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Outline

• Motivation for regularization
• Generalization

• Instability

• Ridge estimator

• Lasso estimator

• Elastic Net estimator

• Visualizations

• Bayesian approach
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Regularization: introduce additional information to solve ill-
posed problems or avoid overfitting.
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MOTIVATION
Why	do	we	regularize?

4



CS109A, PROTOPAPAS, RADER

Generalization

- Avoid overfitting. Reduce features that have weak predictive 
power.

- Discourage the use of a model that is too complex.

- Do not fit the noise!

5
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Instability issues

- Linear regression becomes unstable when p (degrees of 
freedom) is close to n (observations).

- Think about each obs. as a piece of info about the model. What 
happens when n is close to the degrees of freedom?

- Collinearity generates instability issues.
- If we want to understand the effect of 𝑋" and 𝑋# on Y, is it 

easier when they vary together or when they vary separately?

- Regularization helps combat instability by constraining 
the space of possible parameters. 

- Mathematically, instability can be seen through the 
estimator’s variance:

6

𝑣𝑎𝑟 𝛽( = 𝜎# 𝑋+𝑋 ,"
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Instability issues

7

𝑣𝑎𝑟 𝛽( = 𝜎# 𝑋+𝑋 ,"

var(Y) Inverse	of	
Gram	matrix

- if the eigenvalues of 𝑋+𝑋 are close to zero, our matrix is almost singular. One or 
more eigenvalues of 𝑋+𝑋 ," can be extremely large. 

- In that case, on top of having large variance, we have numerical instability.

- In general, we want the condition number of 𝑋+𝑋 to be small (well-conditioning).

Remember that for 𝑋+𝑋: 𝜅 𝑋+𝑋 = /012
/034	

The	variance	of	the	estimator	is	
affected	by	the	irreducible	noise	

of	the	model.	We	have	no	
control	over	this.

But	the	variance	also	depends	on	the	
predictors	themselves!	This	is	the	
important	part.
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Instability and the condition number

More formally, instability can be analyzed through 
perturbation theory.

Consider the following least-squares problem:

min
9

(𝑋 + 𝛿𝑋 𝛽 − (Y + 𝛿𝑌)‖

If 𝛽B is the solution of the original least squares problem, we 
can prove that:

𝛽 − 𝛽B
𝛽

≤ 𝜅 𝑋+𝑋� 𝛿𝑋
𝑋

Small 𝜅 𝑋+𝑋 tightens the bound on how much my 
coefficients can vary.

8

Perturbations

Condition	number	of	𝑋+𝑋
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Instability visualized

- Instability can be visualized by regressing on nearly 
colinear data, and observing the changes on the same data, 
slightly perturbed:
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Image	from	“Instability	of	Least	Squares,	Least	Absolute	Deviation	and	Least	Median	of	Squares	Linear	
Regression”,	Ellis	et	al.	(1998)



CS109A, PROTOPAPAS, RADER

Motivation in short

- We want less complex models to avoid overfitting and 
increase interpretability.

- We want to be able to solve problems where p = n or p > n,
and still generalize reasonably well.

- We want to reduce instability (increase min 
eigenvalue/reduce condition number) in our estimators. 
We need to be better at estimating betas with colinear 
predictors.

- In a nutshell, we want to avoid ill-posed problems (no 
solutions / solutions not unique / unstable solutions)

10



RIDGE REGRESSION
Instability	destroyer
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What is the Ridge estimator?

12

- Regularized estimator proposed by Hoerl and Kennard
(1970).

- Imposes L2 penalty on the magnitude of the coefficients.

𝛽(EFGHI = 𝑎𝑟𝑔𝑚𝑖𝑛9 𝑋𝛽 − 𝑌 #
# + 𝜆| 𝛽 |##

𝛽(EFGHI = 𝑋+𝑋 + 𝜆𝐼 ,"𝑋+𝑌

- In practice, the ridge estimator reduces the complexity of 
the model by shrinking the coefficients, but it doesn’t 
nullify them.

- The lambda factor controls the amount of regularization.

