
Advanced Section #1: Linear Algebra and Hypothesis Testing

CS109A Introduction to Data Science Pavlos Protopapas, Kevin Rader and Chris Tanner

1

WARNING

This deck uses animations to focus attention and break apart complex concepts.

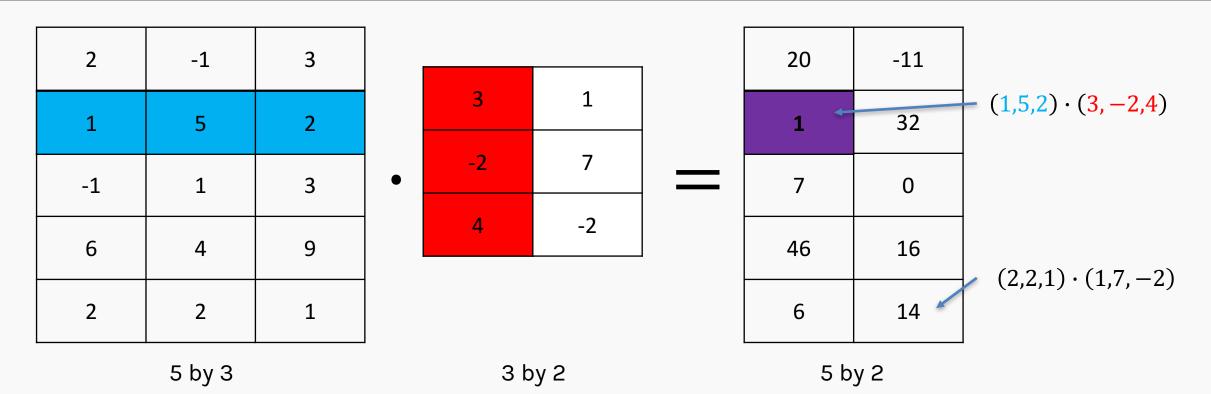
Either watch the section video or read the deck in Slide Show mode.

Today's topics: Linear Algebra (Math 21b, 8 weeks) Maximum Likelihood Estimation (Stat 111/211, 4 weeks) Hypothesis Testing (Stat 111/211, 4 weeks) Our time limit: <u>75 minutes</u>

- We will move fast
- You are only expected to catch the big ideas
- Much of the deck is intended as notes
- I will give you the TL;DR of each slide
- We will recap the big ideas at the end of each section

LINEAR (THE HIGHLIGHTS) ALGEBRA

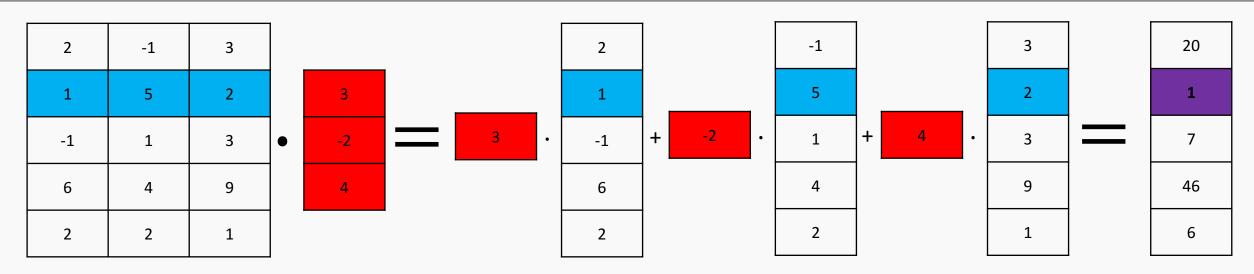
What does a dot product mean?


 $(1,5,2) \cdot (3,-2,4) = 1 \cdot (3) + 5 \cdot (-2) + 2 \cdot (4)$

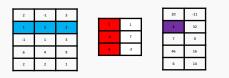
- Weighted sum: We weight the entries of one vector by the entries of the other
 - Either vector can be seen as weights
 - Pick whichever is more convenient in your context
- **Measure of Length**: A vector dotted with itself gives the squared distance from (0,0,0) to the given point
 - $(1,5,2) \cdot (1,5,2) = 1 \cdot (1) + 5 \cdot (5) + 2 \cdot (2) = (1-0)^2 + (5-0)^2 + (2-0)^2 = 28$
 - (1,5,2) thus has length $\sqrt{28}$
- Measure of orthogonality: For vectors of fixed length, $a \cdot b$ is biggest when a and b point are in the same direction, and zero when they are at a 90° angle
 - Making a vector longer (multiplying all entries by c) scales the dot product by the same amount

