
CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader, and Chris Tanner

Advanced Section #5: 
Decision trees and Ensemble methods

1

Kevin Rader (via Camilo Fosco) 



CS109A, PROTOPAPAS, RADER, TANNER

Outline

• Decision trees
• Metrics

• Tree-building algorithms

• Ensemble methods
• Bagging

• Boosting

• Visualizations

• Most common bagging techniques
• Most common boosting techniques

2



Decision trees
The backbone of many ensemble techniques

3



CS109A, PROTOPAPAS, RADER, TANNER

What is a decision tree?

- Classification through sequential 
decisions.

- Similar to human decision making.

- Algorithm decides what path to 
follow at each step.

- The tree is built out by choosing 
features and thresholds that 
minimize the error of the prediction 
product, based on different metrics 
that we’ll explore next.

4

width ≤ 1.05in

width ≤ 0.725in

yes no

length ≤ 6.25in

yes no

length ≤ 7.25in

yes no yes no



CS109A, PROTOPAPAS, RADER, TANNER

Metrics for decision tree learning

Gini impurity Index: measures how often a randomly 
chosen element from a subset S would be incorrectly 
labeled if randomly labeled following the label distribution 
of the current subset.

𝐺𝑖𝑛𝑖 𝑆 = 1 −)
*+,

-

𝑝*/

• Measures impurity.
• When all elements in S belong to one class (max purity), 

the sum equals one and the gini index is thus zero.

5

Number of classes

Proportion of elements 
of class i in subset S



CS109A, PROTOPAPAS, RADER, TANNER

Gini examples:

6

Gini = P(picking green)P(picking label black) + P(picking black)P(picking label green)

= 1 – [ P(picking green)P(picking label green) + P(picking black)P(picking label black) ]

= 1 − 0
1 ⋅

0
1 +

4
1 ⋅

4
1 = 0.4898

Metrics for decision tree learning

Gini = P(picking green)P(picking label black) + P(picking black)P(picking label green)

= 1 – [ P(picking green)P(picking label green) + P(picking black)P(picking label black) ]

= 1 − 1 ⋅ 1 + 0 ⋅ 0 = 0



CS109A, PROTOPAPAS, RADER, TANNER

Information Gain (IG): Measures difference in entropy 
between parent node and children given a particular split
point.

IG S, a = 𝐻@ABCDE S − 𝐻FGHIJBCD(S|a)

Where H is total entropy, defined as:

𝐻 𝑇 = −𝑛*)
*

𝑝* log/ 𝑝*

And the 𝑝* correspond to the fractions of each class present 
in a child node resulting from a split in the tree.

7

Subset S (parent)

Split point

Metrics for decision tree learning

Entropy (parent) Weighted sum of 
entropy (children)



CS109A, PROTOPAPAS, RADER, TANNER

Misclassification Error (ME): we split the parent node’s subset 
by searching for the lowest possible average misclassification 
error on the child nodes (weighted by sample sizes, of course).

𝐼S 𝑝 = 1 −max 𝑝*

• In practice, generally avoided as in some cases, the best 
possible split might not yield error reduction at a given step 
(equal error, but improved Gini or entropy).

• In those cases, the algorithm ends early and tree is cut short. 

8

Metrics for decision tree learning



CS109A, PROTOPAPAS, RADER, TANNER

Tree-building algorithms

Any tree-bulding algorithm needs to consider many things:

- what metric to decide splitting.
- where to look for splits.

- how to handle categorical predictors.
- how to handle missing features

sklearn uses CART as its default tree building algorithm.

9



CS109A, PROTOPAPAS, RADER, TANNER

Tree-building algorithms

ID3: Iterative Dichotomiser 3. Developed in the 80s by Ross 
Quinlan.

• Uses the top-down induction approach described 
previously.

• Works with the IG metric. 

• At each step, algorithm chooses feature to split on and 
calculates IG for each possible split along that feature.

• Greedy algorithm.

10



CS109A, PROTOPAPAS, RADER, TANNER

Tree-building algorithms

C4.5: Successor of ID3, also developed by Quinlan (‘93). Main 
improvements over ID3:

• Works with both continuous and discrete features, while ID3 
only works with discrete values. 

• Handles missing values by using fractional cases (penalizes 
splits that have multiple missing values during training, 
fractionally assigns the datapoint to all possible outcomes).