Regularization	factor
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Deriving the Ridge estimator

𝑋+𝑋 ," is considered unstable (or super-collinear) if 
eigenvalues are close to zero. 

𝑋+𝑋 ," = 𝑄Λ,"𝑄,"

If the eigenvalues 𝑘F are close to zero, Λ," will have extremely 
large diagonal values.	 𝑋+𝑋 ,"	 will be very hard to find 
numerically.

What can we do?

13

Eigendecompostion

Λ," =
𝑘"," 0 0
0 ⋱ 0
0 0 𝑘V,"

.
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Deriving the Ridge estimator

Just add a constant to the eigenvalues.

𝑄 Λ,"𝑄," + 𝜆𝐼 𝑄," = 𝑄Λ,"𝑄," + 𝜆𝑄𝑄," = 𝑋+𝑋 + 𝜆𝐼

We can find a new estimator:
𝛽(EFGHI = 𝑋+𝑋 + 𝜆𝐼 ,"𝑋+𝑌

14

Added	
constant	𝜆
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Properties: shrinks the coefficients

The Ridge estimator can be seen as a modification of the OLS 
estimator:

𝛽(EFGHI = 𝐼 + 𝜆 𝑋+𝑋 ," ,"𝛽(WXY

Let’s look at an example to see its effect on the OLS betas: 
univariate case (𝑋 = (𝑥", … , 𝑥])) with normalized predictor 
( 𝑋 #

# = 𝑋+𝑋 = 1).

In this case, the ridge estimator is:

𝛽(EFGHI =
𝛽(WXY
1 + 𝜆

As we can see, Ridge regression shrinks the OLS predictors, but 
does not nullify them.

No variable selection occurs at this stage. 15
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Properties: closer to the real beta

• Interesting theorem: there always exists 𝜆 > 0 such that:

𝐸 𝛽(E − 𝛽 #
#
< 𝐸 𝛽(WXY − 𝛽 #

#

• Regardless of X and Y, there is a value of lambda for which 
Ridge performs better than OLS in terms of MSE.

• Careful: we’re talking about MSE in estimating the true 
coefficient (inference), not performance in terms of 
prediction.

• OLS is unbiased, Ridge is not, however estimation is better: 
Ridge’s lower variance more than makes up for increase in 
bias. 

Good bias-variance tradeoff.
16
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Good bias-variance tradeoff.

OLS

• Higher Variance (instable 
Betas)

• No Bias

17

Ridge 

• Lower Variance

• Adding some Bias
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Different perspectives on Ridge

• So far, we understand Ridge as a penalty on the 
optimization objective:

However, there are multiple ways to look at it:

18

𝛽(EFGHI = 𝑎𝑟𝑔𝑚𝑖𝑛9 𝑋𝛽 − 𝑌 #
# + 𝜆| 𝛽 |##

• Transformation	(shrinkage)	of	OLS	estimator.
• Estimator	obtained	from	increased	eigenvalues	

of	𝑋+𝑋 (better	conditioning)
• Normal	prior	on	coefficients	(Bayesian	

interpretation)	

• Constraint	for	curvature	on	the	loss	function
• Regression	with	dummy	data
• Special	case	of	Tikhonov	Regularization
• Constrained	minimization
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Optimization perspective

The ridge regression problem is equivalent to the following constrained 
optimization problem:

min
9 b

bcd
𝑌	 − 𝑋𝛽 #

#

- From this perspective, we are doing regular least squares with a 
constraint on the magnitude of 𝛽.

- We can get from one expression to the other through Lagrange 
multipliers.

- Inverse relationship between 𝜅 and 𝜆. Namely, 𝜅 = 𝛽(EFGHI∗ 𝜆
#
#

19
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Ridge, formal perspective

Ridge is a special case of Tikhonov 
Regularization:

𝑨𝒙 − 𝒃 𝟐
𝟐 + 𝚪𝒙 𝟐

𝟐

𝒙 = 𝑨𝑻𝑨 + 𝚪𝐓𝚪 ,𝟏𝐀𝐓𝐛

If Γ = 𝜆� 𝐼, we have classic Ridge regression. 

