VeZmA7XW2s0xC7IHuZlpqmQSERFJAtGsZDoKWGutXW+tbQYexQ2T7MnngEcAvGRUmrX2VQBrbZ21tiGKsUqiqVoCD18Czx2wunL42tuhZo17cRWKgtHhtcvlDQ3t3N7kFLltQ5jVTJ3PT5S5TPsGbo+A0ce4FdeWdffH9yhq3Akt9aElmcI16iioXOSqfrpa+yrYdtf2FCt5pa76JVz12+D1H8G4E+Gwi7o/5vgb3WqOH/6j+/3VKyE91yV+JXjGwOzr3Kp+8++F1kaX3JP+7DjgC8CpnSrJzzbGXGeMuc475kVgPbAWuBf4Wpxi3U+22uVERESSQjSTTAEPjjTGjAHGAW94Dx0C7DLGPGWMWWyM+YVXGSUDxTrvR2Hp45GfwbNro3sxFXIl02jYVR5aO1l9DeRFoZLJTzKFO/y781ynRJnL5K8sN6jMzQQ67EK3kl7jrt7PiyQ/0RWPJFPZLJfgql5x4L41L7uk5fAjYxdPpNrlXrvdVSr6w767c9Bprn3r7d92n2SrXu7+HadovGDIplziZsS9/iP3sT8HTPola+1ca62x1k71K8mttS9aa++x1t7jHWOttddbaw+y1k6x1vYyFC52cjJStbqciIhIEojmM/OABkd6LgWesNb6zx7SgBOAW4BZwHjgqgNuEOOhkxJD6+e4SqORM+H5b3UkGiLBH/pdEkaSqW1v8C1D7e2uXS4alUy5xW4b7vDv+m1uPg4kUJKp0m39mUOHX+za+Va9ELsY4ppkmum2XVvmWpth7etw8Cdim2TJK3FJr3BaWSsWwOK/weyv9p7sNQZO+BZsXwsrnztwf/VKrSwXrowcmPFFl3jPHxGfn3GRAORkpNHQrJlMIiIiiS6ar0wCGhzpuRSvVa7TuYu9VrtW4GlgeteTYj10UmKkuQE2vQsTToML/+gSCs9c7+biREL1SrctmRja+X5rTrBJmMadbin73NLQ7tubHC/JFHYl03aXRMseklhJppQ016YFMHK6+x7EcpW5fUmmUb0fFw2F49z3t6JLMcGmebB3d2znMUHHz29diHOZ2tvghZtd2+NJ3+n7+EnnwZCDYO7/2/93QF2NqwwsPSy0OKTDrKvBpLpWuUgvSiASIdmqZBIREUkK0UwyvQ8cbIwZZ4zJwCWSnu16kDFmIlAIzOtybqExxs8cnQp00ysi/dKmd1xiafwpUDwBPvFj1z73/n2RuX7NKhg0ErIGh3Z+wWi3DTYJ4w/SzotCkmlfJdOO8K7TsN1dq2B0+DOZ6qrhzqPdSn7h2F3lEhIpXsesMW4A+Po3w0+qBaq2HFIzO5J5sWSMa5nrusLcmpddTONPjm08/uD6UOcyLforbF4Cn/hJYMPQU1LhuBvcgPD1czoe99sHVckUvsEj4dKH4JTb4h2JSI9yMlJpaFGSSUREJNFFLcnkVSB9HfgXsBJ4zFq73BjzI2PMeZ0O/RzwqLUdf6L22uZuAV43xizFtd7dG61YB7y1r7sXcIli/ZuQmgFjjnUfz/wyTDgdXvkBbPso/OtXrwy9VQ6gwKtm2bkhuPP89rpoJJmyCwETmXa5nCL3OYZbyVS50CX0Nr0T3nVqKzpa5XyHf9pVha14JrxrB2p3pYshXrN/ymbC9o86kojWwuqX3NDsjNzYxpIXRpKpfrub/TPmePc9DNQRl7pE4386LYblJ5mGqpIpIiaeBSWHxDsKkR5lZ2jwt4iISDKI6ismb5jkId7wyJ96j/3QWvtsp2Nut9be2s25r3qDKadYa6/yVqiTSGquh6evh79fBC9/N97RdFj3pltGOyPHfWwMnH8npGfBU9e6pbZD1d4G29aEV/2QkeuqOYKuZPKTTFGYyZSS6hJN4VT2tLd3qmQa44abh9OiuGO92+7cGPo1wFUyDeqyZsDQw6B4YuxWmautiO+smlHeMObKRW677SPY+XFsV5XzhdMu9/od0LQbzu5l2Hd30jLhmOthw3862garV7iEaK5apUUGgpz0NJpb22ltC2HRDREREYkZLckzUG3+AP54Iix5CPKGdcycibe6ati6FA46Zf/H84fBub+BqkXw1i9Dv/6ujdDaFPo8Jl/B6NCTTNF6UZxbHF4l095aVx2UU+RmD7U2hpe02r7ObXeFkWSy1ksydalk8lvmNr4d2aHwPamtiM88Jt+II8GkQIXXMrfmZbc95MzYxxJqu1zVYlj0IBx9HQydHPx9Z1wFWQUw99fu460roHSyZgiJDBA5Ga5lWi1zIiIiiU1JpoHGWph3F9x3uqtkuvJZ14qyu8pVssTb+n+77fhTDtx32AUw9VJ46xdQsTC06/vzgUrCnOMSUpJpq5uhE+osqL7kFLt2pFD55+YUd8ydqg2jZS4SlUyNO12yq2slE3jtVhaW/zP06weirQX2bI5vJVNmvkuo+CvMrXkZhk7paN2MpbQMl+wJtpJp+dNugPvJAQz77k5mPhx1Lax63rW81qxyXxMRGRCyvSSThn+LiIgkNiWZBpK6Gnj4EvjXd92Mo+vedjNdBo2E9pbw5/lEwvo5ru1r+BHd7z/7566q5alrQltCvSbMleV8/mDsYBJz9TVuHlO0Ki9yi1y7W6j8739uUUfyIpy5TDsiUMm0u9JtB3eTZCqe4H5Oor3K3J7NYNvjv7R72SyXXG3Y4VZfjEernC+vtGPGWKCqFrs2x3CSrEdfB2nZ8MIt0FwXWkWUiCSlfZVMSjKJiIgkNCWZBop1b8A9x7lKobN/CZc+7JIJ0NGK5L+gjxdrYd0cGHdSx0piXWUNhgvucgmMV38Y/D1qVsOgMsgaFF6sBaPdCnj+inGBqNsanaHfvpww2+X81ji/XQ7cXKZQtO51LWYZeS7xtbcutOvUej+T3VUygatmqlwIOz4O7foBxeC1kiZCkmlvLcy707U1TjwrfrHklgTXSmktVC1xbX9h3bcIZlwJG+e6j1XJJDJgdCSZWuMciYiIiPRGSab+rq3FJWP+dqGrELrmDTjqmv2rafYlmWIw26Y32z6CPVV9L8k+7kQ45uvw/n3w0WvB3aN6ZfhVTOAGY0NwlT51NR1Dk6Mht9hVuYTa9tjQqV0uuwAyB7tqrVDs2uSqf8Ye730cYjXT7j6STIdd6LbLozgA3E90xXMmE7gkE8C7d7skz4jp8YsltyS4drkd612CLNwkE7h/+ylp7v1wVokUkaSSneH+3atdTkREJLEpydSfNdfD/WfC27+FGV+Ea+bAsMMPPM5/AV8b50qm9XPctuvQ7+6c+gM3V+mZ6zuWde9LJFaW8/kzi4JJntRt7Vj+PRpyilyFS9Ou0M7f1y5X7LahzJ3y+UO//dlaoc5l2l3pEgo9VYAVjHYrEUZzlTk/0dZdy14sFU1ws5Ba6uHgT0JKHH99B9suV7XYbSORZCoYBdOvhGFTwq9IFJGkoXY5ERGR5KAkU3+28nmoXAAX3A2f+g1k5HR/XG4JpKTHv11u3RwoHAeFY/s+Nj0LLvqTq7557gbXjtOXnRu8leUiUP0QbJKpvc0lcfKGhn/vnuR4yaFQV4Sr3w7puZCe7T4uGBV6u5w/9NtPGIZcyVQF+cN7bp8E1zK3dVnHUPdIq61wVYAZudG5fqBSUqBspns/nvOYwFXkNdW6tshAVC2GtKzIJHjBtfxe82ZkriUiSUFJJhERkeSgJFN/tvJZyB/hVmTrTUoKDBoe33a5thbYMDewKibf8Klw2g/c57ngz30fX+MlISLxQjc9273QDrTSp2G7ax+LarucN2Mr1LlMDdtdNZTPr2QKJIHX1Y71bn5W8SGQnhNeJZPfztmTyReASYley1xtRfznMfnGn+K+rsH8O4kGvyKvviaw46sWu8qj1PTI3D8lBVLTInMtEUkKOX67XItmMomIiCQyJZn6q+YGWPs6HHpOYG01g0bGN8lUsQCa93S0VwXqmG/AhDPg5e/B5g97P9ZPMkViJhME107mz6+J9uBvCH2FuYZtHYkqcDOImveE1n63Yx0MGe9mfxWMCb2SqTaAJFP+UDf7aekToSXE+oyhIv7zmHyzvwo3fAiZ+fGNw0+WBjKXqb0NNn8QmVY5ERmwVMkkIiKSHJRk6q/WvQ6tjTDpU4EdP2gE7K6Ibky9WT/HVaOMOzG481JS4MJ7IGcIPH4V7N3T87HVq9zKcpF6gR5UkslbhS6aSabccNvltnUkqqBTS2AIc5l2rIchB7n3C8eEdg1rXeKzp6HfnR3+aZfY2vxB8PfpSyJVMqWkuqHs8ZbrVzIF8LO2fS001ynJJCJhyfaSTBr8LSIiktiUZOqvVj7n5siMOS6w4/1KpmhUggRi/ZtutaxQXkDnFsOn/ww7P4bnb+r5c6hZCaURXI2qYLSbWRTIam5+W1FUZzKF2y63o0u7nFe9E+xcptZml1QaMt67zhjXLhfsz1bjTpcoDSTJNOk8NyB82ZPB3aMvTbvdqmiJkmRKFPva5QKoZKpc5LZKMolIGHLSVckkIiKSDJRk6o9am2HNyzDx7MDnlgwaCW3NobdahaOp1rXLjT859GuMPQ5O+R4sfRwWPXjg/vY22PZRZJc8LxgN7S1Qt6XvY/1Kptwori6XlgkZ+W6AdygatnVUQ4FLDkHwVUi7Nrn5U36SqXCMa7tr3BncdfxB9IGs6pYzBA46DZb/M7CkX7AxBJLoGkiCaZerWuwGyhcfEt2YRKRfS0tNISM1RUkmERGRBKckU3+04T8ucRNoqxx0zL2JxwpzG+aCbQt/mPHxN7uZTi99G7Yu33+fv7JcpFa3go4kTCBDreuqIS07+rN0cotCq2RqboCWhv0rmbILXXKgNshKJn9luSKvXW7f12lDcNepDTLBc/inXawV7wd3n15j8FpIE2UmU6LIyIGMvMAGf1cthuFH9L5CoIhIALIzUmls1uBvERGRRKYkU3+08jmXHAhmiLb/Qj4ew7/XzXHxlh0V3nVSUuCiP7nVtx6/CvbWdezbN/Q7gkmmwiAqfeqqXYuRMZG7f3dyikOrRvMTU52TTMYEN3fKt2Od23auZILgh3/vqyLqY/C379Cz3c/RE1+C5U9HpvXTT7CpXe5AuSV9VzK1tcKWD9UqJyIRkZORqkomERGRBKckU3/T3garXoCDz4D0rMDP81uSauMw/Hv9HNfulpYR/rXySuGie11r3Iu3dDxevdJtSyLYsuMnHgJJwtRXR3ceky+3OLTB335iqnO7HLi5TEEnmdZD5qCOhFUwFV+d7a4Ckxr41y0zH6542lVgPX4lPHg+1KwO7p5d1Va4GPKHhXed/ii3pO9KpppVroJQSSYRiYBsJZlEREQSnpJM/U3F+y6hEUyrHLgXjClpsa9k2lXuVp8KpuqqL+NPgpO+Ax88Aosfco/VrHItT5FsV0vPdgmQQCp06qo75thEU05RaJVM/hynnK5JplAqmda7Kia/aitrkEv8hFLJlD88uDarUUfBtW/C2b+EzUvg7mPhX993A7xDUVvhqvzU6nWgvNK+k0xVGvotIpHjKpnULiciIpLIlGTqb1Y+B6kZcPAngjsvJdW9oI91kmn9HLcNdx5TVyd9G8ae4KqZqle5t0gO/fYFmoSpq3YvyqMtp8hVMgXbKua3y3WtZBo8Cpp2BZek2b6uo1XO568wF4zdlYEN/e4qNQ2Ouga+sQimXQbz7oQ/zIIPHwv+61JboVa5ngTSLle12FW1df15EBEJQU56miqZREREEpySTP2JtS7JNP5kVz0SrEEjYj/4e/2bkDcs8gmglFTXNpee4+YzbVsDpXFKMrW1uuqiWCSZcouhbS801/V9bGd+9VPOkP0fLxjttoEO/25rcV+PrkmFwjHBVzLVVgY+j6k7ucVw3u/h6tfddZ66Bv5yFmxZGkQMFaElugaCvFL3c9PWS1XBvqHf+q9GRMKXnZFKY4uSTCIiIolMz/z7ky1L3Qv5YFvlfINGxjbJ1N7ukkzjT47OQOxBw90g8JpVLvESrUqm2go3C6snDdsAG6NKJq8SKdiWufptrl0yq2D/x/0k064Ak0y7NrmVAv2V5fZdZ4zb19QmybMAACAASURBVN4e2HWsdVV1ga4s15uyGS7RdN7vXbLxjye6Frrevmfg9u+uUiVTT3JLANvzz1rrXtiyDEZOj2lYItJ/afC3iIhI4lOSqT9Z9TyYFJh4dmjnDxrhXlRHYlWuQGxd6l6gRrpVrrMJp8EJ33LvD5sa+esXjIb2Ftizuedj6ra6bSxmMvntbvVBJpkatrlWu67Jvn1JpgDnMu1Y77bdVTK1NUPdlsCu07gTWhsjk2QCV0kz/Qr4xkKYcRXM+wP887reE0111e57qyRT9/ykaU9zmapXuK+f5jGJSIRkZ6TSqCSTiIhIQkuLdwASQSufg9HHHjhXJ1CDRrqVoBp3Htg2FQ3rvHlM40+O7n1OuQ0OuxCGTYn8tTsnYXpKRtR5L8JjsbrcvkqmIFeYq9/esRpcZ7klkJYFtWEmmTqvMBdIC5xfURdOu1x3sgvh3F+779XrPwLbDhf+0c1x6spfaXHwqMjG0F/klrhtfQ9zmaoWu62STCISIRr8LSIikvhUydRfbF/nKgdCbZWDjhf0sWqZWz8HSidHf3n4lJToJJgACsa6bW+VPn4lU15JdGLozE8O1geZZGroIclkjEvIBFrJtH0dZOR3JCB8fpIp0Ov4A+ijVUV0ws1w+u2w7Ak3q6m7uUL+HCpVMnXPr8yr66GSqXKRS+r533sRkTDlZmjwt4iISKJTkqm/WPmc2x56TujX8F9M18YgydTSCBvnwfgotsrFgv816y154ld6xLJdLthKpoZtPVfAFYwOfCbTjvUwZFwvbXcBDv/2q4giXcnU2fE3wRk/huVPwZNfdkPLu4tBSabu5fVVybTEVTFFY96aiAxI2Rmp7G1tp609Rm39IiIiEjQlmfqLlc+5F3QFYbT2xLKSadO7bhh3NOcxxUJ6llsdr7fkSV01pOdCZl7048nIg9TM4CuZ6rd1tNp1NXhUcDOZuluu3v867QwwybS7Ckxq9FsMj/smfOKnsOJpeOJL+yeadle6qqyswdGNIVllDnI/a3XdJJlaGl1l5QgN/Q6WtZYnFlZwws/f4J5/r8PGakaeSBLIyUgF0ApzIiIiCUxJpv5gdxVULgivVQ7cC3qT2tGqFE3r50BKOow5Nvr3iraC0X20y1XHZmU5cFUjucXQsCPwc9paoWlX9+1y4D6/hm3Q3ND3dXZtPHBlOV/hmMArmXZXQv5wSEkN7PhwHPt1+OT/wspn4fGroLXZPV5boSqm3hjjfq67S2huWeZWGUzyeUzt7Zbq3U0s3LiTd9Zuo7UtwNURQ7Sltokv/3UBtzz+Ac2t7fzspVV89e+L2NPU0vfJIgNAdoabn6e5TCIiIolLg7/7g1UvuO2hYSaZUlLdfKRYJJnWzYFRR0NGbvTvFW0Fo12Sryf1MUwygUsWBdMu1+glpHprlwM3o6hkYs/Xqd0E7a3dVzKBm82z6d3AYtpdGd1Wua6O+Zr7+X/p2y7R9JkH3OerJFPvcou7b5dLgKHfH5Tv4uH3XPI3LyuNvEzvLatjm5+ZRm6mm/FSsbOBip2N3lsDlTsbqdjVSHNrR2JpZEE2Xzp+HJ+dNYq8zMj992mt5clFldzx3HJa2tr5wbmTuerYsfzl7Y/535dWcf4f3uaeL8zgkKH5EbunDEzGmPuBc4Fqa+3h3ewfDPwdGI17jvhLa+1fYhtlz3LSvUomzWUSERFJWEoy9Qcrn4XiiVBySPjXGjQSdleEf53e1G+DLR/CqbdF9z6xUjDatVu1t3VfeVNXDcUHxy6enKLg2uX8Y3urZAI3l6m3JFNPK8v5Cse4QdttLZCa3ntMu6uiN6y9J0d/BUwKvHgLPHaFq05Tu1fvckthz+YDH69a5PbFMlHoWVtdx69eWc1Ly7bsSyLV7W2lbm9glQ9FuRmMLMzm0OH5nD55KGWF2ZQVZtPU0s4Db2/gx8+v4DevreGyo0Zz1XFjGT44O6x4t9Q28b1/LuWNVdXMHFPILz5zBOOKXfL96hPGM2XkYK5/eDEX3Pk2//fpqXzqiNh/TQH2trbxzJIq3v94BzkZqV6yLn1fsi7P+1rne0m8kvxMciOYiJOIeQD4A/BgD/uvB1ZYaz9ljCkBVhtjHrLWNscqwN747XIa/i0iIpK49Aww2TXsgA1vuyHGkTBoBGxdFplrddXeBjs3wNLH3cfjT43OfWKtYLSr4Nld1f1MrLpqGHNc7OLJLYadHwd+fEMfSabB3ufUV6vbdj/J1EO7XMEYsO2uDW3IuJ6vY60bPn/Imb3fLxqOusa1gb1ws/tYlUy9yytxCeOuqhbHfOh31a5GfvvaRzy+sJzs9FRuPP1grj5h/L6Ko/Z2S32zSzbVNbWyx9vW7W0lKz2FUYU5jCzMJiej5/8Wz54ynCXlu7jvP+u5b+7H/Hnux5w7dThXnzCew0cGN7urp+ql1JT9v2ZHjy/ihW8ez9ceWsQ3HlnM4k27+O7Zh5KeGptu9+11e3novU08OG8j2+r2UpSbQWu7pW5va6/Dl+847zCuPHZsTGKUwFlr3zLGjO3tECDfGGOAPGAHkDC9adlKMomIiCQ8JZmS3eqX3OyTSedG5nqDRsJHr7gX+qG+QGxrdVUtNaugZnXHdtsaN+zbv8+IaZGJOd4KvSXad206MMnU1uLa0aI9wLqznGKo3x748Q3esT21y+UPc/OzavtYYW7HejfgvKfWwH1fp429J5kad0Jro/sZiYdZV7vZZM/f2HvllrhqpfoaaG+HFC/psbfO/XuffEFMQthZ38xdb67lr/M2goWrjh3H9accRFFe5n7HpaQY8rPSyc9KhzBmuU8bVcAfLptO+Y4G/vL2Bv7x/iaeXlLFMeOLuObEccwYM4ScjNRek0C9VS91Z+igLB65Zjb/8+JK7n/7Y5ZW7uLOy6ZTOigr9E+kDx9t3cP9b3/MU4sq2dvazskTS7j6+PEcN6EIYwzWWppa2vdVibnEXQt1Ta3UN7cyZWRB1GKTqPoD8CxQBeQDn7XWRncYWRD8JLDa5URERBKXkkzJbuVzrtJkeIQSNoNGQEuDGwSdXRj8+Y9c5pJU7Z0G1RaMhpJD4aCT3bbkUCidFJuhzrFQ0CnJRJeKpfoat/WXe4+F3CJo3gOteyEts+/j97XL9ZBkSkmFwSP7XmFuxzrXKtdTctL/OvW1wpy/umEcWq32mflFOPQcyI3h9y0Z5ZW6Kr6mXZAzxD225UPAwsjothrW723l/rkf86e31lPf3MpF08u48fSDKSvMiep9faOG5PDDT03mhtMP5tH5m3jgnQ186YGO2WzpqYbs9FRyMtLIyUglJzOVnPQ0sjNSWbRpZ6/VS93JSEvh9vMO48jRBdz65FLO+f1c7rp8OrPGDonY52StZe7abfx57se8ubqGzLQULppexpePH8uE0v3nQRljyM5IJTsjlZL/z959h7ddnvsffz+SJdvyduwsx3Z2QgIkhCxGWKWM0gMFCoQCZYe2QKGDX+k5dPecrtP2QIFCKCkFCmGvlj3DSEICScjey86wYzvelm35+f3xlWIn8ZAdy5Ltz+u6csmSvpLvhAD2x/d9Pylh/HdGeouzgeXAGcAo4C1jzIfW2opDLzTGzAHmAOTl5fVIcaFxuWot/hYREYlZCpl6M38lbH4Xpl3ffWMpacHukfLCzodMNaWw/t8w5iyYeJHTBZI1FuKTu6e2WBUaqWothKna69z2dCcTOB1K4QQ1oU4mXzvfrKbnOTuZ2lO6BQZNbPv51BynQ6ijsbvQ4vlodTKF9OSy9t4qFMJVFzf//Qkt/e6u4LsVLy4r5Nf/XsO+qnrOmjCIH549LmpLsdMSPdx06iiuO3kE76zdS0FZLbX1AarrA9TWN1JTH6CmIUBtfYCa+kbKauqZMSKT/zpvQrvdS225YHIO4wen8q3HP2P23EV89dgheNwurAWLdW6tpck6c0/WWizgcRk8bhdxbhdetyHO7cLjduFxmwNdV6+u3M26PZVkJXv5/pfHcsWMvMM6wqTPuxb4rbXWApuMMVuB8cCnh15orZ0LzAWYOnVq27OT3Sg0LqdOJhERkdilkKk32/S2M342vptG5aD5G/uKXTD4sINn2le01rmdfhOMObP7aop1cfGQMqSNkCnYyZTUg4FFaOytel/4IVNCWvvLuNPynL9vbQk0Oh1KR7VzwqE7zgnkOupkKg8unk+LcsgkHQuFTFVFzaOFhZ87/x1JaQ5WrbU8tWQnb6/dyx1nj2fc4K4FQv7GAL/61xoeX7SDKXnpzP3mVKbkdaHjMgI8bhfnHD2kRz7XuMEpvHTLSfzkxVV8urUUg9NZZIzz8waXMRicW4I/f2gMWBoDTdQHLI1NTTQ0NtHQZGkINGGD8cD4wSn8/uvHcv6koSR4+kinqXTWDuBLwIfGmEHAOGBLdEtqpsXfIiIisS+iIZMx5hzgbsAN/M1a+9tDnv8zcHrwrg8YaK1Nb/F8KrAWeMFae0ska+2V1r7idK3kzey+9wyFEqGRpc4oWuPcDjyq++rpLdLzWu/QOdDJ1IMhU2iBd02YJ8xV72t7VC4kPQ+q9rQ9gle+0xmRbGvpd0hGfnidTMbds91ffUhNfSN/fX8zZx41iEm5Ed6LE/p7XV3U/Fho6XfQvio/dz63krfX7sXjNizYsI8fnj2W608eGdaYWMju8lq+/fjnLN+5n5tOGckdZ48jroeWX8ei1AQPd88+ruMLwxAIhk3xcS5MDy5rl55njHkSOA3IMsYUAD8DPADW2geAXwGPGGNW4kSUP7LWduK40sjyeZwvW2s0LiciIhKzIhYyGWPcwH3Al4ECYIkx5mVr7ZrQNdba77W4/lbg0K+YfwV8EKkae7VGP2x4E46+qHt3GyUPco5xD40sdUbRWohPi+4unWhJz4Odiw9/PPTNd4+GTKFOpjCXf9fsa3vpd0hooXl5AQxoJUgqDZ0sN7KD98l3dna1p2KX0xnWV3Z29aCSKj/XPbKEFQXlPPDBZv7rK0dx9YnDIxcchDr0Qh17tfud3VyTLwfg7TV7ufP5L6ioa+Su847i/MlDueuFVfzPq+t4e20Rf7xkErmZHe9Q+mTTPm59chl1DQH+esUUzj2mZzqG+gu3y+DWv2/9grX28g6e3wWc1UPldJrG5URERGJfJH8MPB3YZK3dYq2tB+YDF7Rz/eXAk6E7xpjjgUFAB9+R9lNbPnCWO7c3ntQVbo8TNHWpk2mt08XUH38Snp7n7LEKHPLT1aoiiE8FT2LP1ZLUYidTOKpLmruf2pIeXOra1vLvzoRMVXuhobbtayoKuhRUVtQ18OxnBSzaUoK1PbIeJKbsLK3h6w8sZN2eSv506SROGZPNz19Zw81PfE5FXUPHb9AViRlO11koTN29AoC67Mn8+PmV3PDoUrKS43nllpO5YdZIBqYk8OBVx/O/l0xi7a4Kzvm/BTy1ZEeb/7ystfz1/c1c+fBiMpK8vHTLyQqYRPoxb5yLOJehpkEhk4iISKyK5LhcDtByU3ABMKO1C40x+cAI4N3gfRfwR+AqnN0A0tLuL+CN/3S6hkac0v3vn5rT+ZDJWmdcbuKF3V9Pb5CeDzYAlbuaAxlwQqaePqEsId35xj/ccbmako5PAksLdjK1FzJ5fJAyuP33yWhxEl9oh8+hKnbB4GPaf58WVu8q5/FFO3hpeeGBPR3jB6fwzROG87Xjhh448rovW1VYzrWPLKG+sYknbpzB8fmZfG1yDg99uIXfv7GeNbs+4r4rpjBxaFr3fmKXy/n7HTpFMbj0+9JXalhZtoObThnJ988aS3xcc5eMMYavHz+MmSMzueOZL/jRcyt5c/VefnPxMQxMSThwXUVdA3c8s4I3Vu/lvGOH8PuLjyUpvu//sxSR9iV63epkEhERiWGR7GRqrZ2lrfaC2cCz1trQVw3fAV611rZ7nJUxZo4xZqkxZmlxcfERlNpLNDXBJ3+Bh85wTpab/Xh4R9R3VurQzo/LVe5xjjEfOKH76+kN2ur0qSrq+d1CLpdz0ld1GCGTtU7I1NG4XOhkuPI2/pUs3eJ0MXXUxZYeDJnaWv5trdMR1sHJcnUNAZ7/vICL7v+Y8+75iBeWFfDVY4fw3LdP5PcXH4vLGP7zhZXM+J93+NW/1rBtX3X7dfViH2/ax+y5i/C4DM99+wSOz3dOeXO5DDedOor5c2ZS2xDgwvs/Yf6nbXcNdVlyNlQV0xBoYsOyD9lhB1LSlMKTN87kx1856qCAqaVhGT7+ecMMfvrVCXy0aR9n/3kBr63cDcD6PZVccO/HvL22iLvOO4p7Lz9OAZOIAJDkjdNOJhERkRgWya/aC4DcFveHAW0lF7OBm1vcPwGYZYz5DpAMeI0xVdbaO1u+KBrH50ZN5R544Vuw5T0Ydx6c/xdI6mDEqatSc2DTO843/OGOvhWtdm7749JvaDtkqi6Kzp+Jb0B4nUx15c7C7o4Wf7vjnPBxfxshU8lmGDi+4893oJOpjZCptgwaa9scl9teUs0Ti3fw9NKdlNU0MDIriZ9+dQIXTxlGms85He/4/AwumTqMz3eU8cgn2/nHJ9t4+KOtnDYum6tPGM6pY7NxdWLhdHer9jeyp6KOPeXBXxV17C6vZW+Fn1HZyVwydRijspPDeq+XV+ziB08vZ2RWMo9cN40haYePZU4bnsm/vzuL2+cv587nV/Lp1lJ+feHR3dfhlZRN7f7dzH5gIfcWr6AkbSKv3TyL1IR2TisMcrkM1508glPGZvG9p1bw7X9+zhnjB7JwcwnJCXE8ccMMZoyM0H/nRKRX8nndOl1OREQkhkUyZFoCjDHGjAAKcYKkbxx6kTFmHJABLAw9Zq29osXz1wBTDw2Y+pV1r8JLNzt7bL76Zzj+2sjuPUodCg3VTgCRGObpVEVrndv+GjKlDQNMK51Me2HkaT1fjy8rvMXfob1NHe1kguAJeq2MyzUFoGwbjD+v4/dIHgRxCc71rQmNabboZLLWsnBLCQ9+sIUPNhTjdhnOmjCIK2fmc+KoAa0utTbGcHx+JsfnZ1J03lE88ekO/rl4B9c+soT8AT6+MT2Pc48eQt6AjpdOh8PfGKC0up6SqnqKq/yUVNVTUuWnpLqefVV+iiv97K2oY3d5HZV1h/8EPsPnISs5nnfXFfHAB5uZkpfOJVNz+eqxQ0hpI6yZ99FWfvmvNUwfnslD35x6IGRrTVZyPP+4bjp/eXcjd7+zkZWF5dx/xRTGDErp0u+3riHAp1tLeX99MTO3NzGhoYD9Zje5rmJyZ5wOYQRMLY0emMLz3zmR+97bxF/e3cSUvHTu+8YUBqYmdPxiEelXNC4nIiIS2yIWMllrG40xtwBvAG5gnrV2tTHml8BSa+3LwUsvB+bb/riptyP1NfDmXbD0YWdHzcUPt73HpjulBb/Br9jVuZApaWDHY1d9VVy8cyJayxCm0e8EdUk9eLJcSNKA5uCvPaGQKZx/bmm5sP3jwx8vL3C6oTpa+g1OOJqe13YnU2hMMzXHCZc2l/B/72zk062lZKfEc/uZY5g9LY/BaeGHDwNTE7j9zLF857TRvL56D//4ZBu/eW0dv3ltHeMHp3DWxMGcPXEQE4akhnUKW5W/kSXbSlm0pYRFW0rZUlzVanAEzpLa7OR4BiR7GT4giRNGDmBwWiKD0+IZnJrIkLQEBqclkOBxRsqKKut4cVkhzywt4MfPr+QXr6zm3KOHcMnxw5g5cgAul6GpyfK7N9bx4AdbOHviIO6efdyB17fH7TLcfuZYpuZnctv8ZZx/78d869RRjMhOYnBqAoNS4xmUmtDme+0sreH9DcW8v66ITzaXUNsQwBvnYmpGNoObKnnpaz54Hhh66CGh4fG4Xdx+5liumJFPZpIXdxS7zUQkdqmTSUREJLZFdMmFtfZV4NVDHvvpIfd/3sF7PAI80s2lxb49K+HZ62HfejjhFvjSTyOzf6k1qS1CpkFh7lgqWtN/u5hC0vMO3jVUFTxxK/nIFn/7GwNt7rVpky8rvNPlQnubwu1kWvk0BBqcUwhDSjc7t+GETODsZWprJ1Owk2lJWSJ/+PciPt1WyqDUeH5x/kQum5YbVpjSFm+ci/MnDeX8SUPZUVLDm2v28Obqvdz77kbueWcjwzISOWvCYM6aOIhpwzMPhByVdQ0s3VbGoq1OqLSqsJxAk8XjNkzOTeei43LISo5nQHI8Wcneg26TvO6wgquQgSkJzDllFDfOGsmKgnKeWbqTl1fs4oVlhQzLSOTiKcPYUVrDC8sKuXJmHr84/+hOhzEnj8ni1dtmcdv8Zfz57Q2HPZ+W6DkQOA1KTSDR42bhlhI2FVUBkJuZyCVTh3HauGxOGJlF4pKN8NYzpO9d7LzB0MmdqudQ2Sk99N85EemVEr1xlNdG6MRMEREROWLapBqLFs+FN/8LEjPhqhdg1Bk9+/lD+3DCPWGuqQmK1sHUayNXU2+Qngc7FjXfDx3rfgSLv59espO7XlzFz86fwBUz8sN/YVIW1JQ6o2wuJ5hpDDSxraSavMwkvHHBnf+dGpfLBdvkhI8ZLWop3eLcDhgVXm0Z+VDw6WEPW2vZuXUjObi47ImtDEz1dUu41Jq8AT5umDWSG2aNZF+Vn3fW7uXN1Xt5fPF25n28lcwkLyeNzmJHSTUrC8tpsuBxG47LzeDm00Yxc+QAjsvLINHbvXWFGOMEWJNz0/nJVyfwxuo9PLO0gHve3Yi18IMvj+WWM0Z3KsBqaVBqAk/eOJOK2kb2VtaxN7gjqig41renvI69lX42Fe2jvLaB4/MzmD0tl9PHD2RkVtLBnzc52Km38U0YMBoSuvkEOxGRFnweN3vKa6NdhoiIiLRBIVOs2fgWvHYHjD0HLrg/csu925MyBDDhh0z7tznLmvt7J1NGPqx6DgKNzqLsUCdTF8fl3li9hzuf/4Ikbxx3vbiKRI+bi6YMC+/FvgGAdRZpJ2VRWx/gpsc/Y8GGYuLjXEzKTWfa8AwuqtnGKAhvXK7lcvODQqatEJcIyYPDqy093xkjrN0PielYa/l4Uwn/9/YGZu9axSx3Bj+/4Bgundr94VJrspLjuWxaHpdNy6Pa38gHG4p5c/UePtlcwvABSdxy+uiIh0rtSfC4uWByDhdMzqGgrIa9FXUHTpA7EsYY0nwe0nwexnZxNxPQ/HenaA0cc8kR1yUi0h6Ny4mIiMQ2hUyxpK4CXrkdssbBpY/23Hjcodwep/sm3JDpwNLvMEfr+qr0PLAB588tI7/FuFznQ6bFW0q49cllTMpNZ97V07j5ic/54TMrSPS4OfeYIR2/QagzqXofVXHpXPfIEpZsK+W7XxpDVV0jn20v5YEPtpDmWstQt5cL7/+M4/MzmDY8kyl5GRjj7AcqrvRTVOmnqMJPYF81PwL++Mw7PFnvp7a+kURvHHfbxQy1A/n+Awvxed0keuLwed34vG4SPG7qA03U1QeoawxQWx/gmAo/3wduvu8FVtnhVPsb2VdVz+DUBE7KriM7cSTfPGF4p//MukNSfBxfOWYIXwnnzzgKhmX4GJbRPcvKu03LELWL+5hERMKlxd8iIiKxTSFTLHn7Z05Acf1b0QuYQlKHNi9h7kjRGue2J5aSx7JDO30OdDJ1bifTml0V3PCPpeRl+ph39TQykrw89M2pfHPep3x3/jLmetycPr6D4CrYXVJZupsrnylhVWE5d88+jvMnDT1wSU19I1Xzn6axMIPslHheWr6Lfy5u5fQ4wGVgSJKLOzCM8pZw5qiB+Lxx1DYEGLWuiF1xuSTHx1FTH6C0upba+kZq6gPUBZdDJ3jcJHqc0GmvyxkfPDppP3EZ6STEuTk2N42vHz+M+L/+P0g7ulN/XhJlyQqZRKTnqJNJREQktilkihVbP4Sl85wl37nTol2NEzKVbArv2qK1TsASfwQjN31By5AJnJ1MCWngCf8ktB0lNXxz3qekJMTx6HXTyUjyAk6Hzd+vncYVDy3mpsc/45FrpnHi6HZG3HzOc//38iLWlk/mr1dM4ayJB4+z+bxx+NzVkDmYx66fQaDJsm5PBct27MfjNgxMSSA7JZ6BqfEMSIp3Fkz/cTBfG97E1752rPMmTQH4790MnnoBj501I7zfZO1E+N2tfHuSB05sEUpY6wSbY88J+89LYoAvCzDOyYGDj412NSLSxyUGf8DR1GRx6RRKERGRmKOQKRbU18DLt0LGCDj9v6JdjSM1B7YuCO/aorUalQNIHQaY5pCpam+n9jEVVdZx1bzFBJqaeHTOiQxNTzz47RM8PHrddGbPXcQNjy7lseunt7mbpyiQwkCgsaqYh6+ZyqwxbXRTVe87EEi5XYaJQ9OYOLSdxc3pebC/xclwFYUQqA//ZDmAxAyITzv4fcDZH9VQ07x4XnoHdxz4Mp2/6/HJ0a5GRPo4X3A3Xm1DgKR4fRkrIiISa1zRLkCA9/4byrbC+X8Bb4zsW0nLAX+FsyeqPY31sG9D1JZ+v7S8kN+9vo731hVRWRflI43jvE5AEgpPqorDPlmuoq6Ba+YtobjSz9+vnc7oga1/s56R5OWxG6YzKDWBa+YtYWVB+WHX7Cyt4dLH1wNw45TUtgMmgJp94S39DknLhfKdzfc7e7JcSHoelB0SMoXGMxUy9T65M2HcudGuQkT6gVDIpJE5ERGR2KQfAUXbziWw6H6Yeh2MmBXtapql5ji3FbsgIbXt60o3Q1Njj3cyNQaa+NW/1vCPhdsxBv76/mZcBo7JSWPmyAHMGJnJ1OGZpCZ4erQup9OnRSfTkI7Hh+oaAtz4j6Vs2FvJvGumMTk3vd3rB6Yk8M8bZnDJAwu5at5inppzAuMGO6OKm4qquPJvi6lrhIA3lWHemvY/eU1p85LwcKTnwZoXnTE5lxtKNjuPd6aTCZydVYeOY4YWzaeGeYKexI7Ln4h2BSLSTyQGTx3V8m8REZHYpJApmhr98NLNkDIUzvxFtKs5WKibUNdX3gAAIABJREFUpKIQBo5v+7rQ0u8e7GSqqGvglieWsWBDMTfOGsHtZ45lxc79LNpSwqItpcz7eCsPLtiCy8DRwdBp2vBMxg9OISc9MbI7HNLzYfvHzsfVHXcyBZost81fxuKtpdw9ezKnjA1vSfjQ9ESeuHEGlz64kCv+tphnvnUCdQ0BrvzbYoyB+XNm4n46y+lUaktDHdRXdTJkynVCxco9Trdb6RaIS3D+DndGej5sftfZw2SC/zwOhEzqZBIRkdb5vM6XrjUNjVGuRERERFqjkCmaFvwB9q2HK55tv1soGg6ETB2cMFe0FowbBoyJfE3A9pJqrv/HUrbtq+Z3Fx/DZdOcZdsnjs46sAi7tj7Ash1lLNpayqItJTzy8TbmLnDGuuLjXIzMTmZUdhKjspMZNTCZ0dnJjMxOIiH409Ejkp4HK592xgz9Fe2eLGet5a4XV/LG6r387D8mcMHknE59qvwBSfzzhhlc9uAivvHQImrqA/i8bv55wwxGZic7u5ZqStp+g1AA1ZlxuZbLzdNyoHSrs0vM1cnJ24x8Z/9SdXHz6WTlhc7fpZTB7b9WRET6LY3LiYiIxDaFTNGy+wv46M8w6XIY8+VoV3O4lBadTO0pWuvs4+nECWpdtXhLCd96/DMs8Nj1MzhhVOsdOIle90GhU11DgJWF5WwqqmJzURWbi6v4oqCcf6/cjbXOa4yBnPREThqVxaXThjElLwNjutDxlJ4Htgl2L3fuH9LJtLeijpUF5awsLGfJtlI+2VzCrWeM5tqTRnT+cwGjB6bw2PUzmD13Iek+L/+8YQa5mcG9XklZsH9n2y+uDoZMnelkSguGTOU7gROcccnMTu5jAqeTCZy9TKGQqWKXEzC5uiHsExGRPunA4m+FTCIiIjFJIVM0BBqcMbnETDj7f6JdTevivM5pUR2FTHtXw5BJES/nmaU7+c8XVpKb4ePha6YxIisp7NcmeNxMG57JtOEHn8RW1xBg675qNhdXsbmomg17K3nli108tXQno7KTuHRqLhdNGUZ2Snz4hYY6fQqWALCs1MP7b21gVaETLBVV+gFwGRiVncz3zhzLd780Ovz3b8WEoam884PTSPS6SW550o5vAOxa1vYLQ11Ovs50MuU6t/u3Q1OT08nUlZA0I7/5fXKnOR9XFDbvAhMREWnFgXE5hUwiIiIxSSFTNHxyD+z5Ai59zDn6O1alDm1/XK6+Gsq2Od1YEdLUZPndG+t48IMtnDw6i/u+MYU0X/cs807wuDlqSCpHDWkeVazyN/LqF7t5aulOfvPaOn7/xnrOGD+Qy6bmctq4bOLch4+FNQaa2FZSzepdFeza2si3gQ/efY1TgZ+8U8waNjIqO5mTR2dxzLA0jslJY8LQ1ANfKHeHVoMw3wCnW6nl3qOWQiFTZ8blPInOCOD+nU4oFPB3fuk3NIdxZduaH6sohEFHd/69RESk30g8MC6nnUwiIiKxSCFTTyteD+//FiZ8DSacH+1q2peaA2Vb236+eD1gI7b0u9rfyO1PLeetNXu5cmYeP/uPiXhaCXm6U3J8HJdOy+XSablsKqrimaU7ee7zAt5as5fslHgunjKME0cNYEtxFWt3V7J2TwXr91Tib2wCwOcOMMfj4jjXZgjAr688gzGjx5EUH4V/1ZKyoKnB2Q2VkHb4810Zl4PmE/RKnT1XXQqZvEnBsGq7c99aJ9Acc3bn30tERPoNjcuJiIjENoVMPakpAC/d4nyD/ZU/RLuajqXlwLaP2n6+aK1zO3BCt37aQJPl3XVF/PHN9WzYW8nP/2MCV584vGs7ko7A6IHJ/PgrR/HDs8fx3roinl66k4c+3MIDH2wGIDPJy1FDUrhqZj4ThjodUaOyk3HfM5TUigIAJo8bA3FR+tcsNAZXU9J6yFRT4izaTkjv3Pum5cLeVS1Cpi7sZAJnL1NZMGSqLXMWgadpXE5ERNqmxd8iIiKxTSFTT1rzEhR8ChfObV52HMtSh4K/HPyVEJ9y+PNFa8AdD5ldW1p9qCp/I88u3cnfP9nG9pIahqYl8PA10zh9XHT/rDxuF2dNHMxZEwdTVFHHhr1VjBmUzMCU+NaDr4x8qCiAxAxnt1W0hMbgqkta7zaq2eeMa3b2ZLj0PFj/GpRscv75d3WPUkY+FH7mfBwaywydaigiItKK0LhcbYNCJhERkVikkKknhfbPxPqYXEgoPKjYDdmthUxrIXvcEZ8GtrO0hkcXbmP+kp1U1jVyXF46d5w9jrMnDo74eFxnDUxNYGBqByfppefB9o8PO1mux4XG4Gr2tf589b7OLf0OSc9zdjHtXAwZwzsfUh14n3wneG0KNC+YTx3WtfcSEZF+wet24XYZ7WQSERGJUWGFTMaY54B5wGvW2qbIltSH+SvB5YG4DkKKWBHqKqkohOyxhz9ftBZGnNKlt7bWsnR7GfM+2sobq/dgjOErxwzh2pOGMyUv4wiKjgGhpdZJ2dGt40AnUxshU01J5/cxQfPvr/AzGHtO12oDp5OpqdHpYjoQMqmTSURE2maMwedxa1xOREQkRoXbyfRX4FrgHmPMM8Aj1tp1kSurjwqNnfXwbqEuaxkyHaq2DCp3dWnp9yeb9vHb19fxRUE5aYke5pwyim+ekM/Q9MQjLDhGhEKYWO9kqinp2tL2tFzn1jZ1bel3SHq+c7t/uxM0GVf0/8xERCTmJXrdWvwtIiISo8IKmay1bwNvG2PSgMuBt4wxO4GHgMettQ0RrLHvaGu3UaxKCYVMuw5/riiYMXZi6XegyXLPOxu5592N5GX6+PXXjuaiKTn4vH1savNAyBTlvVveJIhLbLuTqcvjcrnNHx/JPq7Qn1PZdigvhJQh4O5jfxdERKTb+bxuqhUyiYiIxKSwv6MzxgwArgSuApYB/wROBq4GTotEcX2OvwLiU6NdRfg8CU4I0VonU9Ea5zbMTpjiSj+3P7WMjzeVcNGUHH79taP7XrgUEivjcuCMzNWUHv54U8DpRkvqQsgUn+IsNa8t6/rJchDsiDLBTqZCjcqJiEhYEr1x1Gonk4iISEwKdyfT88B44DHgP6y1u4NPPWWMWRqp4vqc3tbJBM43/q12Mq11ArO0jhc1L9xcwnfnL6OitoHfX3wsl0wd1vqpbH1Fej6c+XM4+uvRrsQZmWttXK62DLBd28kETkBUW3Zk43JxXme5fFkwZBp0dNffS0RE+g2fVzuZREREYlW4rST3Wmvfbe0Ja+3Ubqynb/NXOCNBvUlqDuzfcfjjRWudLqZ2wqKmJst9723iz29vYHhWEo9dP53xg3tRJ1dXGQMnfy/aVTiSsloflws91tWQKT0PiteFFTK2KyO/eSfTmLOP7L1ERKRf8HndVNapk0lERCQWhXv2+FHGmPTQHWNMhjHmOxGqqe/qjZ1MaTmHj8tZ64zLtTMqt6/Kz9V//5Q/vrWB8ycN5ZVbTu4fAVOsaauTKfRYV8blAI69DGZ+B1zurtcGTtfXnlXQUKNxORGRCDPGzDPGFBljVrVzzWnGmOXGmNXGmA96sr5wJXq0+FtERCRWhRsy3Wit3R+6Y60tA26MTEl9WG8MmVKHQt1+qK9ufqyqCGpL21z6vXhLCefd8yGLt5bym4uO4c+XTSYpvo/uX4p1viyoLjn88SPtZJpwPnz5F12vKyQjH+ornY/Tco78/UREpD2PAOe09WTwB4r3A+dbaycCl/RQXZ3i87qpaVAnk4iISCwK9zt/lzHGWGstgDHGDXgjV1YfVVfRC0Om4Df+Fbsha7TzcStLv/2NAVYVlvPWmiLmLthM/oAk/n7NdCYMVfdSVCUNgIZqaKgFT2Lz4zXB4Kkrp8t1p/T85o9TFTKJiESStXaBMWZ4O5d8A3jeWrsjeH1RT9TVWb74OHUyiYiIxKhwQ6Y3gKeNMQ8AFvgW8HrEquqLGv0Q8Peu0+WgeYSpouCwkOnD8mw+eX0dn20rY3nBfuobmwC4YPJQ/vvCY0hW91L0hUKkmpKD9ycdCJm62MnUXTIUMomIxJCxgMcY8z6QAtxtrX00uiUdzufR4m8REZFYFW4K8CPgJuDbgAHeBP4WqaL6JH+Vc9vrQibnG//GskL+vbyQxVtLOWXNuxxvU7lq/hbiXIaJOWl8c2Y+U4dncnx+Btkp8VEuWg4I7Vyq3ndwyFS9D+LTnBPeoinUyWRckDwourWIiEgccDzwJSARWGiMWWSt3XDohcaYOcAcgLy8vB4t0ud1U9sQwFrbt0+rFRER6YXCCpmstU3AX4O/pCv8Fc5trxuXczqZXvrwU36wJ52U+Diujy+gLn0cT54/k8m56SR6j3D5s0TOgU6mQ5Z/15SAL7Pn6zlUyhBweyEpG9zqfBMRibICYJ+1thqoNsYsACYBh4VM1tq5wFyAqVOn2p4sMtEbh7VQ19Ckr0FERERiTFiLv40xY4wxzxpj1hhjtoR+Rbq4PqWXhkz1Jp5KVyq1+3byqwsmsvynZzLK7iR3/PGcMGqAvriLdaFxuEOXf9fs6/rJct3J5YK0XJ0sJyISG14CZhlj4owxPmAGsDbKNR3GF/zao6Zey79FRERiTbiny/0dp4upETgdeBR4LFJF9Un+4AlaCb1nXK4h0MQtT3zOzsYMThvSwFUnDMddsdNZJN1i6bfEsKRgyFRzSMhUXRL9pd8hJ30Xps+JdhUiIr2KMeY2Y0yqcTxsjPncGHNWB695ElgIjDPGFBhjrjfGfMsY8y0Aa+1anJ2bXwCfAn+z1q6K9O+lsxIPhEzayyQiIhJrwp1PSbTWvhM8YW478HNjzIfAzyJYW98SCpl6SSdTQ6CJW59Yxptr9vKTYfkMc5U5TxQFf6A5cEL0ipPwJaSDK671cbkhk6JT06GOvybaFYiI9EbXWWvvNsacDWQD1+L8UPDNtl5grb28oze11v4B+EO3VRkBoU6m2gaFTCIiIrEm3E6mOmOMC9hojLnFGHMhMLCjFxljzjHGrDfGbDLG3NnK8382xiwP/tpgjNkffHyyMWahMWa1MeYLY8xlnfpdxaIDIVPsdzI1Bpq4ff5yXl+9h59+dQK5w0dDRaHzZPBkObLHR69ACZ8xzshcdYuQydrguFyUT5YTEZEjEdp4/RXg79baFS0e69N86mQSERGJWeF2Mt0O+IDvAr/CGZm7ur0XGGPcwH3Al3EWSS4xxrxsrV0TusZa+70W198KHBe8WwN801q70RgzFPjMGPOGtXZ/mPXGnrpy5zbGO5kaA0187+kV/Hvlbu467yiuO3kELBgKtaXQUOt0MqXl9aqxv37Pl3XwuJy/EgL1sTMuJyIiXfGZMeZNYATwY2NMCtAU5Zp6RKLH+fJVO5lERERiT4chUzAsutRaewdQhdOOHY7pwCZr7Zbg+8wHLgDWtHH95QTH71oelWut3WWMKcJpBe+9IVMUxuWamizvrS9iRFYSI7KSOjzmN9Bk+cEzK3hlxS7uPHc8N8wa6TyRmuPcVuxyQibtY+pdfJkHdzKFRud86mQSEenFrgcmA1ustTXGmEzC/xqtVzvQyeRXJ5OIiEis6TBkstYGjDHHB/cxdeaI2hxgZ4v7BTinlBzGGJOP85O4d1t5bjrgBTZ34nPHHn8luDwQl9Bjn/Lhj7by3686O5SGZSRyythsThmTzYmjB5Ca4Dno2kCT5Y5nVvDS8l3ccfY4vnXqqOYnQyHT/u2wbwOMPrOnfgvSHZKyYM/K5vs1pc2Pi4hIb3UCsNxaW22MuRKYAtwd5Zp6xIGQSTuZREREYk6443LLgJeMMc8A1aEHrbXPt/Oa1tpm2gqpZgPPWmsP+mrBGDME5xS7q621h7WAG2PmAHMA8vLy2v0NRJ2/0uli6qCbqLusKizn92+s48yjBnHquGwWbCjm5eW7eGLxDtwuw3G56U7oNDabiUNT+fHzK3l+WSE/+PJYbj599MFvFgqZtn7ojFlp6Xfvcui4XKirSeNyIiK92V+BScaYScD/Ax7GOf331KhW1QNCp8vValxOREQk5oQbMmUCJcAZLR6zQHshUwGQ2+L+MGBXG9fOBm5u+YAxJhX4N3CXtXZRay+y1s4F5gJMnTq1M11WPc9f0WOjcjX1jXz3yWUMSIrnfy85lnSfl6tm5tMQaGLZjv0s2FDMgo3F/PntDfzprQ0ketzUNgS47UtjuPVLYw5/w9Qhzu2mt51bjcv1LklZUFsGgUZwtzhpTou/RUR6s0ZrrTXGXADcba192BjT7r7MvsLnDe1kUieTiIhIrAkrZLLWdmXGfwkwxhgzAijECZK+cehFxphxQAawsMVjXuAF4FFr7TNd+Nyxx1/ZYyfL/fKVNWwtqeaJG2aS7vMeeNzjdjF9RCbTR2Tyw7PHUVpdz4cbi/lkUwlH56Ry5cz81t/QmwQJ6bDnCzAuyBrbI78P6Sah3Uu1pZA8sLmrSTuZRER6s0pjzI+Bq4BZwR2ang5e0yfodDkREZHYFVbIZIz5O62Mullrr2vrNdbaRmPMLcAbgBuYZ61dbYz5JbDUWvty8NLLgfmH7Hu6FDgFGGCMuSb42DXW2uXh1BuT/JU9ciLbayt3M3/JTm4+fRQnjGo/RMhM8nLB5BwumJzT8RunDYO6/ZA5Cjw9t1dKukEoTKre54RM1fvAHQ/e5OjWJSIiR+IynB/eXWet3WOMyQP+EOWaekR8nAtjoFYhk4iISMwJd1zuXy0+TgAupO3RtwOsta8Crx7y2E8Puf/zVl73OPB4mLX1Dv4KSBkS0U+xa38tdz6/kkm56dx+Zjd3G6UOhb2rNCrXG4UWfIfG5GpKnMd6aD+YiIh0v2Cw9E9gmjHmq8Cn1tpHo11XTzDGkOSNUyeTiIhIDAp3XO65lveNMU8Cb0ekor7KXxnRMbNAk+V7Ty2nMdDE3ZdNxuN2de8nSB3q3Grpd+8TWvAdGpOr3ge+zOjVIyIiR8wYcylO59L7OIet/MUYc4e19tmoFtZDEr1uahu0+FtERCTWhNvJdKgxQIwf5xZj6iK7+PuBDzazeGspf7xkEsOzkrr/E4ROmFMnU+8T6mSqbtHJpJPlRER6u/8CpllriwCMMdk4PwDsFyGTz+tWJ5OIiEgMCncnUyUH72TaA/woIhX1VRFc/L1sRxl/emsD508aykVTwtiv1BUDRgEGhhwbmfeXyEkMdi2FOplq9kHmiOjVIyIi3cEVCpiCSoBubmOOXYkehUwiIiKxKNxxuci14PQHjX4I+CPSyVRZ18Bt85czODWBX194NCZSe3YmfA2+PR4yR0bm/SVy3HGQmNHcyVStTiYRkT7gdWPMG8CTwfuXccgezL7M53Vr8beIiEgMCusnXsaYC40xaS3upxtjvha5svoYf5VzG4FOpp+9tJqCshrunj2Z1IQInlzscsOgiZF7f4ks3wCng6nRD/WVzSfOiYhIr2StvQOYCxwLTALmWmv7TZe5zxtHTb12MomIiMSacHcy/cxa+0LojrV2vzHmZ8CLkSmrj/GXO7fd3Mn00vJCnl9WyO1njmHqcC1ylnb4spxxudDIXJJCJhGR3i54MMtzHV7YByV63eyr8ke7DBERETlEuCFTax1PXV0a3v/4K53bbgyZtpdUc9cLq5ian8Etp4/utveVPiopC0q3No/MaVxORKRXamVP5oGnAGutjcwCyBjj87qpbdC4nIiISKwJNyhaaoz5E3Afzhc2twKfRayqviYUMiUc+dd9e8rrmLtgC098uh2P28WfL5tMnLvf7PmUrvINgIIlzshc6L6IiPQ62pPp0OlyIiIisSnckOlW4CfAU8H7bwJ3RaSivqgbOpl2ltbw1w828+zSAgLWcsHkodxy+mhyM33dVKT0aUnBcbnqkub7IiIivVSiJ06Lv0VERGJQuKfLVQN3RriWvquuwrntwuLvTUVV3P/+Jl5avgu3MXx96jC+feoohUvSOb4B0NQIpVuC9xUyiYhI7+Xzuqmub8RaG7mTdUVERKTTwgqZjDFvAZdYa/cH72cA8621Z0eyuD7DHwqZwu9kWr2rnPvf28yrq3YTH+fimhOHc+OskQxOS4hQkdKnhUKl4nVgXJCYHt16REREjkCi14214G9sIsHjjnY5IiIiEhTuuFxWKGACsNaWGWMGRqimvufAuFzHnUxNTZbbnlrOKyt2kRIfx3dOG8V1J41gQHJ8hIuUPi10mty+DZCYAS59QS4iIr2Xz+v8f6ymPqCQSUREJIaEGzI1GWPyrLU7AIwxw2n9ZBNpjb8SXB6I6zgoenvtXl5ZsYvrTx7Bd780hrRETw8UKH1eqJNp30bIGB7VUkRERI5Uc8jUSGaSN8rViIiISEi4IdN/AR8ZYz4I3j8FmBOZkvogf4UzKhfGzoC5C7aQk57Ij88dr1PjpPuEFn0H/Fr6LSIivV6i1/kSVsu/RUREYktYKYa19nVgKrAe54S5HwC1Eayrb/FXhrWP6bPtZSzdXsb1J49QwCTdyzegxceZ0atDRESkGyS1GJcTERGR2BHu4u8bgNuAYcByYCawEDgjcqX1If5KSOh4H9PcBZtJS/Rw2bTcHihK+hVPIniSoKFaJ8uJiEivl6iQSUREJCaF2y5zGzAN2G6tPR04DiiOWFV9jb+yw6XfW4qreHPNXq6amU9SfLhTjCKdEFr+rXE5ERHp5XyhcbmGxihXIiIiIi2FGzLVWWvrAIwx8dbadcC4yJXVx4R2MrXjoQ+34nG7uPrE4T1Tk/Q/oQ4mdTKJiEgv51Mnk4iISEwKt2WmwBiTDrwIvGWMKQN2Ra6sPqauArLGtvl0caWf5z4v4OIpw8hO6fgEOpEuCXUwtdzPJCIi0gslehQyiYiIxKKwQiZr7YXBD39ujHkPSANej1hVfU0Hi78fXbiNhkATN84a0XM1Sf8T6mBKUsgkIiK9W6iTSafLiYiIxJZOL/+x1n4QiUL6tHZ2MlX7G3l04Xa+fNQgRmYn93Bh0q+ETpXTuJyIiPRyoZ1M6mQSERGJLeHuZJKuavRDwN9mJ9PTS3dSXtvATaeO7OHCpN/RuJyISL9mjJlnjCkyxqzq4LppxpiAMebrPVVbZyV4XBgDtfVa/C0iIhJLdIxZpPkrndtWOpkaA008/NFWpuZncHx+Zg8XJv3OxAud0DN1aLQrERGR6HgEuBd4tK0LjDFu4HfAGz1UU5cYY0j0uNXJJCIiEmPUyRRp/grntpVOpldX7aGgrJY5p6iLSXpAxnA47U4wJtqViIhIFFhrFwClHVx2K/AcUBT5io6Mz+umpkEhk4iISCxRyBRpoU6mhIM7may1zF