• Reduces overfitting by pruning, a bottom-up tree reduction 
technique.

• Accepts weighting of input data.
• Works with multiclass response variables.

11



CS109A, PROTOPAPAS, RADER, TANNER

Tree-building algorithms

CART: Most popular tree-builder. Introduced by Breiman et 
al. in 1984. Usually used with Gini purity metric.

• Main characteristic: builds binary trees.
• Can work with discrete, continuous and categorical values 

in features.

• Handles missing values by using surrogate splits.

• Uses cost-complexity pruning.
• Sklearn uses CART for its trees.

12



CS109A, PROTOPAPAS, RADER, TANNER

Many more algorithms…

13



CS109A, PROTOPAPAS, RADER, TANNER

Regression trees

Can be considered a piecewise constant 
regression model.

Prediction is made by averaging values at 
given leaf node.

Two advantages: interpretability and 
modeling of interactions.

• The model’s decisions are easy to track, 
analyze and to convey to other people.

• Can model complex interactions in a 
tractable way, as it subdivides the 
support and calculates averages of 
responses in that support.

14



CS109A, PROTOPAPAS, RADER, TANNER

Regression trees

Question: how do we build a regression tree?

Least Squares Criterion (implemented by CART):
1. For each predictor, split subset at each observation (quantitative) or 

category (categorical) and calculate the variance of each split.

2. Average variances, weighted by the number of observations in each split. 
This corresponds to calculating an impurity measure:

𝑄 𝑠𝑝𝑙𝑖𝑡 = )
Z+,

[
𝑅Z
𝑁

)
^_∈ab

𝑦* − ̅𝑐Z /

Where N is the number of elements in the node before splitting, M is the 
number of regions after the split, |𝑅Z| is the number of elements in 
splitted region m, and ̅𝑐Z is the average response in region 𝑅Z .

3. Choose split with smallest impurity.

15



CS109A, PROTOPAPAS, RADER, TANNER

VERY simple Example

X Y
1 6
2 7
3 9
4 8
4 10
5 7

16

𝑦* ∈ 𝑅, 𝑦* ∈ 𝑅/ SSEag SSEah

6 7,9,8,10,7 0 6.8

6,7 9,8,10,7 0.5 5

6,7,9 8,10,7 4.667 4.667

6,7,9,8 10,7 5 4.5

6,7,9,8,10 7 10 0

SSE = 10.833

Where should we make the first split in 
the tree?



CS109A, PROTOPAPAS, RADER, TANNER

Regression trees - Cons

Two major disadvantages: difficulty to capture simple 
relationships and instability.

• Trees tend to have high variance. Small change in the data 
can produce a very different series of splits.

• Any change at an upper level of the tree is propagated down 
the tree and affects all other splits.

• Large number of splits necessary to accurately capture 
simple models such as linear and additive relationships 
(to have low bias).

• Lack of smoothness.

17



CS109A, PROTOPAPAS, RADER, TANNER

Surrogate splits

• When an observation is missing a value for predictor X, it 
cannot get past a node that splits based on this predictor.  
What can we do instead?

• We need surrogate splits: Mimic of actual split in a node, but
using another predictor. It is used in replacement of the 
original split in case a datapoint has missing data.

• To build them, we search for a feature-threshold pair that 
most closely matches the original split.

• “Association”: measure used to select surrogate splits. 
Depends on the probabilities of sending cases to a particular 
node + how the new split is separating observations of each 
class.

18



CS109A, PROTOPAPAS, RADER, TANNER

Surrogate splits

• Two main functions:
• They split when the primary splitter is missing, which 

may never happen in the training data, but being ready 
for future test data increases robustness.

• They reveal common patterns among predictors in 
dataset.

• No guarantee that useful surrogates can be found.

• CART attempts to find 5 surrogates per split.
• Number of surrogates often varies from split to split.

19



CS109A, PROTOPAPAS, RADER, TANNER

Surrogate splits - example

20

• Imagine situation with multiple features, two of them 
being phone_bill (continuous) and marital_status
(categorical)

• Node 1 splits based on phone_bill. Surrogate search might 
find that marital_status = 1 generates a similar 
distribution of observations in left and right node. 