20

Monsieur	Ridge

Tikhonov	regularization	is	interesting,	as	we	can	use	Γ to	generate	other	constraints,	
such	as	smoothness	in	the	estimator	values.	

Tikhonov	Matrix
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Ridge visualized

21

The	ridge	estimator	is	where	the	constraint	
and	the	loss	intersect.

The	values	of	the	coefficients	decrease	as	
lambda	increases,	but	they	are	not	nullified.

Ridge	estimator
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Ridge visualized

22

Ridge	curves	the	loss	function	in	colinear	problems,	avoiding	instability.



LASSO REGRESSION
Yes,	LASSO	is	an	acronym

23
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What is LASSO?

24

- Least Absolute Shrinkage and Selection Operator 

- Originally introduced in geophysics paper from 1986 but 
popularized by Robert Tibshirani (1996)

- Idea: L1 penalization on the coefficients.

𝛽XqYYW = argmin
9

𝑋𝛽 − 𝑌 #
# + 𝜆 𝛽 "

- Remember that 𝛽 " = ∑ |𝛽F|�
F

- This looks deceptively similar to Ridge, but behaves very 
differently. Tends to zero-out coefficients.
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Deriving the LASSO estimator

The original LASSO definition comes from the constrained 
optimization problem:

min
9 vcd

𝑋𝛽 − 𝑌 #
#

This is similar to Ridge. 

We should be able to easily find a closed form solution like 
Ridge, right? 

25
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No.

26
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Subgradient to the rescue

• LASSO has no conventional analytical solution, as the L1 
norm has no derivative at 0. We can, however, use the 
concept of subdifferential or subgradient to find a 
manageable expression. 

• Let h be a convex function. The subgradient at point 𝑥w in 
the domain of h is equal to the set: 

𝜕 ℎ 𝑥w = 𝑐 ∈ ℝ			𝑠. 𝑡. 		𝑐 ≤
ℎ 𝑥 − ℎ 𝑥w

𝑥 − 𝑥w
			∀𝑥 ∈ 𝐷𝑜𝑚 ℎ

27
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Subgradient to the rescue

In a nutshell, it is the set of all slopes which are tangent to the 
function at the point x0.

For example, the subdifferential of the absolute value function 
is:

Ø 𝜕 	⋅	 𝑥 = �
−1											𝑥 < 0
−1,1 				𝑥 = 0
1														𝑥 > 0

28
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Deriving LASSO

With this tool, we can find a solution for the case where the 
predictors are uncorrelated and normalized (X is 
orthonormal). 

We have 𝑋+𝑋 = 𝐼, so we minimize:

𝑓 𝛽 = 𝑋𝛽 − 𝑌 #
# + 𝜆 𝛽 "

𝑓(𝛽) = 𝛽+𝛽 − 2𝛽+𝑋+𝑌 + 𝑌+𝑌 + 2𝜆′ 𝛽 "

Where 𝜆� = /
#

to simplify the equations.

29
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Deriving LASSO

The i-th component of the subdifferential is then given by: 

𝜕(𝑓)(𝛽F) =
2𝛽F − 2𝑥F+𝑦 + 𝜆, 			 𝛽F > 0
−𝜆, 𝜆 − 2𝑥F+𝑦, 𝛽F = 0

2𝛽F − 2𝑥F+𝑦 − 𝜆, 		 𝛽F < 0

If we manage to make these equations zero for all i, we have 
found the LASSO estimator.

30
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Deriving LASSO

Cases one and three can be solved easily, and yield:

𝛽F = 𝑥F+𝑦 − 𝜆�			𝑖𝑓			𝑥F+𝑦 > 𝜆�
𝛽F = 𝑥F+𝑦 + 𝜆�			𝑖𝑓			 −𝑥F+ 𝑦 > 𝜆�

Which can be translated into:

𝛽F = 𝑥F+𝑦 − 𝑠𝑖𝑔𝑛 𝑥F+𝑦 ⋅ 𝜆�			𝑖𝑓		|𝑥F+𝑦| > 𝜆�

31
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Deriving LASSO

For the last case ( 𝛽F = 0 ), we need: 

0 ∈ −2𝜆′, 2𝜆′ − 2𝑥F+𝑦

Which implies:

−2𝜆′ − 2𝑥F+𝑦 < 0	⇔ 	𝜆′ > −𝑥F+𝑦

2𝜆′ − 2𝑥F+𝑦 > 0	⇔ 	𝜆′ > 𝑥F+𝑦

32
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Deriving LASSO

This gives us a closed form for the LASSO estimation when 
𝑋+𝑋 = 𝐼:

𝛽(F/
�
= 	 �

0																																																			𝜆′ > |𝑥F+𝑦|
𝑥F+𝑦 − 𝑠𝑖𝑔𝑛 𝑥F+𝑦 ⋅ 𝜆�, 			𝜆′ ≤ |𝑥F+𝑦|

• As we can see, LASSO nullifies components of 𝛽 when the 
corresponding |𝑥F+𝑦| is smaller than 𝜆/2. 

• Both shrinkage and variable selection can be seen.

33
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Connections of LASSO with OLS

The previous equation gives us the connection to OLS 

(when 𝑋+𝑋 = 𝐼):

𝛽XqYYW3 = 𝑠𝑖𝑔𝑛 𝛽(WXYF 𝛽(WXYF −
𝜆
2

�

Again, it is easy to see that LASSO reduces the coefficients 
and zeroes them out if they are too small.

34
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LASSO visualized

35

The	Lasso	estimator	tends	to	zero	out	
parameters	as	the	OLS	loss	can	easily	intersect	

with	the	constraint	on	one	of	the	axis.

The	values	of	the	coefficients	decrease	as	
lambda	increases,	and	are	nullified	fast.

Lasso	estimator



ELASTIC NET ESTIMATOR
Estimators,	assemble

36
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Problems with Ridge and LASSO

• Ridge does not perform feature selection.

• Ridge and Lasso are sensible to outliers.

• When p > n, LASSO can choose at most n predictors to use. 
The rest are nullified.

• When there are multiple correlated predictors, LASSO tends 
to indifferently choose one and discard the rest. 

• For example, if you run a problem with large number 
features multiple times, you might have a very different 
feature set each time.

37
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Combine Ridge and LASSO!

In light of these points, Zou and Hastie developed the Elastic 
Net (EN) estimator in 2005.

The basic idea of EN is simple: add both regularization terms 
to the minimization objective.

𝛽(�� = argmin
9

𝑋𝛽 − 𝑌 #
# + 𝜆" 𝛽 " + 𝜆# 𝛽 #

#

EN tries to capture the best of both worlds: it increases 
stability in the estimation, reduces model complexity by 
shrinking the parameters and also performs feature selection.

38

LASSO Ridge
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Combine Ridge and LASSO!

EN can be rewritten as:

𝛽(�� = argmin
9

𝑋𝛽 − 𝑌 #
# + 𝜆	[𝛼 𝛽 " + 1 − 𝛼 𝛽 #

#]

Where 𝜆 = 𝜆" + 𝜆# and 𝛼 = /v
/v�/b

. 

Elastic Net can be seen as combining both penalties in one 
regularization term, which is a convex combination of LASSO 
and Ridge.

39
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Combine Ridge and LASSO!

Again, the estimator can be seen as a constrained 
optimization problem:

min
� 9 v� ",� 9 b

b	c	�
𝑋𝛽 − 𝑌 #

#

Where 𝛼 ∈ [0,1]. We can see that Ridge and LASSO are special 
cases of EN, where 𝛼 = 1 and 𝛼 = 0 respectively.

40



GEOMETRY OF ESTIMATORS
Visualization	is	key

41
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Elastic	Net



CS109A, PROTOPAPAS, RADER 44

Let’s	see	it	live!

DEMO TIME



BAYESIAN INTERPRETATIONS
“The	right	way	of	looking	at	it”	- Kevin	Rader,	probably

45
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A different but useful perspective

• Both Ridge and LASSO have a very natural interpretation 
from a Bayesian viewpoint.

