lectures
-
Lecture 1: Introduction
(Sep. 03, 2019)
-
Lecture 2: Data and Data Exploration
(Sep. 04, 2019)
-
Lecture 3: Pandas and Web Scraping
(Sep. 11, 2019)
-
Lecture 4: Introduction to Regression
(Sep. 16, 2019)
-
Lecture 5: Linear Regression
(Sep. 18, 2019)
-
Lecture 6: Multiple Linear Regression, Polynomial Regression
(Sep. 23, 2019)
-
Lecture 7: Model Selection and Regularization
(Sep. 25, 2019)
-
Lecture 8: Regularization and EDA
(Sep. 30, 2019)
-
Lecture 9: Visualization for Communication
(Oct. 02, 2019)
-
Lecture 10: Logistic Regression
(Oct. 07, 2019)
-
Lecture 11: Logistic Regression 2
(Oct. 09, 2019)
-
Lecture 12: KNN Classification & Imputation
(Oct. 16, 2019)
-
Lecture 14: PCA
(Oct. 23, 2019)
-
Lecture 15: Decision Trees
(Oct. 28, 2019)
-
Lecture 16: Bagging, & Random Forest
(Oct. 30, 2019)
-
Lecture 17: Boosting Methods
(Nov. 04, 2019)
-
Lecture 18: Neural Networks 1 – Perceptron and MLP
(Nov. 06, 2019)
-
Lecture 19: NN 2: Anatomy of NN, design choices
(Nov. 11, 2019)
-
Lecture 20: NN 3: Back Propagation
(Nov. 13, 2019)
-
Lecture 21: NN 4: Regularization methods
(Nov. 18, 2019)
-
Lecture 22: Visualization for Model Interpretation
(Nov. 20, 2019)
-
Lecture 23: Experimental Design & Testing I
(Nov. 25, 2019)
-
Lecture 24: Experimental Design & Testing II
(Dec. 02, 2019)