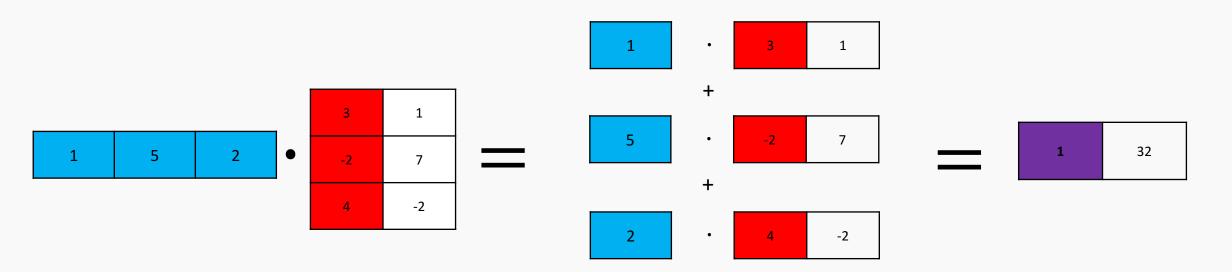
Question: how could we get a true measure of orthogonality (one that ignores length?)

Dot Product for Matrices


Matrix multiplication is a bunch of dot products

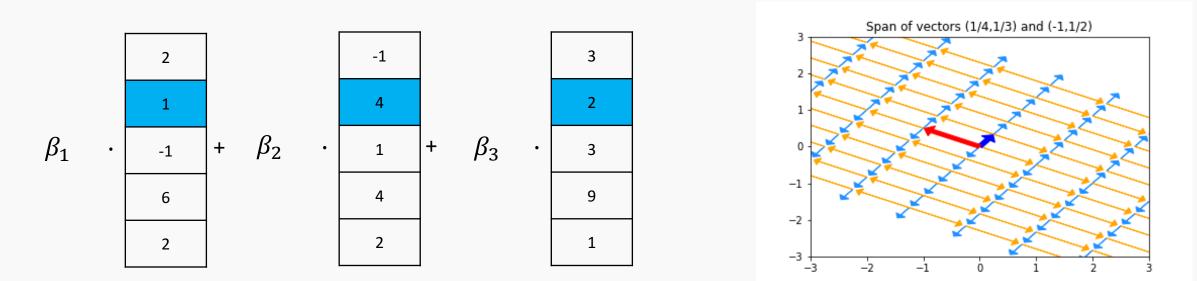
- In fact, it is every possible dot product, nicely organized
- Matrices being multiplied must have the shapes (n,m)x (m,p) and the result is of size (n,p)
 - (the middle dimensions have to match, and then drop out)


Column by Column



- Since matrix multiplication is a dot product, we can think of it as a weighted sum
 - We weight each column as specified, and sum them together
 - This produces the first column of the output
 - The second column of the output combines the same columns under different weights
- Rows?

• Apply a row of A as weights on the rows B to get a row of output

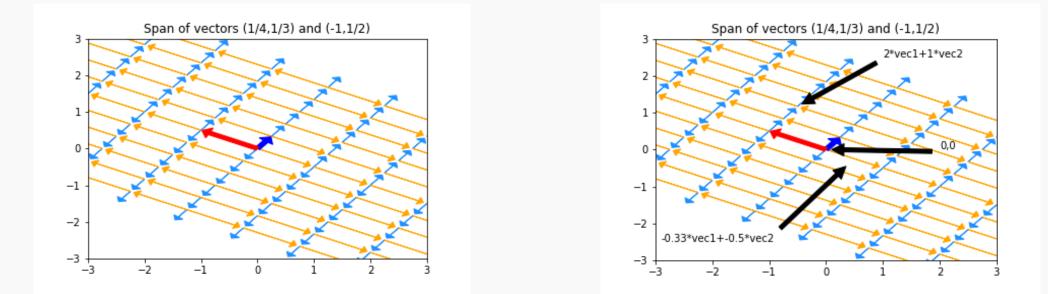


Span

LINEAR (TH ALGEBRA

(THE HIGHLIGHTS)