• This condition is then chosen as top surrogate split (for 
prediction).. Left child Right child

Phone_bill > 100 550R, 99G 50R, 301G

Marital_status = 1 510R, 128G 51R, 311G



CS109A, PROTOPAPAS, RADER, TANNER

Surrogate splits - example

21

• In our example, primary splitter = phone_bill

• We might find that surrogate splits include marital status, 
commute time, age, city of residence.

• Commute time associated with more time on the phone

• Older individuals might be more likely to call vs text

• City variable hard to interpret because we don’t know 
identity of cities

• Surrogates can help us understand primary splitter.

• Surrogate splits perform better when there is 
multicollinearity (just like imputation!)



CS109A, PROTOPAPAS, RADER, TANNER

Pruning

Reduces the size of decision trees by removing branches 
that have little predictive power. This helps reduce 
overfitting. Two main types:

• Reduced Error Pruning: Starting at leaves, replace each 
node with its most common class. If accuracy reduction is 
inferior than a given threshold, change is kept.

• Cost Complexity Pruning: remove subtree that minimizes 
the difference of the error of pruning that tree and leaving 
it as is, normalized by the difference in leaves:

𝑙𝑜𝑠𝑠 𝑇, 𝑆 − 𝑙𝑜𝑠𝑠 𝑇j, 𝑆
𝑙𝑒𝑎𝑣𝑒𝑠(𝑇) − 𝑙𝑒𝑎𝑣𝑒𝑠 𝑇j

22



CS109A, PROTOPAPAS, RADER, TANNER

Cost Complexity in Pruning

• Denote the large tree 𝑇j, and define a subtree T ⊂ 𝑇j as a 
tree that can be obtained by collapsing any number of its 
internal nodes.

• We then define the cost-complexity criterion:

𝐶p 𝑇 = 𝐿 𝑇 + 𝛼 𝑇

where L(T) is the loss associated with tree T, |T| is the number 
of terminal nodes in tree s, and α is the complexity tuning 
parameter that controls the tradeoff between the two. 

23



CS109A, PROTOPAPAS, RADER, TANNER

An Algorithm to Prune

24

The pruning algorithm, as seen in the lecture:

1. Start with a full tree 𝑇j (each leaf node is pure)

2. Replace a subtree in 𝑇j with a leaf node to obtain a pruned tree 𝑇,. This 
subtree should be selected to minimize

𝐿𝑜𝑠𝑠 𝑇j − 𝐿𝑜𝑠𝑠(𝑇,)
𝑇j − |𝑇,|

3. Iterate this pruning process to obtain 𝑇j, 𝑇,, … , 𝑇twhere 𝑇t is the tree 
containing just the root of 𝑇j

4. Select the optimal tree 𝑇∗ by cross validation. 

This optimal 𝑇∗ tree will correspond to the one selected via CVing 𝛼 in 𝐶p 𝑇 .



Ensemble Methods
Assemblers 2: Age of weak learners

25



CS109A, PROTOPAPAS, RADER, TANNER

What are ensemble methods?

• Combination of learners to increase accuracy and reduce 
overfitting.

• Train multiple models with a common objective and fuse 
their outputs. Multiple ways of fusing them, can you think 
of some?

• Main causes of error in learning: noise, bias, variance. 
Ensembles help reduce those factors. 

• Improves stability of machine learning models. 
Combination of multiple learners reduces variance, 
especially in the case of unstable classifiers.

26



CS109A, PROTOPAPAS, RADER, TANNER

• Typically, decision trees are used as base learners.  Why?

• Ensembles usually retrain learners on subsets of the data.

• Multiple ways to get those subsets:
• Bagging: resample original data with replacement:.
• Boosting: ‘resample’ original data by choosing 

troublesome points more often.

• The learners can also be retrained on modified versions of 
the original data (gradient boosting).

27

What are ensemble methods?



CS109A, PROTOPAPAS, RADER, TANNER

Bagging

• Boostrap aggregating (Bagging): ensemble meta-algorithm 
designed to improve stability of ML models.

• Main idea: 
• resample data to generate a subset S.

• Train an overfit learner v𝑔∗, e.g. complex tree, on the sampled data. 

• Repeat the process K times. When done, combine the K model 
predictions into one prediction by averaging or majority-voting 
the outputs:

v𝑔xyz ⋅ =
1
𝐾
)
*+,

|

v𝑔*∗(⋅)

v𝑔xyz ⋅ = argmax
~

)
*+,

|

𝕀~+ vz_∗ ⋅
28

Regression:

Classification: (Majority Vote)

(Average)



CS109A, PROTOPAPAS, RADER, TANNER

Bagging

• Bagging is generally not recommended when the base classifier 
shows high bias, as the technique does no bias reduction.

• Variance is improved.  Why?

Question: should we subsample with or without replacement?

Answer: both work. Typically, with replacement is used.  See 
“Observations on Bagging”, Buja et al., 2006* - proves that 
identical results are obtained if:

𝑁 − 1
𝑀�*��

=
𝑁
𝑀��

− 1

29
*Buja and Stuetzel, 2006, section 7.

Number of observations

Sample size with replacement Sample size without 
replacement



CS109A, PROTOPAPAS, RADER, TANNER

Why does Bagging improve Variance?

Let �𝑌, and �𝑌/ be the predictions (for a specific observation) 
between two base trees for a bagging (or random forest) model.  
For simplicity let’s assume there are only 2 trees involved.  

What is the prediction from this bagging model (in terms of �𝑌,
and �𝑌/)?  What is the variance of this prediction (assume �𝑌, and 
�𝑌, have the same prediction variance, 𝜎)?

Var
�𝑌, + �𝑌/
2

= Var
�𝑌,
2

+ Var
�𝑌/
2

+ 2Cov
�𝑌,
2
,
�𝑌/
2

=
1
4
Var �𝑌, +

1
4
Var �𝑌/ + 2 ⋅

1
2
⋅
1
2
Cov �𝑌,, �𝑌/

= ,
4
𝜎/ + ,

4
𝜎/ + ,

/
𝜌,,/𝜎𝜎 ≤ 𝜎/

30



CS109A, PROTOPAPAS, RADER, TANNER

Boosting

• Sequential algorithm where at each step, a weak learner is 
trained based on the results of the previous learner.

• Two main types:
• Adaptive Boosting: Reweight datapoints based on performance 

of last weak learner. Focuses on points where previous learner 
had trouble. Example: AdaBoost.

• Gradient Boosting: Train new learner on residuals of overall 
model. Constitutes gradient boosting because approximating 
the residual and adding to the previous result is essentially a 
form of gradient descent. Example: XGBoost.

31



CS109A, PROTOPAPAS, RADER, TANNER

Gradient Boosting

32



CS109A, PROTOPAPAS, RADER, TANNER

• Task is to estimate target continuous function F(x). We 
measure goodness of estimation with loss function 𝐿(𝑦, 𝐹 𝑥 ).
Let ℎ, 𝑥 be a preliminary function (model prediction, really).

• Gradient boosting assumes that:
𝐹 𝑥 = 𝛼j + 𝛼,ℎ, 𝑥 +⋯+ 𝛼[ℎ[(𝑥)

• Basic Gradient boosting workflow:
1. Initialize 𝐹j 𝑥 = 𝛼j
2. Estimate 𝛼Z and ℎZ � such that:

3. Update 𝐹Z 𝑥 = 𝐹Z�, 𝑥 + 𝛼ZℎZ(𝑥)
4. Repeat from step 2, M times.

33

Gradient Boosting

𝐿 𝑦, 𝐹Z�, 𝑥 + 𝛼ZℎZ(𝑥) < 𝐿(𝑦, 𝐹 Z�, 𝑥 )



CS109A, PROTOPAPAS, RADER, TANNER 34

Gradient Boosting

𝐿 𝑦, 𝐹Z�, 𝑥 + 𝛼ZℎZ(𝑥) < 𝐿(𝑦, 𝐹 Z�, 𝑥 )

If we can find a vector 𝑟Z that we can plug in 
here to make this equation true, we can train a 
basic learner ℎZ(𝑥) to predict 𝑟Z from 𝑥!

We are basically searching for a vector that points to the direction that 
reduces our loss… does that sound familiar?

Gradient descent!