• For this, we need to see our response as a multivariate 
normal distribution with varying means:

𝑌|𝛽 ∼ 𝑁 𝑋𝛽, 𝜎#𝐼

46
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A different but useful perspective

𝑌|𝛽 ∼ 𝑁 𝑋𝛽, 𝜎#𝐼

47
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Consider 𝑌|𝛽 ∼ 𝑁 𝑋𝛽, 𝜎#𝐼 , and	the	MAP	estimator:
𝛽(¡q¢ = argmax

9
	𝑝(𝛽|𝑌)

If	the	prior	is	𝛽 ∼ 𝑁(0, 𝜎#/𝜆)
Then	𝛽¡q¢ = 𝛽EFGHI

Ridge and LASSO as MAP estimates

48

If	the	prior	is	𝛽 ∼ 𝐿(0, 2𝜎#/𝜆)
Then	𝛽¡q¢ = 𝛽XqYYW



CS109A, PROTOPAPAS, RADER

Bayes Rule: Posterior

𝑝 𝛽 𝑌 =
𝑝 𝑌 𝛽 𝑝 𝛽

𝑝 𝑌

				∼ 𝑝 𝑌 𝛽 𝑝(𝛽)

MAP: Maximum a posteriori estimation

49

Maximum	a	posteriori	estimation	wants	to	maximize	the	posterior:

max(𝑝 𝛽 𝑌 ) = the	most	likely	𝛽 given	/conditioned	on	our	observed	data

Data overwhelms 
prior eventually
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N=32

Data overwhelms 
prior eventually

Posterior: priors and posteriors as we see more and more 
data

50

• Blue Player: assumes before seeing any data a uniform distribution = Blue is a non-informative 
Prior

• Red Player: assumes our distribution is close to zero = Red is an informative biased PriorN=0

N=500

True	beta
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Proof of Bayesian interpretations

Bayes Rule:

𝑝 𝛽 𝑌 =
𝑝 𝑌 𝛽 𝑝 𝛽

𝑝 𝑌
∝ 𝑝 𝑌 𝛽 𝑝(𝛽)

We want to maximize the posterior, which is the same as 
maximizing the log because of its monotonicity:

argmax
9

𝑝 𝛽 𝑌 = argmax
9

log 𝑝 𝑌 𝛽 + log 𝑝 𝛽 	

Remember that from the Bayesian perspective, we have:

51

𝑝 𝑌 𝛽 ∼ 𝑁(𝑋𝛽, 𝜎#𝐼) log 𝑝 𝑌 𝛽 ∝ − 2𝜎# ," 𝑋𝛽 − 𝑌 #
#

𝑝 𝛽 ∼ 𝑁(0, 𝜏#𝐼) log 𝑝 𝛽 ∝	− 2𝜏# ," 𝛽 #
#
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Multiplying the entire optimization problem by -1, we turn a 
maximization into a minimization, and we have:

argmax
9

𝑝 𝛽 𝑌 = argmin
9

2𝜎# ," 𝑋𝛽 − 𝑌 #
# + 2𝜏# ," 𝛽 #

#

And setting 𝜏# = 𝜎#/𝜆, we can multiply the whole problem by 2𝜎#
without altering it and we get Ridge expression.

Similarly, if we set 𝛽 ∼ 𝐿(0, 𝑏), we can get to:

argmax
9

𝑝 𝛽 𝑌 = argmin
9

2𝜎# ," 𝑋𝛽 − 𝑌 #
# + 𝑏," 𝛽 "

Which gives us LASSO by setting 𝑏 = 2𝜎#/𝜆.

Proof of Bayesian interpretations

52
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Considerations on Bayesian Linear Regression

• The Bayesian perspective inspires other regression models. 
What if we change the prior on 𝛽?

• We could, for example, put an asymmetric distribution if we 
have information that suggests that some 𝛽 are likely to be 
positive.

• Bayesian analysis can go beyond finding point estimates on the 
betas. We can obtain full distributions.

• Regularizing with prior ends up yielding more information 
about the betas.