Span and Column Space

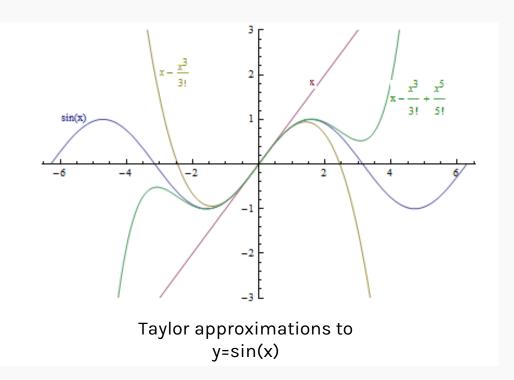

- **Span**: every possible linear combination of some vectors
 - If vectors are the columns of a matrix call it the **column space** of that matrix
 - If vectors are the rows of a matrix it is the **row space** of that matrix
- Q: what is the span of {(-2,3), (5,1)}? What is the span of {(1,2,3), (-2,-4,-6), (1,1,1)}

Bases

(THE HIGHLIGHTS)

LINEAR ALGEBRA

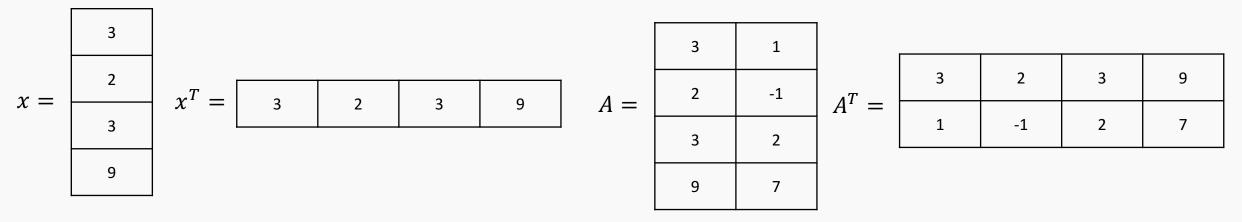
- Given a space, we'll often want to come up with a set of vectors that span it
- If we give a <u>minimal</u> set of vectors, we've found a **basis** for that space
- <u>A basis is a coordinate system for a space</u>
 - Any element in the space is a weighted sum of the basis elements
 - Each element has exactly one representation in the basis
- The same space can be viewed in any number of bases pick a good



one

CS109A, Protopapas, Rader

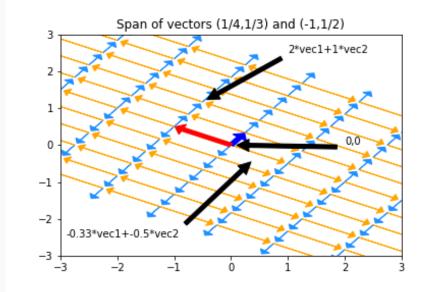
Function Bases


- Bases can be quite abstract:
 - Taylor polynomials express any analytic function in the infinite basis $(1, x, x^2, x^3, ...)$
 - The Fourier transform expresses many functions in a basis built on sines and cosines
 - Radial Basis Functions express functions in yet another basis
- In all cases, we get an 'address' for a particular function
 - In the Taylor basis, sin(x) =۲ $(0,1,0,\frac{1}{6},0,\frac{1}{120},\dots)$
- Bases become super important in feature engineering
 - Y may depend on some transformation of x, but we only have x itself
 - We can include features $(1, x, x^2, x^3, ...)$ to approximate

Interpreting Transpose and Inverse

LINEAR ALGEBRA

(THE HIGHLIGHTS)



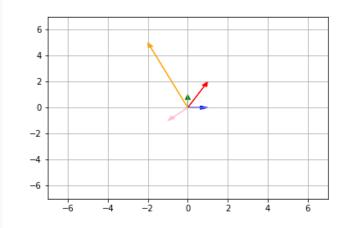
- Transposes switch columns and rows. Written A^T
- Better dot product notation: $a \cdot b$ is often expressed as $a^T b$
- Interpreting: The matrix multiplilcation *AB* is rows of A dotted with columns of B
 - $A^T B$ is columns of A dotted with columns of B
 - AB^T is rows of A dotted with rows of B
- Transposes (sort of) distribute over multiplication and addition:

$$(AB)^{T} = B^{T}A^{T}$$
 $(A+B)^{T} = A^{T} + B^{T}$ $(A^{T})^{T} = A$

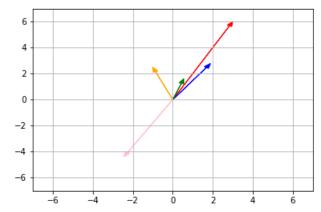
- Algebraically, $AA^{-1} = A^{-1}A = 1$
- Geometrically, A^{-1} writes an arbitrary point b in the coordinate system provided by the columns of A
 - Proof (read this later):
 - Consider Ax = b. We're trying to find weights x that combine A's columns to make b
 - Solution $x = A^{-1}b$ means that when A^{-1} • multiplies a vector we get that vector's coordinates in A's basis
- Matrix inverses exist iff columns of the matrix form a basis
 - 1 Million other equivalents to invertibility: ullet**Invertible Matrix Theorem** CS109A, PROTOPAPAS, RADER