CS109A, PROTOPAPAS, RADER, TANNER

By solving a simple 1D optimization problem, we could also 
find the optimal 𝛼Z for each step, by computing:

𝛼Z = 𝑎𝑟𝑔𝑚𝑖𝑛�𝐿(𝑦, 𝐹Z�, 𝑥 + 𝛾ℎZ(𝑥))
This gives us an updated Gradient Boosting algorithm:

1. Initialize 𝐹j 𝑥 = 𝛼j
2. Compute negative gradient per observation: 

𝑟Z_ = −
𝜕𝐿 𝑦*, 𝐹Z�, 𝑥*

𝜕𝐹Z�, 𝑥*
3. Train base learner ℎZ 𝑥 on the gradients
4. Compute 𝛼Z with line search strategy

5. Update 𝐹Z 𝑥 = 𝐹Z�, 𝑥 + 𝛼ZℎZ(𝑥)
6. Repeat from 2, M times.

35

Gradient Boosting



CS109A, PROTOPAPAS, RADER, TANNER

Where do the residuals come in?

If we consider Mean Squared Error as our loss function, the 
per-observation gradient is:

�t ^_,�b �_
��b(�_)

=
� g

h� ∑_ ^_��b �_
h

��b �_
=

� g
h ^_��b �_

h

��b �_
= 𝑦* − 𝐹Z 𝑥*

The derivation we found before works with any loss function.

36

Gradient Boosting



CS109A, PROTOPAPAS, RADER, TANNER

Gradient Tree Boosting

When dealing with decision trees, we can take the concept 
further by selecting a specific 𝛼Z for each of the tree’s regions. 
The output of a tree is:

ℎZ 𝑥 =)
-b

𝑏~Z1a�b(𝑥)

The model update rule becomes:

𝐹Z 𝑥 = 𝐹Z�, 𝑥 +)
~+,

-b

𝛼~Z𝟏a�b �

𝛼~Z = 𝑎𝑟𝑔𝑚𝑖𝑛� )
�_∈a�b

𝐿 𝑦*, 𝐹Z�, 𝑥* + 𝛾

37

Number of 
leaves

Disjoint regions partitioned 
by the tree



CS109A, PROTOPAPAS, RADER, TANNER 38

Let’s look at graphs!

GRAPH TIME

http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html



Common Bagging Techniques 
Random Forests, of course.

39



CS109A, PROTOPAPAS, RADER, TANNER

Bagged Trees

• Basics of Bagging applied to the 
letter: resample dataset, train 
trees, combine predictions.

• Can be used in Sklearn with the 
BaggingClassifier() class.

• Pure bagged trees have generally 
worse performance than 
boosting methods, because of 
high tree correlation (lots of 
similar trees).

40

Question: why are these trees often correlated?



CS109A, PROTOPAPAS, RADER, TANNER

Random Forests

• Similar to bagged trees but with a twist: we now choose a 
random subset of predictors when defining our trees.

• Question: Do we choose a random subset for each tree, or for each 
node?

• Random Forests essentially perform bagging over the 
predictor space and build aa collection of less correlated 
trees.

• This increases the stability of the algorithm and tackles 
correlation problems that arise by a greedy search of the best 
split at each node.

• Adds diversity, reduces variance of total estimator at the cost 
of an equal or higher bias.

41



CS109A, PROTOPAPAS, RADER, TANNER

Random Forests

Random Forest steps:

1. Construct subset 𝑥,∗, 𝑦,∗ , … , 𝑥 ∗ , 𝑦 ∗ by sampling original 
training set with replacement.

2. Build N tree-structured learners ℎ(𝑥, Θ¢), where at each 
node, M predictors at random are selected before finding 
the best split.

– Gini Criterion.

– No pruning.

3. Combine the predictions (average or majority vote) to get 
the final result.

42

Question: why don’t we need to prune?



CS109A, PROTOPAPAS, RADER, TANNER

Random Forests – Generalization error

In the original RF paper, Breiman shows that an upper bound 
for RF’s generalization error is given by:

𝑃𝐸∗ ≤
�̅�
𝑠/

1 − 𝑠/

Where s is the strength of the set of classifiers ℎ(𝑥, Θ):
𝑠 = 𝐸¥,¦[𝑚𝑟 𝑋, 𝑌 ]

And 𝑚𝑟 𝑋, 𝑌 is the margin function for random forests.

Two main components involved in RF generalization error:
• Strength of individual classifiers.

• Correlation between them.

43



Common Boosting Techniques
Kaggle killers.

44



CS109A, PROTOPAPAS, RADER, TANNER

AdaBoost

• AdaBoost is the essential boosting algorithm. It reweights 
the dataset before each new ‘subsampling’ based on the 
performance of the last classifier.