2wmZHZSZx51KAoFCYiIiLSzBiTA1wIPBDtWsKR6HVT49e4nIiISCxRyBRpB8blDu5k+mRzCasKK7hx1khcLnWWiIiISNT9H/Aja22H7UHGmDnGmKXGmKXFxcU9UNrhfJ44jcuJiIjEGO1kirS61sflHlywhazkeC48LicKRYmIiIgcZiow3zhj1VnAV4wxjdbaFw+90Fo7F5gLMHXqVNujVQYlet3UalxOREQkpihkirRWFn+v3V3Bgg3F3HH2OBI87igVJiIiItLMWjsi9LEx5hHgX60FTLHC59XibxERkVijkCnSDiz+bg6ZHlqwBZ/XzZUz8qNUlIiIiPQ3xpgngdOALGNMAfAzwANgre0Ve5ha8nndlNU0RLsMERERaUEhU6QdspNp1/5aXl6xi6tOyCfN54liYSIiItKfWGsv78S110SwlG7h88ZRW6/F3yIiIrFEi78jzV8BLg/ExQMw76OtWOD6k0e0/zoRERERaZPG5URERGKPQqZI81c6XUzGUF7bwJOf7uCrxw5hWIYv2pWJiIiI9FqJXje1CplERERiSkRDJmPMOcaY9caYTcaYO1t5/s/GmOXBXxuMMftbPHe1MWZj8NfVkawzokIhE/CXdzZSXR/gxlkjo1yUiIiISO/m87qpaQhgbVQOtxMREZFWRGwnkzHGDdwHfBkoAJYYY1621q4JXWOt/V6L628Fjgt+nImzjHIqYIHPgq8ti1S9EeOvhIRUPtxYzN8+2soVM/I4Oict2lWJiIiI9Go+bxyBJkt9oIn4OJ3WKyIiEgsi2ck0Hdhkrd1ira0H5gMXtHP95cCTwY/PBt6y1pYGg6W3gHMiWGvk+CtpiEvm+0+vYMzAZO46b0K0KxIRERHp9RI9TrCkkTkREZHYEcmQKQfY2eJ+QfCxwxhj8oERwLudfW2ss3XlrC6xlNc2cM/lx5Ho1U/aRERERI6UL/g1lZZ/i4iIxI5IhkymlcfaGpqfDTxrrQ19lRDWa40xc4wxS40xS4uLi7tYZmRVlpexrcrFj88dz1FDUqNdjoiIiEifkKiQSUREJOZEMmQqAHJb3B8G7Grj2tk0j8qF/Vpr7Vxr7VRr7dTs7OwjLLf7rd9TSUNNOSlpA7jmxOHRLkdERESkz/B5ndWiGpcTERGJHZEMmZYAY4wxI4wxXpwg6eVDLzLGjAMygIUtHn4DOMsYk2GMyQDOCj7Wa9Q1BPjuk8tINrWccNRwjGmtOUtEREREuqJ5XK4xypWIiIhISMROl7PWNhpjbsEJh9zAPGvtamPML4Gl1tpQ4HQ5MN+2OH/WWltqjPkVTlAF8EtrbWmkao2E3762jq17S4lPaICU9GiXIyIiItKnHBiXa1Ank4iISKyIWMgEYK19FXj1kMd+esj9n7fx2nnAvIgVF0HvrtvLI59s45bp2fAFEK9dTCIiIiLd6UAnk18hk4iISKyI5Lhcv1RUUccPn/mCo4akcuvJg5wHExQyiYiIiHQnn8f5WanG5URERGKHQqZu1NRk+cEzK6ipb+Se2ZOJD1Q7T8SnRLcwERERkT4mNC5Xq3E5ERGRmKGQqRvN+3grH27cx0++OoExg1KgrsJ5QiGTiIiISLdqXvytkElERCRWKGTqJqsKy/nd6+s4a8IgvjE9z3nQX+ncKmQSERER6VaJHoWataeiAAAgAElEQVRMIiIisUYhUzf5xSuryUzy8ruLj8UY4zx4IGTSTiYRERGRTtn8Lrz1Uyjb3urTLpch0eOmVjuZREREYoZCpm5grWXd7krOPXoIGUne5if8oXE5hUwiIiIinVL4OXxyL9w9CZ6YDZvehqamgy7xed3qZBIREYkhCpm6QUVtI5X+RnLSEw9+wq+dTCIiIiJdcsoP4faVzm3hUnj8Yrh3Kiy8H2r3A87y71qFTCIiIjFDIVM3KNhfA8CwjENDpkpweSAuPgpViYiIiPRyaTlwxl3wvdVw0d8gKQve+DH86Sh45TYmuneok0lERCSGxEW7gL6goKwWgGEZvoOf8Fc6XUyhHU0iIiIi0nlx8XDsJc6v3Svg04dgxXwebHyEdQ3HQPlTTiAlIiIiUaVOpm7QHDK10smUoH1MIiIiIt1myCS44F74/loeT72RMf7VsPThaFclIiIiKGTqFgVlNSR53aT7PAc/EepkEhEREZHu5cvkvczL2OAeA1s/jHY1IiIigkKmblFYVktORiLm0LG4ugqdLCciIiISIYleN5+7joHCz5wf7omIiEhUKWTqBgVltYfvYwLndDl1MomIiIhEhM/rZrGdADYAOxZFuxwREZF+TyFTNygoqzl8HxMEx+XUySQiIiISCT5vHIsaxzin+W5dEO1yRERE+j2FTEeooq6BirrGdkImdTKJiIiIREKi101pfRwMmwbbtJdJREQk2hQyHaHC4MlyOekalxMRERHpST6Pm8YmSyD/ZNi9Amr3R7skERGRfk0h0xEqCIZMh3UyNfohUK+QSURERCRCEr1uAGpzTgTbBNs/iXJFIiIi/ZtCpiNUUFYDtBIyhU440U4mERERkYhIio8DoDJ7MrjjNTInIiISZQqZjlBBWS2JHjeZSd6Dn/BXOLcJCplEREREIsEX7GSqafJA3gzYqpBJREQkmhQyHaGCshpyMhIxxhz8RF0wZNK4nIiIiMQAY8w8Y0yRMWZVG89fYYz5IvjrE2PMpJ6usbMSPcFxufoADD8F9q6EmtIoVyUiItJ/KWQ6QoX7a9s+WQ4UMomIiEiseAQ4p53ntwKnWmuPBX4FzO2Joo6Ez+uMy9XUB2DELOfBbR9FsSIREZH+TSHTESooU8gkIiIisc9auwBos83HWvuJtbYseHcRMKxHCjsCocXfNfWNMHQKeHywdUGUqxIREem/FDIdgcq6BvbXNDAsw3f4k1r8LSIiIr3X9cBr0S6iI6GdTLX1AYjzQt4JWv4tIiISRQqZjkDh/lqglZPloHnxt0ImERER6UWMMafjhEw/aueaOcaYpcaYpcXFxT1X3CFCIVN1fcB5YMQsKF4HVUVRq0lERKQ/U8h0BArLnJApJ729kEnjciIiItI7GGOOBf4GXGCtLWnrOmvtXGvtVGvt1Ozs7J4r8BDZKfGkJMTx2MJt1Dc2Ocu/Qd1MIiIiUaKQ6QgUlIU6mdoYl3N5IC6+h6sSERER6TxjTB7wPHCVtXZDtOsJh88bx+8vPpYVBeX85rW1MGQSeFO0l0lERCRK4qJdQG9WUFZDfJyLrGTv4U/6KyEhFYzp+cJEREREDmGMeRI4DcgyxhQAPwM8ANbaB4CfAgOA+43z9UujtXZqdKoN37nHDOGaE4fz94+3MWPEAM4ZfhJsVSeTiIhINChkOgKhk+VMa0GSv1KjciIiIhIzrLWXd/D8DcANPVROt/rxV8azbEcZdzy7ghknzyBjw+tQsQtSh0a7NBERkX5F43JHoKCslpzWRuUA6ioUMomIiIj0gPg4N/d+YwoAv1g1wHlQ3UwiIiI9TiHTESjcX9v6yXIQ7GTSyXIiIiIiPSE308cfvj6Jl/ZkUutOgW3ayyQiItLTFDJ1UbW/kdLq+nZCJnUyiYiIiPSkc44ezLUnjeKD+vHUrH8v2uWIiIj0OwqZuqhwfzsny4E6mURERESi4M5zx7Mj7Xh8NYUUbl0f7XJERET6lYiGTMaYc4wx640xm4wxd7ZxzaXGmDXGmNXGmCdaPP774GNrjTH3mFa3a0dPQVkNADnp6mQSERERiRXeOBfnX3AZAM88+wT+xkCUKxIREek/IhYyGWPcwH3AucAE4HJjzIRDrhkD/Bg4yVo7Ebg9+PiJwEnAscDRwDTg1EjV2hWFZU4nU267O5kUMomIiIj0tMGjj6M+PpPciqX8z7/XRrscERGRfiOSnUzTgU3W2i3W2npgPnDBIdfcCNxnrS0DsNYWBR+3QALgBeIBD7A3grV2WkFZLd44F1nJ8Yc/2eiHQL1CJhEREZFoMAbv6FP5csIG/rFwG//+Yne0KxIREekXIhky5QA7W9wvCD7W0lhgrDHmY2PMImPMOQDW2oXAe8Du4K83rLUx9WOogrJahqUn4nK1MsXnr3RuE9J6tigRERERcQyfRWpDEecOqeFHz33Btn3V0a5IRESkz4tkyNTaDiV7yP04YAxwGnA58DdjTLoxZjRwFDAMJ5g6wxhzymGfwJg5xpilxpilxcXF3Vp8RwrKashpa1Surty5VSeTiIiISHSMcL50/J/jynC7DDc+upTiSn+UixIREenbIhkyFQC5Le4PA3a1cs1L1toGa+1WYD1O6HQhsMhaW2WtrQJeA2Ye+gmstXOttVOttVOzs7Mj8ptoS+H+Woa1t48JFDKJiIiIRMuA0ZA8mIyixTxw5fEUlNUye+5C9lbURbsyERGRPiuSIdMSYIwxZoQxxgvMBl4+5JoXgdMBjDFZOONzW4AdwKnGmDhjjAdn6XfMjMvV1gfYV1XPsAxf6xcoZBIRERGJLmNgxCzY+iEnjMzkH9dNZ095HZc9uJBd+2ujXZ2IiEifFLGQyVrbCNwCvIETED1trV1tjPmlMeb84GVvACXGmDU4O5jusNaWAM8Cm4GVwApghbX2lUjV2lmF+2sAwuhkSu2hikRERETkMCNOgeoiKF7P9BGZPHbDDEqq67n0wYXsLK2JdnUiIiJ9TiQ7mbDWvmqtHWutHWWt/e/gYz+11r4c/Nhaa79vrZ1grT3GWjs/+HjAWnuTtfao4HPfj2SdnbWzzPnpV9shU4Vzq04mERERkegZPsu53fYhAFPyMnjihplU1jVy6YML2apl4CIiIt0qoiFTX1UQDJly0jsal1Mnk4iIiEjUZAyHtFzYuuDAQ8cMS+PJG2fib2zi0gcXsqmoMnr1iYiI9DEKmbqgsKwWj9swMCW+9QvUySQiIiISfcY43UzbPoKmpgMPTxiaylNznDNlLntwEWt3V0SrQhERkT5FIVMXFJTVkJOeiMtlWr/AXwkuD8S1EUKJiIiISM8YcQrUlkLRmoMeHjMohafmzMTjdnH5Q4tYVVgepQJFRET6DoVMHSkvgI/vgco9Bx4qKKtt+2Q5cEKmhFTnp2ciIiIiEj0jgnuZWozMhYzMTubpm04gyRvHNx5axLIdZT1cnIiISN+ikKkjFbvgrZ/ArmUHHnJCpjaWfgPUVWhUTkRERCQWpA2DjBGthkwAeQN8PHXTTDKSvFz5t8Xc//4mqvyNPVykiIhI36CQqSNZY53b4vUA1DUE2FflJye9nZDJX6mQSURERCRWjD8PNr4JZdtbfXpYho+n5pzA9BGZ/P719Zz8u3e5771NVNY19HChIiIivZtCpo4kpkPKkAMhU+F+52S5YZkdhUw6WU5EREQkJsz8DhgXfHJPm5cMTkvg79dO58WbT2JKXgZ/eGM9s37/Hve+u1Fhk4iISJgUMoUjexwUrwOcUTmgg51MFQqZRERERGJFWg5M/gZ8/thBezZbMzk3nXnXTOOlm0/i+LwM/vfNDZz8u/e4552NVChsEhERaZdCpnBkjYN9G8BaCspqANrfyeTXTiYRERGRmHLSbdDUAAvvC+vySbnpPHzNNF655WSmDc/gT29t4OTfvsvdbytsEvn/7d13eJRV2sfx75nJZNILSSAkoZfQiyCggGDHXtbeXdu66nZX3aburlvcou67Nta1d8XCKjYUwS5dehEVQgslIQnpM+f94wwhhAQCyWSS8Ptc1zgzz5x55szDZHxy577vIyLSEAWZGiMjFypLoGg96wvKiPIYOibGNDxePZlEREREWpe0XjDoezDnUSjd3uinDc5J5pHLD+eNm8Yxumca90xfyVF3z+CRj9ZQUR0I44RFRETaHgWZGiOjn7vespy8gjKyUmLxekzD4xVkEhEREWl9xv3M/eHwy8kH/NRB2cn857KRvHHTOAZnJ/PHN5dx7D9m8tr89QSDNgyTFRERaXsUZGqMmiDTCvIKSvddKlddAYFKiFFPJhEREZFWpdMAyD0FPn/Q/VHwIAzKTuapq0bz1FWjSI718ZMXFnDq/33MrJVbmnmyIiIibY+CTI0RnwZx6TWZTPsMMpUXuWs1/hYRERFpfcb/HMoLYc5jTdtNnwz+d+M47rtgGEXlVVz26Jdc8sgXLF6/o5kmKiIi0vYoyNRYGbkE81eQX1xBdsp+VpYDlcuJiIiItEY5I6DnRPjs31BV3qRdeTyGM4Zl8/7PJ/DbUwewZMMOTv2/j/nx8/P5duvOZpmuiIhIWxIV6Qm0GRm52EWvAHY/K8uFUq8VZBIRERFpncb/Ap44FeY/BaOuafLu/FFerhrXg3NH5vDwzK/578ff8PqCDaQn+OnfOZEBnZMYkJVE/85J9EyPJ8qrv/OKiEj7pCBTY2X0w1tRSAY7FGQSERERacu6j4OcUfDJv2DEFeD1Nctuk2J83HxiPy4d0503F21k2cYilm4o4rFPvqUyEAQgOspD304J9M90QafRPTswoHMSxuxjURkREZE2QkGmxsrIBaC3Zz05HRpTLqeeTCIiIiKtkjFw1C/g2fNg0Usw7KJm3X1mcgxXjetRc78qEOTrLSUs21jEso3FLNtYxAfL83lpbh4AGYl+JvTNYGJuBuN6p5MSF92s8xEREWkpCjI1VroLMuV6NtAp0d/wOGUyiYiISCtkjHkUOBXIt9YOqudxA9wHnAyUAldYa+e17CxbUJ8ToNNg+OifMOR88HjD9lI+r4d+mUn0y0zirOFum7WWTUXlfLxqKzNXbuG9pZt5eW4eHgPDuqQwMbcjE/pmMDg7GY9HWU4iItI2KMjUWImZlHniGeLfuO86+pogkzKZREREpFV5HPg38GQDj58E9AldRgMPhq7bJ2Ng/M/g5Sth2f9g4Jkt/PKGzsmxnDuyC+eO7EJ1IMjCvB3MXJHPzJVbuGf6Sv753ko6xEczvk86E/pmML5PBhn7+mOniIhIhCnI1FjGsNbblVyzYd/jtLqciIiItELW2lnGmO77GHIG8KS11gKfG2NSjDGdrbUbW2SCkTDgDEjrDR/9w92OYF+kKK+HEd1SGdEtlZ+dkMu2kgo+WrWVD1fk89Gqrby+wJ2DDuicxITcDI7qk8GIbqlER6mJuBykQBV4oiL6uReR9kdBpgOwIpDF0WY/WeMVxeCNBl9My0xKREREpHlkA+tq3c8LbWu/QSaPF8b9FF6/AVZPhz7HR3pGNdIS/Jw5PJszh2cTDFqWbixi5sotzFy5hf/MWsODH35NfLSXI3qlM6FvOkf1zaBrhzg1EJfGKd0O/xoOx9/pmt+LiDQTBZkaqaI6wFeVmZweVeC+lOM61D+wvEhZTCIiItIW1RedsPUONOZa4FqArl27hnNO4Tf4PJjxZ5j1d+h9XOvL6shfhmf7NwzKPYlB2cnccHRvisur+PTrbcwKBZ2mL9sMuAbih3VN4bCuqRzWLZXB2cnE+MLXa0rasGX/g/JC+OwBOOzy1ve5F5E2S0GmRtpYWM7qYLa7s2UFdDui/oEVxQoyiYiISFuUB3SpdT8HqLdPgLV2MjAZYOTIkfUGotqMqGgY+2N462b47lPoPjbSM9pty0p47CQoK4CuR8LJf4PMQSTG+DhxYCYnDszEWss3W3fyyeqtzP2ugHlrC3lniQs6RXkMA7OSGN41leGh4FNOaqyynQQWvwzGA1tXwLovoOuYSM9IRNoJBZkaaX1hGatqgkzLFWQSERGR9mYqcKMx5nlcw+8d7bofU22HXQqz7oZZf4NOA8EGIVhd6xIIXarBBqBDT/DFhndOxZvg6e+5njnH/wE+vgceHg+HXwNH/wpiUwDXQLxnRgI9MxK49IjuAGwprmD+Whdwmre2gOdnr+XxT78FwOc1JMX4SIyJIik2dB1T+9pHemI0o3uk0SsjXgGp5rDibSjfAUPPj/RMnOJN8M1HcMQNMPdxmPuEgkwi0mwUZGqkvIJSNpBG0BeHZ8uKhgdWFIM/ueUmJiIiItIIxpjngIlAujEmD7gd8AFYax8CpgEnA6uBUuDKyMw0Anyx7hfu6XfAX7vtf3xCJ5h4Kwy/DLxhOJ0uL4JnzoHSbXDlm5A1HIZfAh/8Eb6cDIunuF46Qy8Cz96NvzMS/ZwwMJMTBmYCUBUIsmJTMfPWFrChsJyi8iqKy6spLq+iqKyK/KKKmm2llYGa/XRK8jO2dzrjeqcztnc6nZLUc/SABargfz+CskLoORESO0V6RrDkNcDCYZdB5U5Y+DxM+nNN4FJEpCkUZGqkvIIyPB4vJj3XZTI1pGIHJOW03MREREREGsFae+F+HrfADS00ndZn9PXgi4fgrhW3PO665uJ1l2AA5jwKb/zU9bM57nbod2rz9bSproQXL4X8ZXDhCy7ABK4f6Kn/dIGBaTe7ZuVzH4eT/w5Zw/a5S5/Xw6DsZAZl7/8PoVWBIBsKy/j06218vHorH67Ywivz1gPQu2NCTcBpdM8OJMX4AAgGLVXBIFUBS3UgSGUgSHXAUhUI4vUYMhL9+KMO0d5QK96CEle+yBcPuc9LpC1+GToNhoxcGHE5zH0MFr0Eo66J9MxEpB1QkKmR8grKyEyKwWTkwrcfNTxQ5XIiIiIibY8vBkZf27ixg891wYPpt8MLl0CX0XD875tecmQtTL0R1nwIZzwAfY7be0zWMPj+O7DwOff6kyfCyCvhmN82vDDNAfB5PXRLi6dbWjwXjupKMGhZtqmIT1Zv5ePV22pK7zwGoqM8VAUsgeD+23KlxvnolBRDRqKfTkkxdAxdd0ryk5Hox+f14AkF6jzG4PGAweAxriTQYyAt3k9ynK/J77FFzX0MkrJdsHD2f2H8zyL7u0LBt5A3G467w93PGg6ZQ1zJ3OFXqwG4iDSZgkyNtL6gjOzUWBfx/+p5l8Yck7T3QAWZRERERNo3Y6DfydDnBFjwtFud7tETXUbTsbdDRt+D2+/7d8JXL8Axv4HhFzc8zuNxj/c7BT78syuhW/IqDL8Uhl0MHfsd3OvX+1KGgVnJDMxK5tqjelFRHWD+2kI++3obZVUBfF6Dz+sJXdztKK+H6NDtyuog+cUV5BeXs7mogvziClbnbyW/uKJRwam6spJj6N85iQFZSfTv7C7dOsTh8bTC4Mj2b+DrD2Dibe6zsvwNl3125E2Rm9PiV9z1wLN3bxtxObz5c9gwD7JHRGZeItJuKMjUSHkFpYzplQYZof9pb10JOSP3Hqggk4iIiMihwRsFI65wmU2fPwAf3wcrxrhG4hNvg8TMxu/ri8muuffI78P4XzTuObEpcNJfXXBpxp/gs/vh03+5QMGwi2DQ9yA29aDeWkP8UV7G9ExjTM+0Ju0nGLRsL61kc1E5W0IBp6CFoLVYC9a6+5bQ9qBlU1E5yzYWsXRDER+u3FITpIqL9tIvM5H+nZPIzUwkLd5PSpyP5FgfKXE+UuKiiY/2tnwT83lPuLLL4ZdCcjb0OMqVWI66zq1qGAmLp0DOKEit1Xts8Lnw7m9dNpOCTCLSRAoyNUJldZBNReXkpMa5TCZwfZnqBpmqyiFQWX+Gk4iIiIi0T9HxcNTNMOJKmHm369m04FnodSwMPAtyT9r3+eHSqfDWLyH3FNdj6UCDIZmD4MJnoSQfvnoRFjzjMlPe/pXLdhp+MfQ82vWUaimbl8KiF10J4HF37PWePB5DeoKf9AT/Qe2+vCrAqs0lLN24g2Ubi1m6sYipCzdQ/EV1veOjPKZW4Cmabh3iGJCVxIBQNlRqfDMHfaorYf7T0HeSCzABjP0JPH22Oy7DL2ne12uM/OWweTGcdPee22OSXWbT4ilw4p/An9DycxORdkNBpkbYtKOcoIWc1FhIzQKvH+pbYa6i2F37FWQSEREROeTEp8PJd8OYH7j+O0tehZVvuXPHPse7gFPfSXv+Ev/dZzDlavfHy+890rRAUEJHOPJGt1LexoUu2LToJVjyCiRmwdALXKZUSpemv9f6FG2ARS+7QNfmRbu3dxoEQ85t1peK8XkZnJPM4JzdzcyttWwprqCwrIrC0ioKSyspLKtiR2kVhWWVbltZFQU7K/nk6628Mn99zXM7J8fUBJx2leLlpMZSVhVgZ0U1OyuqKanYfXtnpbtfURUgJzWWAZ2TyUmN3V22t+JN2LnFBR536XUMZA6GT+5rcGXAsFo8xWVWDThz78dGXO5KPxdPcbfDYeHzLruv58Tw7F9EWgUFmRohr7AUgJyUWPc//vQ+DQSZity1yuVEREREDl0desKJd8Hxf3BNlpe8Cktfcz15omJcf56BZ0Fqd3juAhf0ufAFiI5rntc3xjUIzxoGJ/wRVr4N859xwY3Z/4UzH4D+pzbPa5UXwbL/uV5S38wCLGSPhJP+BgPOgOcvgrdvhd7HNktj8n0xxtAxKYaOSTGNGr+tpCKUBbWDpRuKWLaxeI8yvAOV4I+qKdu7Yd2DdIjPJtB1IrG7J+iymaZcBSvfoqL3JErKqykur6akopryqgApcdFkJPhJio3au7yvugJeuhK6joaxPz6wyVnrVpXrPh4SO+39eM7hkNHf9YwKR5Dp84fg7Vtc1tRN81xAVkTapbAGmYwxk4D7AC/wiLX2L/WMOQ+4A7DAQmvtRaHtXYFHgC6hx0621n4bzvk2JK+gDMCVy4Ermcubs/fAmkwmBZlEREREDnkejwsIdB3typDWfe4aLy99HZZNdWPiO8IlUyC+aT2OGhTld8GeAWe4RtQvfx9euNg1nz72dvAexGpt1sLq913my4q3oLrcBdYm3AJDzoO0XrvHnnYfTJ7gev6ceX/zva9mkJbgZ1wfP+P67A541C7D27Sjgni/l3h/FHHRXhL8UcT7o0iodd8f5eWbbTtZtrGo5jJ3/hwyzRf8reo8HrzzPbqnx5Me76ekopqy8hSeoiP5z97O2ZUWqL80MtrrIT0hmvREf6isMJrztv6bkZveJLjyHb6KHUNSl4FkJPpJ8NcTkKprw3zYvgbG/bT+x41xwaW3b4VNi1zGVXNZ+IILMHUfD2s/g/d/D6f/q/n2LyKtStiCTMYYL3A/cDyQB8w2xky11i6tNaYPcBsw1lpbYIzpWGsXTwJ3WWvfM8YkAMFwzXV/8grK8BjITA79VSSjnztBqCzd8y9ONZlMKpcTERERkVo8Huh2pLuc9Ff47lNY9Q4MucBlNLWEDj3g+2/DO7+GT//P/dH0nEchKavx+1g/F975Daz9FOLS4LDLYMj5rmF0fYGOzEEuoPXxPTD0fNf8uhWrrwxvf4bFpTCsS0rNffvONOwXUYw88yZuKoxh2cYiCsuqyEqJIcGfwPziSzht/T/55+gySjIPJyEUuPL7vBSWVrKluIItJRVsLa5ka0kFm4vK6Zj3NiOrX+Sl6qM40TuHold/zplVtwKGGJ+HjokxZCT6yUjw0zHJT1q8y4ZKivGRGBPFoCXPkOnxsSHzOBJLq0iIicIbKu2rqA6wsyJAWdfT6ey9nS0fPszS4b+rKQ30ejx0SY2lS4c4OiXF1DyvUVa8Ba9d7/7dL3rJBZg+fwBGXglZwxu/HxFpM8KZyTQKWG2tXQNgjHkeOANYWmvMNcD91toCAGttfmjsACDKWvteaHtJGOe5X3kFpWQmxRAdFaqbzsgFLGxbBZ2H7h6oTCYRERER2R+PF3qMd5eWFuWHU/4OXcfA1B/BQ+NdL6heR+/7eQXfuQDB4pchPgNOvcetmtaYTKgJt8CS1+B/P4HrPwVf48rZ2qTqCszCZyH3JI4+fAj1HtXKXLj3Cc4ufQmOaESvqu3fwMOTsR1HcOwFz1H2xSMc9cntPH/ENr5KGEd+kQtKbSmuYPWWEj5bs40dZVU1TzcE+cT/Cu8HB3PNv+bXbI+P9lIVsFQGdv8t/x7fSI5dNoXrFxxDOXs3ZY/2esgOBZx2BZ66doijc3IMQQsVVQHKqwNUVAVJ2PQZR352HdsT+zE15y6KZ67FBM7mKt9zFD57E4/lPkTAGgJBS8BagkFLIGjxegyZyTFkpcSSkxJLVkosnVNi8Ee1YON6ETlo4QwyZQPrat3PA0bXGdMXwBjzCa6k7g5r7duh7YXGmFeAHsB04FZrbSCM821QXkEZ2amxuzek71phboWCTCIiIiLS9gw+BzKHwIuXwVNnwcTb3Ap5dZtRlxXCx/90PXWMx40Z++MDO9/1xbqg1FNnwkf/gGN+3bzvpTVZ9j8o3bZnw++6ouNg9A9gxl1uFb5OAxoeW10BL10BxmDOfYwOSQlwzA2w8nnGrPw7Y244zx3fOqoCQUrKqykqryLwzSdkvbGdLUf8mrs7DqG4vJqisipKKqrxeT0kxkQRH+3KArOKriNp1mW8ffx2KgedT7w/iqrqIOsKSlm7vZR128tYt72UdQWlfJVXSGFp1d5zBgaZNTwXfRdrbAbn5d9EwXvu10Kvx7DBcx5/rXqI0tnP8KZnIl6PwesxeIwhymOoDFi2llTstc+MRD9ZKbFkp8SQlRxLcqyP2Givu/hCl+i9rxP9PuL9XqK8LdxoXeQQFc4gU315lHW76EUBfYCJQA7wkTFmUGj7eGA4sBZ4AbgC+O8eL2DMtcC1AF27dm2+mdexvqCMUT1qNSrs0BM8UbBl+Z4DtbqciIiIiLQVGX3hmvfhjZ/Bh3+CdZ+l70MAACAASURBVF/A2f9x/aGqK2HuY/DhX6CsAIZdBEf/GpKzD+61eh3tSgM/vgcGnQ0d+zfveylc61Yv27gQTv+/sDcZb9Ccx1z5Y8/9ZIYdfjV8fK9rxn72ww2Pe/e3sHEBXPAspHZz27w+t4rhE6e5sscJv9zraT6vh9T4aFLjo+Gzt8EXx9DjLmRodPy+52VzYElvun/7Ehx7dc3m7un1P6+ovIp120vZtKMcr8cQ4/OSvPMb+rx5I9aXRtL5U/kgtQsxPi/RUR5XahecBP+dw593TOHPN94GMXv/7lRRHWDzjgryCkvZUFjOhsIy1heUsWFHGcs3FfPB8nzKqw6sm4o/yuNKE2OiiI+OqrkdF+0laC1VAUt1IEh10FIVCFIdsFQF3baqQJCUuGj6ZSbSLzOJ3MxEcjMTSfBrHS2RusL5U5GHa9q9Sw6woZ4xn1trq4BvjDErcEGnPGB+rVK714Ax1AkyWWsnA5MBRo4ceXDLQOxHdSDIpqJycmpnMkVFQ4dee68wt6snUz1flCIiIiIirU50PJz1EHQ7Aqb9Eh4eD0f+CL6cDNu/hh4T3Ap1nYc0/bVOvAtWvQv/+zFc+fbeWVMHqnKnyxxa8ExoZTsA48r5Tru3ydM9YFtWwncfu4bq+3tvcR1co+0vJ8Mxv3ErDNa19HX48mEYcwP0O2XPx3ocBQPOhI/+CUMvgJQG/uAeqHIrG+ae5P6t98cY12frvd9B/nLo2G+fw5NifAzMSmZgVqiHVeE6eO1y8Hrhiql0qt0EfhePxwXJ/nMszLrbfb7q8Ed56ZoWR9e0hldcrAoEKasKUF4ZoKzKXUor69yvCFBS4Vbv21lRTXHouiS0ol9+cTk7KwJ4jAvMRXkNUR4PPq/B5/UQ5/fg8xiivIYtxRW8Mm89JRXf1cyhS4dYcjsl0b+zCzp1T4unojpY089qZ2XAvd6u+xXVlFQECFr3q6sJ/ceE8jOMcduMcVlfsb4o4v0uIys+OorYaC9xtW4n+KPo0iGO5NiDaOAfUh0I8s3WnawrKCU7JY7u6XEqTZQmCWeQaTbQxxjTA1gPXABcVGfMa8CFwOPGmHRcmdwaoBBINcZkWGu3AMcA9SznFn4bd5QTCNo9g0zg+jLlL91zW3kReKNdrbuIiIiISFtgDIy4AjoPg5cudyuBZfSDi1+G3sfV39D7YMSnu0DTa9fDvMdh5PcPfB/WuqbpC551wZPKEpc5dPSvXQPyzx+ELx5ygZLsw5pn3o0193FX7TD8ksaNH/NDF2T67H44qc4i3Nu/gddvdA3Vj7uj/uef8EdY+Q68+xs478n6x6yZ6cr3Bn2vkW8CGHoRvP8HmPckTPpT45+3c6srvawogive3HOVwbqyR7jj9PmDMPwyl1V3gHxeDz6vh6SYgw+wHChrLXkFLptqxaYilm8qZvmmYmasyCcQ3HfOQ5THEO93pYlRXg8Wi7XuI117/7vuVgUsZZXVlFYF9hhTn8ykGPp0SiC3UyJ9OyXSNzORPh0TiK+TabWjtIqltVZCXLapiJWbS6is3p0V5vUYunWIo1fHBHp3TKB3hrvu1TFBmVvSKGH7lFhrq40xNwLv4PotPWqtXWKM+T0wx1o7NfTYCcaYpUAAuNlauw3AGPML4H3j1uOcC/wnXHPdl7yCMgByUutE0TP6wfI3XZ30rqBSRbH6MYmIiIhI25Q1DK6bBWu/gF7HgDcMvyoMvRAWPgfv3QG5J0NiZuOetyMP5j8DC5+Fgm8hOgEGnuXK+LoesTsQdvRtsHgKTPsFXDW96dlSjVVV7ubW71RI6Lj/8eCylwadA/OecCVvu0r8avVh4pzHXBVFQ88f/zPX22nNTOg5Ye8xi6dATLILFjZWQobLnFr4HBz7u8Y1ai8vgqfPhh3r4NJXG5f5duztsHSqC2pe8krzBTPDyBjjmp53iOP4AZ1qtpdXBfh6SwnrtpcR43NleS6g5DKR4v1R+KM8mIN4j9bamuyo0lCW1s6KasoqAxSVV/PN1p2s2lzMis3FPPX5d1TUChhlp8SSm5mIAZZtLGLDjvKax9LioxmQlcQVR3anf+dEunaII6+gjNX5JazOL2FVfgkzludTXSt4lpUcQ9/MRPp3TqJ/5yQGdHbZW5Hod2WtpbC0ii0lFRSVVdGnYyLJcS0XcKxPeVWATTvKWV9YxvrCMiqqg+SkxNKlQyzZKXHERh8aGWJhDUVaa6cB0+ps+12t2xb4WehS97nvAc2Ql9s0A7OTeObq0QzKrrOMaUYu2ABs+3p3sz4FmURERESkLYtJhr4nhG//xsCp98IDR8Bbt8B5T+x7fP5y+OReWPQSBAOuTGzir6D/qfWXf8Ukwwl/gFevg/lPuZK0lrD0dde7auQ+Gn7XZ+yP4avnYfYju3srvfubvfswNeTIH8H8p92x/MFHe672V1UOy9+AAacfeKXFiMtdptjyN1yT+H3JXwZv/hw2L3Fz7nZk414jIcMFBd++FVZM27sksA2J8Xn3LBtsRsa4XlcxPi9ptR8o3Q7PXgrBahfY7JZBcEBHCkwyeVWJfL0zlmXFlczfVsoOEhjZvUMoOJTIgM5JZCT69wp6jajzcasKBPluW2ko8FTMqvwSVmwq5uNVW2uCT/4oD7mZifTPdPvu1zmJnNRYisqqKSytpKC0iu2llRTudLcLSispKK1kR1kVUR5DbLTL7qpbChgX7SUuOopA0DWC31IcuoRuby2poCqwZ4pXz4x4hnVJYXjXVIZ3SSE3MxFfMwbAAkFLXkEpqzaXsK6g1PUKKyxjfWE56wvK6m1YX1t6gp+cWqsz5qTGkZMa65rv+6Nq3nNctPegg5KtgfLd9iMpxsfY3ul7P5Cxa4W55QoyiYiIiIg0VlovmHAzfPBHWPE25E7ae0zeXLeq3fI3wBcHh18DY67ff9AFXNnc3Mdh+h3Q/7SWaQI+9zG3OFD3ow7seZ0GQJ8TXYnfETe6nlVfTq6/D1N9fDFw4p/ghYtdoGrM9bsfW/WuK107kFK5XXpMhJRu7jjWF2TaugoWvwJLXoUty1yZ4JkPQd8TD+x1Dr8a5j4Bb9/msufqWSlPGjDr77B+juubtmM9bJiPZ+dW0myANGBo7bH+JKgYCpXDoWoYVA/HLeK+bz6PoXdcGb0TvobylVC1GkafSEWXE1mdX8KyjcU1pXfvLt3EC3PW7XN/8dFe15A+LprkWB+BoGVHWRUbC8v2yNKqnY0FroQvLT6ajEQ/GYl+cjslkpHoJz3B3Y/3e1m2sZj5awuZtXILr8xbD0CMz8Pg7GSGd01lWJcUunaIqylZjPNHEefz4vHsHcgJBC1rt5eyarMLrO26Xp1fssfcYnye0IqHsfTv37Hm9q5rv89DXkEpeQWhVRm3l5FXWMrCdYW8tWjjHllidXk9hjiflzi/C7z5vB6MAY8xNdeeUAMvz67twL8uHE5WSmR/jhRkOlhpvd0yrrWbf1cUgb/5o9ciIiIiIu3KkT+GRVNcBkz3ceBPcM1p1sxwK9B9MwtiUmDCLTDqOrfiXWMZAyf/HR4+Cj74A5x6T/jeB7hMnrWfwfF/OLjyvHE/gcdOcmVv856E7JEN92GqT79TXIBmxp9d+V1Chtu+eIprgn6ggS9w7+Owy9zx2/a1Cwxu+9oFlZa8CpsXA8ZlLZ38d+h/OiR22u9u9+L1wUl/hSdPh0//7YKPsn8F38Hs/7j+WWfev3t7MAhl22HnFijJ3329bRVsWOCCmYFKNzYm2fVhyxruSmXT+riy1K0rYesKF0jcutJl6NU2/yn8P/iYgVld98jcstayuaiCZRuL2FRUTkqsj5S4aFLjfXSIiyY5ztfohuKBoA01cq/GYwypcdFuZcJ9OKZfp5p55BWUMX9dIQvWFjJ/XQGPf/ItlYH6VyPclT0U73fX1lrWbN25R5+qrOQY+nRK5IieafTtlEjvTgl06xBHh/jo/WYbdUqK2StDDFzD9c3FFWwoLKOkvJqdldWUVrj3vLMyQFlloGbbzspqqgJBrIWg3d27K2jt7vvW3fe0guwnBZkOli/WNRncWifIlJQTsSmJiIiIiLQJUdFw2n3w6AkukNHtSLdS2sYFkJDpmlqPuOLgqwQyB8Goa+CLh12wJGt4s05/D3Mec4v/DLv44J7f9QjIGQWf/dv94n/uPvow1ccYmPRXePAIeP9OOOPfrsJi5dvuvR9sb63hl8CMP7nVACuKYONCt73LaPd6A06HpKyD23dtPSfAgDPgo3+EVsqrZ6U92dMHf3QJD0f/as/tHo9rsB+fDh377/286kq3eNXGBbBhvrt8dj8Eq/YcF58B6bluBcP0vq4xe3pft1rhwxNgyjWuuXutz5YxhszkGDKTG9HDaz+8HkOCP+qgGo3X7pt1+lD3+ayoDrBsYzGbi8pdEGdXMKdWUKc0tBqgtZaj+mbQu2MCfTsl0isjnsQwNJeP8nrIDmU8tTcKMjVFem6dTCaVy4mIiIiINErX0TDyKpdd8cVDrtzstPtcc/DmWK15YqgJ+Ju/gKveC08T8MpSWPi8y+Q5kGyr2oxxGVsvXupKzlK6Hvg+Mvq6UrlP/+36Qm1dDdXlB1cqt0tiput9tfR1txrcCXe5YFA4gkAn/BFWvhtaKW8/fboOdRsXwqIXYexPIDn7wJ4bFe2ylrKGuSAuuEbzm5fA9jXus5fWe98lpqfeA69cDbPu3jvI1Ur5o7wM65IS6WkcMhRkaoqMXFg9HQLVLoqrIJOIiIiISOMddzvYIPQY77ImPM24+lJsiithe+0HsOBpl9XT3Ja8ChU7Drzhd119joNbvm1acO2oX8JXL8K0X0JsKiR3cRlSTXHmgzDpL82TsbQvKV1h3E/hwz+5UskeB1HiV9d3n8K6L2H0de2r19P0O9y/77ifNs/+ovyQfZi7NMaQc11Z66y/uX+n7uOaZx7SbrT8WoPtSUY/l1pY8I2rIS8vgpikSM9KRERERKRtiEmG0+51GTfNGWDaZegF0GWM+8W8dHvz7jsYhDmPujKibmObvr+mZm/FJMFxd7pm0Kvfg0FnNz17Kzo+/AGmXcb+yAWbpv0SKnc2bV/ffQZPnQ3Tb4cHj4Q1M5tnjpH29Qz4+gMY/wsXRI2Uk+6G1B6ubK65f66kzVOQqSlqVphb4dIMg1XKZBIRERERaS2MgVP+7poXz7irefZZ8J3rVXTfEBfQOfxq9zqtwZDzd2cvDapnVbjWzBcLJ//D9bx9+hxXJXIwNi6EZ89zpWTnPemSAZ48HV67oW0HRIJBeO93LkPt8KsjOxd/ApzzqGss/voN7hiLhCjI1BTpfd31luW7vwT9ymQSEREREWk1MgfD4de4rKMNCw5uH1VlsOhleOJ0F1yaeTek93G/aB9+TfPOtyk8HjjrIdeYO3NwpGdz4PqeAN97BNZ9AU+dBWWFB/b8ratcBpM/CS59zfWQ+uFnrrRs4XNw/yj379gWgyKLp8Cmr+CY34Cv6c21myxrGBz/e1gxDWY/EunZtE2LX4F7h8Cy/0V6Js1KPZmawp/gIslbVrgVF0CZTCIiIiIirc3Rv4Ilr8C0X8D3321cGZm1Litm/lOw6CUo3+HKuSb+CoZd1HpXQUvr5S5t1aDvudX6XroSnjjNBYsa01S9cB08eaa7fdnru/99fLFw3B1uv1N/BFOugq9egFP+ue9/w5J8+PZj+O4TV36HhZyRLlOsyyhI6xOeZvL1qa6AD34PnQbD4PNa5jUbY8z1rj/TO792qyRmDor0jMKvqsyVLGYOPrgm/eB6Ok+/3a0oGRUDU652q/XljGzeuUaIgkxNlZEbymTaFWRSJpOIiIiISKsSm+L6Fb3+Q1j4LAy/ZO8xlTvdeX3+ctiyDL7+EDYvcr8E9j/dPaf7+JYLLBzK+p8GFz4HL1wCT5zqgkYJHRseX7IFnjrTVZdc8Qak9957TOZguHo6fPEwfPBHuH80HPtbGHWt6we2Y30ooPQJfPsJbFvlnhedAF1Gg/HA0qkw70m3PSYZske6gFPO4S5AEJPc/McCXBZe4Vq4ZErr+vwZA2c8AA+NhZe/D9fOcH282qOCb2H2f13QuawAomJhwi/hyJvA62v8fkryXQD1u49dFuT4n8FjJ8FzF7jPZ2r3cL2DFqMgU1Nl9HNfQuU73H1lMomIiIiItD5DL4R5T8B7t7sslIJvIX9pKLC0DAq/2z3WGw2dh8Ip/3C9jSLZZPlQ1ed4uOhF98v3YyfD5VPrb0JeVghPn+WCRJe9Bp2HNLxPjxeO+CH0PxXe/Dm8fasLGlWVus8DgD8Zuo6Bwy6FbuPc58Ab+rU5GIRtqyFvNuR9Cetmw4d/ASxgXCDr6F9D7qTmOw7lO1x5Zo8J0OvY5ttvc0nIgLMnuyyyt2+D0//V8nMo3Q5xHZp/v9a6TK0v/wMr3nKBxv6nwtCLXLDp/Tvdio6n3es+M/uzbja8eBmUbYezHnYLEwBc/DI8chw8cx5c9Y5bPbANU5CpqTJyoboMNi919xVkEhERERFpfTweOPnvMHkCPHpCaFuUCzhlH+YylTL6Qcf+buUsr35VirieE+CSV+CZc122x2VTIbXb7scrS+HZ81322UXPN+4XfXBlThe96PocfXIvdBoEo66D7mPd7YZWOvR4IKOvuwy/2G0rL4L1c13gadFL8Nz50HcSTPozdOjZtPcP8Ml9Lihx/J2tp8F8XT0nwrifwMf3QK+jYeBZLfO6VeXwzq9gzn/h6N/AhJubZ78VxbDgOZj9H9i6EuLSYfzPYeT3XUN5cIHEFW/BtJvh0RPhsMtdWWZ9wS5rXTbaW7e4QOlV7+0ZDE3vAxc84wJ1L1zqPvNR0c3zXiLA2LbY9KweI0eOtHPmzGn5F177hfuf1MCzXZ33TfPadg20iIhIK2aMmWutbR9NC9qJiJ2DiRys1dNdYKDjAHfefiClLhIZeXNdtlJ0ostoSusF1ZUuy2nNDNeAvaUCG/tSXQlfPAQz/wqBKhj7Y9d0PDru4PZXtAH+dRj0O9m9x9YsUAWPTnLN13/w0Z7BwHDY/g28dLnrm5Y5xDVFn/grmHjLwe+zZAvM+hsseBYqiyHrMBh9nftsRfnrf05FCcz8C3z2gMtAOvFPMOS83QHBqjKXNbfgGeh9vMv6aijrauEL8Oq1LlPqzAdaVVDxQM6/WlFBZxuVEVphLi90cqWeTCIiIiIirVfv42DQ2dCxnwJMbUXOCLj8DVdB8tjJrorklWvg6/fhtPtaR4AJXPbJ2B/BjXNgwOkw627X+2nZGwe3ot2Hf4ZgNRzz2+afa3Pz+uCc/wIWXr7SBWzCZdkb8PAEV+J4wXNw7YcuMPPhn0Lliwdhw3yX5TjnURfUu/oD12Nq6AUNB5jALQZ2wh/hupmun9Kr18KTp8PW1VDwnctyWvAMTLjFZc/tq6xv6PkuULbwWRfsaqMUZGqq2FRIyIQda939GAWZREREREREmlXnIW4FLiw8PB6WvgYn3AWHXRbpme0tqTN87xE3X38CvHAxPHOOCzw0Vv5ymP80HH4VdOgRvrk2p9TuLgNn02J4YIwLBjWnQJVbye6FiyGtJ1z3kQsIebxwxr9DgaY/w4w/H9h+F73ssrCMB675wGUb5Yw4sH1kDnZlcKf8EzYshAePcJ/T7d/ChS+4FS4b07R9wi9d/7gZd7l+T22QgkzNISPXXXuj9x3lFBEREYkgY8wkY8wKY8xqY8yt9Tze1Rgzwxgz3xjzlTHm5EjMU0SkXh37wxXTID3X9eA58sZIz2jfuo+D62bBpL/Aui9d4GX6Ha7RfPFmFzRpyPt3gi8ejmqmPkMtpf9pLqsnKcsFg169fvciWU2xI89lsX32b7ci4Pff2bMkb1egadjFrnytMYGmYMAtBDDlKlcad82MfTeO3x+PxwUFb5wNA850Pd6unXFgjeCNgdP+5VayfP0Gt8hYG6OeTM1h2s3w5WSIS4NfronMHERERA4B6sl08IwxXmAlcDyQB8wGLrTWLq01ZjIw31r7oDFmADDNWtt9X/tVTyYRkUYo3gzTb4eFz+253Z/kqmPi0lwpVWwH8MW4Ve+O+U3bCzLtUl3pSr4++ocLOJ35APQ46uD2tWq6K48MVLrV6wZ9r+GxwQBM/REseBom3ApH31b/uLJCmHI1rH7PNfSe9NfW1Wy7rAD+ewLs3AJXTYf03hGdzoGcf2nJhOawK5NJK8uJiIhI6zUKWG2tXQNgjHkeOANYWmuMBXbV/icDG1p0hiIi7VViJzjrITjyJtiyHEq3u0vZdijdFrq/za1mVloAab1hzA8jPeuDFxUNx/wa+p4Ir14HT5wGo6+H424HX2zj9hEMuPK3WX93jfrPe3L/wRaPF07/P3d75l8ACxNv27OJ9tZVrml8wbeuvO3wqw7mHYZXbKrr4fTIca7U8urpEJ8e6Vk1ioJMzSGjn7tW028RERFpvbKBdbXu5wGj64y5A3jXGHMTEA8c1zJTExE5RHQa6C6HipyRrnfS9Dvgiwdds/azHoLsOj2PgkHYvgY2LYSNX7lV4zZ95QJvwy+Fk+5u/Cp9Ho8LNBncSn/Wup5IxsDKd115nDcaLv8fdDuyud9x8+nQAy56AR4/Be4dAlnDXa+o7BGQPdJliLWiFeh2UZCpOSjIJCIiIq1ffWeidfsmXAg8bq39hzHmCOApY8wga21wjx0Zcy1wLUDXrl3DMlkREWknouPg5Lsh9yTXZ+iR42H8zyClmwskbfwKNi+GyhI33uNz/bdyT3aZUP1PO/DX9HjgtFBG06y7AQvR8TD9Ttek+4JnIaVLs73FsMkZ6YJhi16C9XPh8wdd2SC4BchyRkL2YS7wlHVYq1iITEGm5hCf7mpoVS4nIiIirVceUPuMOoe9y+GuAiYBWGs/M8bEAOlAfu1B1trJwGRwPZnCNWEREWlHeh0N138Kb93i+jUBRCdAp0GuYXfnIZA5xCVxNEd/pJpAk9n9egPPhjPub3xWVGvQZZS7AFRXuNX71s+F9XPc9fJdq/gZuP6TiGfKKcjUXCbe5tLVRERERFqn2UAfY0wPYD1wAXBRnTFrgWOBx40x/YEYYEuLzlJERNqv2BQ4+2E44gbwxUGHni4YFC4ej1utLSnL9Tka/YNWWWLWaFF+VzKXM4JQQrFrEr5+nruk9Yno9EBBpuYz6ppIz0BERESkQdbaamPMjcA7gBd41Fq7xBjze2COtXYq8HPgP8aYn+JK6a6w7WUpYhERaT06D2m51/J4XE+m9io2FXof6y6tgIJMIiIiIocIa+00YFqdbb+rdXspMLal5yUiIiLtQxjz0kRERERERERE5FChIJOIiIiIiIiIiDSZgkwiIiIiIiIiItJkCjKJiIiIiIiIiEiTKcgkIiIiIiIiIiJNpiCTiIiIiIiIiIg0mYJMIiIiIiIiIiLSZAoyiYiIiIiIiIhIk4U1yGSMmWSMWWGMWW2MubWBMecZY5YaY5YYY56t81iSMWa9Mebf4ZyniIiIiIiIiIg0TVS4dmyM8QL3A8cDecBsY8xUa+3SWmP6ALcBY621BcaYjnV28wdgZrjmKCIiIiIiIiIizSOcmUyjgNXW2jXW2krgeeCMOmOuAe631hYAWGvzdz1gjBkBdALeDeMcRURERERERESkGYQzyJQNrKt1Py+0rba+QF9jzCfGmM+NMZMAjDEe4B/AzWGcn4iIiIiIiIiINJOwlcsBpp5ttp7X7wNMBHKAj4wxg4BLgGnW2nXG1Leb0AsYcy1wbehuiTFmRVMnvQ/pwNYw7l/qp+MeGTrukaHjHhk67pFxsMe9W3NPRJpm7ty5W40x34Vp9/r5jAwd98jQcY8cHfvI0HGPjIM57o0+/wpnkCkP6FLrfg6woZ4xn1trq4BvQkGiPsARwHhjzA+BBCDaGFNird2jebi1djIwOVxvoDZjzBxr7ciWeC3ZTcc9MnTcI0PHPTJ03CNDx739sNZmhGvf+pxEho57ZOi4R46OfWTouEdGuI97OMvlZgN9jDE9jDHRwAXA1DpjXgOOBjDGpOPK59ZYay+21na11nYHfgE8WTfAJCIiIiIiIiIirUfYgkzW2mrgRuAdYBnworV2iTHm98aY00PD3gG2GWOWAjOAm62128I1JxERERERERERCY9wlsthrZ0GTKuz7Xe1blvgZ6FLQ/t4HHg8PDM8IC1Slid70XGPDB33yNBxjwwd98jQcZfG0OckMnTcI0PHPXJ07CNDxz0ywnrcjYvziIiIiIiIiIiIHLxw9mQSEREREREREZFDhIJM+2GMmWSMWWGMWW2MUfPxMDHGPGqMyTfGLK61rYMx5j1jzKrQdWok59geGWO6GGNmGGOWGWOWGGN+HNquYx9GxpgYY8yXxpiFoeN+Z2h7D2PMF6Hj/kJo0QRpZsYYrzFmvjHmjdB9HfcWYIz51hizyBizwBgzJ7RN3zXSIJ2DtQydg0WGzsEiQ+dgkaVzsJYXifMvBZn2wRjjBe4HTgIGABcaYwZEdlbt1uPApDrbbgXet9b2Ad4P3ZfmVQ383FrbHxgD3BD6jOvYh1cFcIy1digwDJhkjBkD/BW4J3TcC4CrIjjH9uzHuAUpdtFxbzlHW2uH1Vo2V981Ui+dg7Wox9E5WCToHCwydA4WWToHi4wWPf9SkGnfRgGrrbVrrLWVwPPAGRGeU7tkrZ0FbK+z+QzgidDtJ4AzW3RShwBr7UZr7bzQ7WLcl342OvZhZZ2S0F1f6GKBY4CXQ9t13MPAGJMDnAI8Erpv0HGPJH3XSEN0DtZCdA4WGToHiwydg0WOzsFalbB+zyjItG/ZwLpa9/NC26RldLLWbgT3P2KgY4Tn064ZY7oDw4Ev0LEPu1C68AIgH3gP+BootNZWh4bo+yY87gV+CQRD99PQcW8pFnjXGDPXGHNtaJu+a6QhOgeLLP1stiCdg7UsnYNFjM7BIqPFbpZjGQAABJhJREFUz7+imnNn7ZCpZ5uW45N2xxiTAEwBfmKtLXJ/WJBwstYGgGHGmBTgVaB/fcNadlbtmzHmVCDfWjvXGDNx1+Z6huq4h8dYa+0GY0xH4D1jzPJIT0haNf1syiFB52AtT+dgLU/nYBHV4udfymTatzygS637OcCGCM3lULTZGNMZIHSdH+H5tEvGGB/u5OYZa+0roc069i3EWlsIfIjrx5BijNkV/Nf3TfMbC5xujPkWV3pzDO6vajruLcBauyF0nY87qR+FvmukYToHiyz9bLYAnYNFls7BWpTOwSIkEudfCjLt22ygT6jrfTRwATA1wnM6lEwFLg/dvhx4PYJzaZdCtdD/BZZZa/9Z6yEd+zAyxmSE/nqGMSYWOA7Xi2EGcE5omI57M7PW3matzbHWdsd9n39grb0YHfewM8bEG2MSd90GTgAWo+8aaZjOwSJLP5thpnOwyNA5WGToHCwyInX+ZaxVRtq+GGNOxkVZvcCj1tq7IjyldskY8xwwEUgHNgO3A68BLwJdgbXAudbauo0ppQmMMeOAj4BF7K6P/hWuJ4COfZgYY4bgmux5ccH+F621vzfG9MT9dacDMB+4xFpbEbmZtl+hVO1fWGtP1XEPv9AxfjV0Nwp41lp7lzEmDX3XSAN0DtYydA4WGToHiwydg0WezsFaTqTOvxRkEhERERERERGRJlO5nIiIiIiIiIiINJmCTCIiIiIiIiIi0mQKMomIiIiIiIiISJMpyCQiIiIiIiIiIk2mIJOIiIiIiIiIiDSZgkwi0m4ZYyYaY96I9DxEREREDiU6BxM5dCnIJCIiIiIiIiIiTaYgk4hEnDHmEmPMl8aYBcaYh40xXmNMiTHmH8aYecaY940xGaGxw4wxnxtjvjLGvGqMSQ1t722MmW6MWRh6Tq/Q7hOMMS8bY5YbY54xxpiIvVERERGRVkTnYCLS3BRkEpGIMsb0B84HxlprhwEB4GIgHphnrT0MmAncHnrKk8At1tohwKJa258B7rfWDgWOBDaGtg8HfgIMAHoCY8P+pkRERERaOZ2DiUg4REV6AiJyyDsWGAHMDv2BKxbIB4LAC6ExTwOvGGOSgRRr7czQ9ieAl4wxiUC2tfZVAGttOUBof19aa/NC9xcA3YGPw/+2RERERFo1nYOJSLNTkElEIs0AT1hrb9tjozG/rTPO7mcfDamodTuAvvdEREREQOdgIhIGKpcTkUh7HzjHGNMRwBjTwRjTDff9dE5ozEXAx9baHUCBMWZ8aPulwExrbRGQZ4w5M7QPvzEmrkXfhYiIiEjbonMwEWl2iiaLSERZa5caY34DvGuM8QBVwA3ATmCgMWYusAPXMwDgcuCh0AnMGuDK0PZLgYeNMb8P7ePcFnwbIiIiIm2KzsFEJByMtfvKfhQRiQxjTIm1NiHS8xARERE5lOgcTESaQuVyIiIiIiIiIiLSZMpkEhERERERERGRJlMmk4iIiIiIiIiINJmCTCIiIiIiIiIi0mQKMomIiIiIiIiISJMpyCQiIiIiIiIiIk2mIJOIiIiIiIiIiDSZgkwiIiIiIiIiItJk/w+9yakZGvNobgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# plot accuracy and loss for the test set\n", "fig, ax = plt.subplots(1,2, figsize=(20,6))\n", "\n", "ax[0].plot(history_regular.history['accuracy'])\n", "ax[0].plot(history_regular.history['val_accuracy'])\n", "ax[0].set_title('Regularized Model accuracy')\n", "ax[0].set_ylabel('accuracy')\n", "ax[0].set_xlabel('epoch')\n", "ax[0].legend(['train', 'val'], loc='best')\n", "\n", "ax[1].plot(history_regular.history['loss'])\n", "ax[1].plot(history_regular.history['val_loss'])\n", "ax[1].set_title('Regularized Model loss')\n", "ax[1].set_ylabel('loss')\n", "ax[1].set_xlabel('epoch')\n", "ax[1].legend(['train', 'val'], loc='best')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Conclusion\n", "\n", "We notice that Dropout helped our first model achive a 0.88 accuracy. In our second model which also used L2 regularization, we get a lower accuracy. There is no simple recipe for regularizing neural nets. They are all different. Different are also the tasks that each is called to solve." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }