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Linear regression framework:

𝑦" = 𝑥"%𝛽 + 𝜖"

Assumptions:

1. Linearity: Linear relationship between expected value and predictors

2. Normality: Residuals are normally distributed about expected value

3. Homoskedasticity: Residuals have constant variance 𝜎*

4. Independence: Observations are independent of one another
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Expressed mathematically…

• Linearity

𝔼 𝑦" = 𝑥"%𝛽

• Normality

𝑦" ∼ 𝒩(𝑥"%𝛽, 𝜎*)

• Homoskedasticity

𝜎* (instead of)  𝜎"*

• Independence

𝑝 𝑦"|𝑦3 = 𝑝(𝑦") for 𝑖 ≠ 𝑗
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What happens when our assumptions break down?
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We have options within the framework of linear regression

Transform X or Y

(Polynomial Regression)

Nonlinearity

Weight observations

(WLS Regression)

Heteroskedasticity
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But assuming Normality can be pretty limiting…

Consider modeling the following random variables:

• Whether a coin flip is heads or tails (Bernoulli)

• Counts of species in a given area (Poisson)

• Time between stochastic events that occur w/ constant rate (gamma)

• Vote counts for multiple candidates in a poll (multinomial)
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We can extend the framework for linear regression. 

Enter:

Generalized Linear Models

Relaxes:

• Normality assumption

• Homoskedasticity assumption
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Two adjustments must be made to turn LM into GLM

1. Assume response variable comes from a family of distributions 
called the exponential dispersion family (EDF).

2. The relationship between expected value and predictors is 
expressed through a link function. 
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The EDF family contains: Normal, Poisson, gamma, and more!

The probability density function looks like this:

𝑓 𝑦"|𝜃" = exp
𝑦"𝜃" − 𝑏 𝜃"

𝜙"
+ 𝑐 𝑦", 𝜙"

Where

𝜃 - “canonical parameter”
𝜙 - “dispersion parameter”
𝑏 𝜃 - “cumulant function”
𝑐 𝑦, 𝜙 - “normalization factor”
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Example: representing Bernoulli distribution in EDF form.

PDF of a Bernoulli random variable:

𝑓 𝑦" 𝑝" = 𝑝"
@A 1 − 𝑝" C D @A

Taking the log and then exponentiating (to cancel each other out) gives:

𝑓 𝑦" 𝑝" = exp 𝑦" log 𝑝" + 1 − 𝑦" log 1 − 𝑝"

Rearranging terms…

𝑓 𝑦" 𝑝" = exp 𝑦" log
𝑝"

1 − 𝑝"
+ log 1 − 𝑝"
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Comparing:

𝑓 𝑦" 𝑝" = exp 𝑦" log
𝑝"

1 − 𝑝"
+ log 1 − 𝑝" 𝑓 𝑦"|𝜃" = exp

𝑦"𝜃" − 𝑏 𝜃"
𝜙"

+ 𝑐 𝑦", 𝜙"vs.

Choosing:

𝜃" = log
𝑝"

1 − 𝑝"
𝜙" = 1

𝑏(𝜃") = log 1 + 𝑒IA

𝑐(𝑦", 𝜙") = 0

And we recover the EDF form of the Bernoulli distribution
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The EDF family has some useful properties. Namely:

1. 𝔼 𝑦" ≡ 𝜇" = 𝑏N 𝜃"

2. 𝑉𝑎𝑟 𝑦" = 𝜙"𝑏NN 𝜃"
(the proofs for these identities are in the notes)

Plugging in the values we obtained for Bernoulli, we get back:

𝔼 𝑦" = 𝑝" ,   𝑉𝑎𝑟 𝑦" = 𝑝"(1 − 𝑝")
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Time to talk about the link function
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Recall from linear regression that:

𝜇" = 𝑥"%𝛽

Does this work for the Bernoulli distribution?

𝜇" = 𝑝" = 𝑥"%𝛽

Solution: wrap the expectation in a function called the link function:

𝑔 𝜇" = 𝑥"%𝛽 ≡ 𝜂"

*For the Bernoulli distribution, the link function is the “logit” function (hence “logistic” regression)
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Link functions are a choice, not a property. A good choice is:

1. Differentiable     (implies “smoothness”)

2. Monotonic          (guarantees invertibility)

1. Typically increasing so that 𝜇 increases w/ 𝜂

3. Expands the range of 𝜇 to the entire real line

Example: Logit function for Bernoulli

𝑔 𝜇" = 𝑔 𝑝" = log
𝑝"

1 − 𝑝"
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Logit function for Bernoulli looks familiar…

𝑔 𝑝" = log
𝑝"

1 − 𝑝"
= 𝜃"

Choosing the link function by setting 𝜃" = 𝜂" gives us what is known 
as the “canonical link function.” Note:

𝜇" = 𝑏N 𝜃" → 𝜃" = 𝑏NDC(𝜇")
(derivative of cumulant function must be invertible)

This choice of link, while not always effective, has some nice 
properties. Take STAT 149 to find out more! 
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Here are some more examples (fun exercises at home)

Distribution 𝒇(𝒚𝒊|𝜽𝒊) Mean Function 𝝁𝒊 = 𝒃N(𝜽𝒊) Canonical Link 𝜽𝒊 = 𝒈(𝝁𝒊)

Normal 𝜃" 𝜇"

Bernoulli/Binomial 𝑒IA
1 + 𝑒IA

log
𝜇"

1 − 𝜇"

Poisson 𝑒IA log(𝜇")

Gamma
−1
𝜃"

−1
𝜇"

Inverse Gaussian −2𝜃"
DC*

−1
2𝜇"*
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Recall from linear regression – we can estimate our parameters, 𝜃, by 
choosing those that maximize the likelihood, 𝐿 𝑦 𝜃), of the data, 
where:

𝐿 𝑦 𝜃 =^
"

_

𝑝 𝑦" 𝜃"

In words: likelihood is the probability of observing a set of “N”
independent datapoints, given our assumptions about the generative 
process.
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For GLM’s we can plug in the PDF of the EDF family:

𝐿 𝑦 𝜃 =^
"`C

_

exp
𝑦"𝜃" − 𝑏 𝜃"

𝜙"
+ 𝑐 𝑦", 𝜙"

How do we maximize this? Differentiate w.r.t. 𝜃 and set equal to 0. 
Taking the log first simplifies our life:

ℓ 𝑦 𝜃 = b
"`C

_
𝑦"𝜃" − 𝑏 𝜃"

𝜙"
+ b

"`C

_

𝑐 𝑦", 𝜙"
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Through lots of calculus & algebra (see notes), we can obtain the 
following form for the derivative of the log-likelihood:

ℓN 𝑦 𝜃 =b
"`C

_
1

𝑉𝑎𝑟 𝑦"
𝜕𝜇"
𝜕𝛽 (𝑦" − 𝜇")

Setting this sum equal to 0 gives us the generalized estimating 
equations:

b
"`C

_
1

𝑉𝑎𝑟 𝑦"
𝜕𝜇"
𝜕𝛽 (𝑦" − 𝜇") = 0
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When we use the canonical link, this simplifies to the normal 
equations:

b
"`C

_
𝑦" − 𝜇" 𝑥"%

𝜙"
= 0

Let’s attempt to solve the normal equations for the Bernoulli 
distribution. Plugging in 𝜇" and 𝜙" we get:

b
"`C

_

𝑦" −
𝑒dA

ef

1 − 𝑒dAef
𝑥"% = 0
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Sad news: we can’t isolate 𝛽 analytically.
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Good news: we can approximate it numerically. One choice of
algorithm is the Fisher Scoring algorithm. 

In order to find the 𝜃 that maximizes the log-likelihood, ℓ(𝑦|𝜃):

1. Pick a starting value for our parameter, 𝜃g. 

2. Iteratively update this value as follows:

𝜃"hC = 𝜃" −
ℓN(𝜃")

𝔼 ℓNN 𝜃"

In words: perform gradient ascent with a learning rate inversely proportional to 
the expected curvature of the function at that point.
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Here are the results of implementing the Fisher Scoring algorithm for 
simple logistic regression in python: 

DEMO
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