• Main difference from bagging: SEQUENTIAL.

45



CS109A, PROTOPAPAS, RADER, TANNER

Instead of resampling, AdaBoost uses training set re-weighting. 
At each iteration, the re-weighting factor is given by:

𝛼Z =
1
2
ln

1 − 𝜖Z
𝜖Z

Where 𝜖Z is the weighted error of a weak classifier ℎZ: 

𝜖Z =
∑^_¬�b �_ 𝑤*

Z

∑*+,® 𝑤*
Z

Letting 𝑤*
, = 1 and 𝑤*

Z = 𝑒� ^_�b¯g �_ for m > 1.

46



CS109A, PROTOPAPAS, RADER, TANNER

Where does 𝛼Z = ,
/
ln ,�°b

°b
come from?

Wikipedia of course: 
https://en.wikipedia.org/wiki/AdaBoost#Derivation

The key is that the total error, E, at step m is the sum of the weighted 
errors (exponential loss) across all observations: 

How can we find the minimum of this function (with respect to 𝛼Z)?

47

https://en.wikipedia.org/wiki/AdaBoost


CS109A, PROTOPAPAS, RADER, TANNER 48



CS109A, PROTOPAPAS, RADER, TANNER

It can be shown that AdaBoost can also be described in the 
gradient boosting framework, where the loss being 
minimized is exponential loss:

𝐿 =)
*

𝑒�^_� �_

Splitting the loss into correctly and incorrectly classified 
datapoints and differentiating, we can get to the results 
above.

49



CS109A, PROTOPAPAS, RADER, TANNER

In general AdaBoost has been known to perform better than 
randomForests and many other methods with less 
parameters to tune. Main parameters to set are:

- Weak classifier to use (how ‘complex’ of a tree for example)

- Number of boosting rounds

Disadvantages:

- Can be sensitive to noisy data and outliers.
- Must adjust for cost-sensitive or imbalanced problems

- Must be modified for multiclass problems

50



CS109A, PROTOPAPAS, RADER, TANNER

XGBoost

XGBoost is essentially a very efficient Gradient Boosting Decision 
Tree implementation with some interesting features:

• Regularization: Can use L1 or L2 regularization.

• Handling sparse data: Incorporates a sparsity-aware split finding algorithm to handle 
different types of sparsity patterns in the data.

• Weighted quantile sketch: Uses distributed weighted quantile sketch algorithm to 
effectively handle weighted data.

• Block structure for parallel learning: Makes use of multiple cores on the CPU, possible 
because of a block structure in its system design. Block structure enables the data layout to 
be reused. 

• Cache awareness: Allocates internal buffers in each thread, where the gradient statistics 
can be stored.

• Out-of-core computing: Optimizes the available disk space and maximizes its usage when 
handling huge datasets that do not fit into memory.

51



CS109A, PROTOPAPAS, RADER, TANNER

Three main forms of gradient boosting are supported:

Gradient Boosting algorithm, as we defined above.

Stochastic Gradient Boosting with sub-sampling at the row, 
column and column per split levels.

• Random procedure where we subsample observations and features

Regularized Gradient Boosting with both L1 and L2 
regularization.

• We add a regularization term, Ω 𝐹 , to the loss function that we are 
optimizing: 

𝐿a 𝑦, 𝐹 𝑥 = 𝐿 𝑦, 𝐹 𝑥 + Ω 𝐹

Where Ω 𝐹 = 𝛾𝑇 + ,
/ 𝜆 𝑤 /

52

XGBoost

Number of leaves

Leaf weights: prediction of each leaf



CS109A, PROTOPAPAS, RADER, TANNER

• XGBoost uses second-order approximation to the loss 
function to quickly optimize the following objective:

𝐿 Z =)
*

𝑙 𝑦*, 𝐹Z�, 𝑥* + ℎZ 𝑥* + Ω(ℎZ)

The second order approximation is:

𝐿 Z ≈)
H+,

D

𝑙 𝑦*, 𝐹Z�, 𝑥* + 𝑔*ℎZ 𝑥* +
1
2
𝑘*ℎZ/ 𝑥* + Ω ℎZ

Removing constant terms:

𝐿 Z ≈)
H+,

D

𝑔*ℎZ 𝑥* +
1
2
𝑘*ℎZ/ 𝑥* + Ω ℎZ

53

XGBoost

First order gradient of loss 
w.r.t F(x)

Second order gradient of 
loss w.r.t F(x)



CS109A, PROTOPAPAS, RADER, TANNER

This expression is used in XGBoost to define a structure score for 
each tree. Expanding the regularization term, and defining 𝐼~ =
{𝑖|𝑞 𝑥* = 𝑗} as the instance set of leaf j, we can compute the 
optimal weight of leaf j with:

With this, we can calculate the optimal loss value for a given tree 
structure:

54



CS109A, PROTOPAPAS, RADER, TANNER

How would we calculate this in practice?