• The Bayesian formulation allows us to find the most likely 
lambda given our data.

53
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Bayesian priors instead of cross-validation

• So far, we’ve assumed that we know 𝜆. In the frequentist case, 
we get it through 

• In the Bayesian perspective, there’s an alternative empirical 
Bayes approach for picking hyperparameters: Evidence 
Procedure/ (Sparse Bayesian learning) SBL.

• Consists of maximizing the marginal likelihood resulting of 
integrating out the betas (finding the MLE of a new likelihood, 
where the parameter of interest is 𝜆)

• This is also called Level-2 Maximum Likelihood.

• Principle practical advantage of Evidence Procedure: we can 
easily find optimal lambdas for each parameter separately.

54

cross-validation.
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Evidence Procedure: The math in a nutshell

Assume the following model:

55

The marginal likelihood can be computed as follows:

𝑝 𝑌 𝛽 ∼ 𝑁(𝑋𝛽, 𝜎#𝐼)
𝑝(𝛽) ∼ 𝑁(0, 𝐴,")

𝐴," = 𝜏#𝐼 𝜏# =
𝜎#

𝜆"
,
𝜎#

𝜆#
, … ,

𝜎#

𝜆V

𝑝 𝑌 𝜏# = ∫ 𝑁 𝑌; 𝑋𝛽, 𝜎#𝐼 𝑁 𝛽; 0, 𝐴," 𝑑𝛽

= 𝑁 𝑌; 0, 𝜎#𝐼 + 𝑋𝐴,"𝑋+

= 2𝜋 ,�# 𝐶±
,"# exp −

1
2
𝑌+𝐶±,"𝑌

𝐶± =
1
𝜎#
𝐼 + 𝑋𝐴,"𝑋+
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We want the tau that maximizes this likelihood. We minimize the 
negative log likelihood:

𝜏�³# = argmin
±
log 𝐶± + 𝑌+𝐶±,"𝑌

• And we can obtain our optimal regularization parameter from 
here.1

• Note: we worked through the problem with different lambdas 
for every beta! If lambdas all equal: back to classic Ridge 
regression.

Evidence Procedure: The math in a nutshell
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1	There	is	an	easy	formula	to	automatically	obtain	the	betas	as	well,	available	in	chapter	13,	p.	464	of	
Murphy’s	“Machine	Learning	– A	Probabilistic	Perspective”.



THANK YOU!
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Practical side: how to check for multicollinearity?

• Check if at least one eigenvalue of Gram Matrix (𝑋+𝑋) is 
close to 0.

• Check for large condition numbers (𝜅) in 𝑋+𝑋. 

• Condition number > 30 usually indicates multicollinearity.

• Check for high variance inflation factors (VIFs). VIF > 10 
usually indicates multicollinearity.

𝑉𝐼𝐹 =
1

1 − 𝑅F#
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This	𝑅F# is	the	coefficient	of	determination	
obtained	when	regressing	𝑋F with	all	other	
X	as	predictors.
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Augmented problem – Elastic Net

We can actually prove that EN is a generalized LASSO with 
augmented data. Construct the augmented problem:

𝑌∗ =
𝑌
0

∈ 	ℝ]�V

𝑋∗ = 1 + 𝜆#
,"#

𝑋
𝜆"

� 𝐼
∈ ℝ ]�V 	×	V

and define:

𝛾 =
𝜆"
1 + 𝜆#

�

𝛽∗ = 1 + 𝜆#
� 𝛽
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Augmented problem – Elastic Net

Then, the elastic net problem can be written as:
𝛽(∗ = arg min

9∗∈ℝ¹
𝑋∗𝛽∗ − 𝑌∗ #

# + 𝛾 𝛽∗ "

Where 𝛽(�� = 1 + 𝜆#
,vb𝛽(∗

• As we can see, the EN problem can be reformulated as a 
LASSO problem on augmented data.

• Note that since sample size of X is n + p > p, the elastic net 
estimator can actually select all p predictors. 

• 𝛽(� is a shrunk version of 𝛽(∗: EN does both variable 
shrinking and variable selection.
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LASSO	
problem!