55



CS109A, PROTOPAPAS, RADER, TANNER

• Remember, we still want to find the tree structure that 
minimizes our loss, which means best score structure. 
Doing this for all possible tree structures is unfeasible.

• A greedy algorithm that starts from a single leaf and 
iteratively adds branches to the tree is used instead.

• Assume that 𝐼t and 𝐼a are the instance sets of left and right 
nodes after the split. Letting 𝐼= 𝐼t ∪ 𝐼a , then the loss 
reduction after the split is given by:

56



CS109A, PROTOPAPAS, RADER, TANNER

XGBoost adds multiple other important advancements that 
make it state of the art in several industrial applications.

In practice:
- Can take a while to run if you don’t set the n_jobs

parameter correctly
- Defining the eta, 𝜂, parameter (analogous to learning rate) 

and max_depth is crucial to obtain good performance.

- Alpha, 𝛼, parameter controls L1 regularization, can be 
increased on high dimensionality problems to increase run 
time.

57



CS109A, PROTOPAPAS, RADER, TANNER

General approach to parameter tuning:
• Cross-validate learning rate. 

• Determine the optimum number of trees for this learning rate. 
XGBoost can perform cross-validation at each boosting iteration for 
this, with the “cv” function.

• Tune tree-specific parameters (max_depth, min_child_weight, 
gamma, subsample, colsample_bytree) for chosen learning rate and 
number of trees.

• Tune regularization parameters (lambda, alpha).

58



CS109A, PROTOPAPAS, RADER, TANNER

LGBM

• Stands for Light Gradient Boosted 
Machines. It is a library for training 
GBMs developed by Microsoft, and it 
competes with XGBoost.

• Extremely efficient implementation. 

• Usually much faster than XGBoost
with low hit on accuracy.

• Main contributions are two novel 
techniques to speed up split analysis: 
Gradient based one-side sampling and 
Exclusive Feature Building.

• Leaf-wise tree growth vs level-wise tree 
growth of XGBoost.

59



CS109A, PROTOPAPAS, RADER, TANNER

Gradient-based one-side sampling (GOSS)

• Normally, no native weight for datapoints, but it can be 
seen that instances with larger gradients (i.e., under-
trained instances) will contribute more to the information 
gain metric. 

• LGBM keeps instances with large gradients and only 
randomly drops instances with small gradients when 
subsampling. 

• They prove that this can lead to a more accurate gain 
estimation than uniformly random sampling, with the 
same target sampling rate, especially when the value of 
information gain has a large range.

60



CS109A, PROTOPAPAS, RADER, TANNER

Exclusive Feature Bundling (EFB)

• Usually, feature space is quite sparse.

• Specifically, in a sparse feature space, many features are 
(almost) exclusive, i.e., they rarely take nonzero values 
simultaneously. Examples include one-hot encoded-
features.

• LGBM bundles those features by reducing the optimal 
bundling problem to a graph coloring problem (by taking 
features as vertices and adding edges for every two 
features if they are not mutually exclusive), and solving it 
by a greedy algorithm with a constant approximation ratio.

61



CS109A, PROTOPAPAS, RADER, TANNER

CatBoost

• A new library for Gradient Boosting Decision Trees, offering 
appropriate handling of categorical features. 

• Presented as a workshop at NIPS 2017.
• Fast, scalable and high-performing.  Outperforms LGBM 

and XGBoost on inference times, and in some datasets, in 
accuracy as well.

• Main idea: deal with categorical variables by using random 
permutations of the dataset and calculating the average 
label value for a given example using the label values of 
previous examples with the same category. 

62



CS109A, PROTOPAPAS, RADER, TANNER

Hot to prune a tree

63