How do we write (-2,1) in this basis? Just multiply A^{-1} by (-2,1)

Eigenvalues and Eigenvectors


LINEAR (THE ALGEBRA

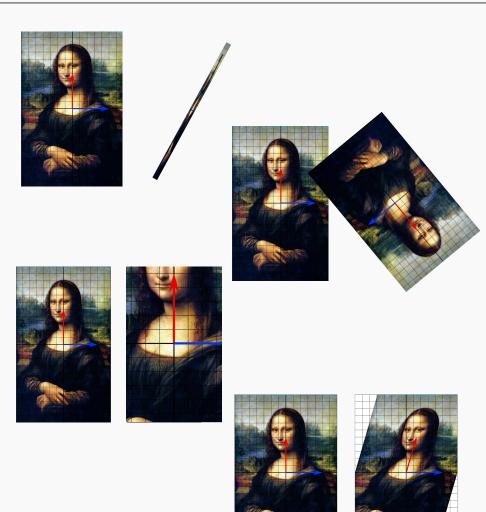
(THE HIGHLIGHTS)


Eigenvalues

- Sometimes, multiplying a vector by a matrix just scales the vector
 - The red vector's length triples
 - The orange vector's length halves
 - All other vectors point in new directions
- The vectors that simply stretch are called egienvectors. The amount they stretch is their eigenvalue
 - Anything along the given axis is an eigenvector; Here, (-2,5) is an eigenvector so (-4,10) is too
 - We often pick the version with length 1
- When they exist, eigenvectors/eigenvalues can be used to understand what a matrix does

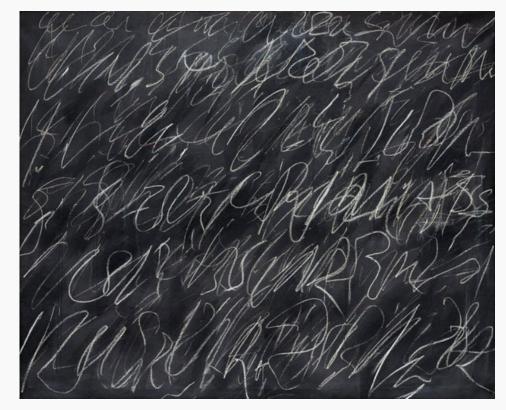
Original vectors:

After multiplying by 2x2 matrix A:



Interpreting Eigenthings

Warnings and Examples:

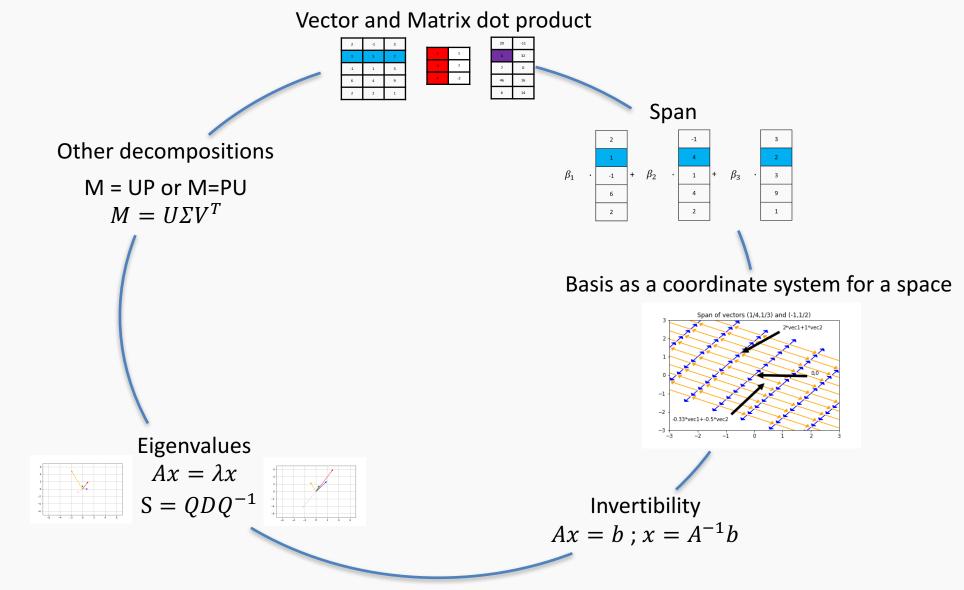

- Eigenvalues/Eigenvectors only apply to <u>square</u> matrices
- Eigenvalues may be 0 (indicating some axis is removed entirely)
- Eigenvalues may be complex numbers (indicating the matrix applies a rotation)
- Eigenvalues may be repeat, with one eigenvector per repetition (the matrix may scales some n-dimension subspace)
- Eigenvalues may repeat, with some eigenvectors missing (shears)
- <u>If</u> we have a full set of eigenvectors, we know everything about the given matrix S, and S = QDQ⁻¹
 - Q's columns are eigenvectors, D is diagonal matrix of eigenvalues

Calculating Eigenvalues

- Eigenvalues can be found by:
 - A computer program
- But what if we need to do it on a blackboard?
 - The definition $Ax = \lambda x$
 - This says that for special vectors x, multiplying by the matrix A is the same as just scaling by λ
 (x is then an eigenvector matching eigenvalue λ)
 - The equation $det(A \lambda I_n) = 0$
 - *I_n* is the n by n identity matrix of size n by n. In effect, we subtract lambda from the diagonal of A
 - Determinants are tedious to write out, but this produces a polynomial in λ which can be solved to find eigenvalues

• Eigenvectors matching known eigenvalues can be found by solving $(A - \lambda I_n)x = 0$ for x

Matrix Decomposition


LINEAR ALGEBRA

(THE HIGHLIGHTS)

- **Eigenvalue Decomposition**: <u>Some square</u> matrices can be decomposed into scalings along particular axes
 - Symbolically: S = QDQ⁻¹; D diagonal matrix of eigenvalues; Q made up of eigenvectors, but possibly wild (unless S was symmetric; then Q is orthonormal)
- **Polar Decomposition**: Every matrix M can be expressed as a rotation (which may introduce or remove dimensions) and a stretch
 - Symbolically: M = UP or M=PU; P positive semi-definite, U's columns orthonormal
- **Singular Value Decomposition**: Every matrix M can be decomposed into a rotation in the original space, a scaling, and a rotation in the final space
 - Symbolically: $M = U\Sigma V^T$; U and V orthonormal, Σ diagonal (though not square)

Where we've been

• What about all the facts about inverses and dot products I've forgotten since undergrad? [<u>Matrix Cookbook</u>] [<u>Linear Algebra Formulas</u>]

LINEAR ALGEBRA

(SUMMARY)

- Matrix multiplication: every dot product between rows of A and columns of B
 - Important special case: a matrix times a vector is a weighted sum of the matrix columns
- **Dot products** measure similarity between two vectors: 0 is extremely un-alike, bigger is pointing in the same direction and/or longer
 - Alternatively, a dot product is a weighted sum
- **Bases**: a coordinate system for some space. Everything in the space has a unique address
- Matrix Factorization: all matrices are rotations and stretches. We can decompose 'rotation and stretch' in different ways
 - Sometimes, re-writing a matrix into factors helps us with algebra
- Matrix Inverses don't always exist. The 'stretch' part may collapse a dimension. M⁻¹ can be thought of as the matrix that expresses a given point in terms of columns of M
- Span and Row/Column Space: every weighted sum of given vectors
- Linear (In)Dependence is just "can some vector in the collection be represented as a weighted sum of the others" if not, vectors are Linearly Independent

LINEAR REGRESSION

Review and Practice: Linear Regression

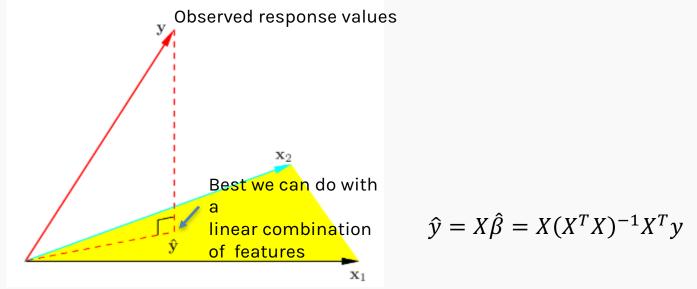
• In linear regression, we're trying to write our response data y as a linear function of our [augmented] features X

$$\begin{aligned} response &= \beta_1 feature_1 + \beta_2 feature_2 + \beta_3 feature_3 + ... \\ y &= X\beta \end{aligned}$$

• Our response isn't actually a linear function of our features, so we instead find betas that produce a column \hat{y} that is as close as possible to y (in Euclidean distance)

$$\min_{\beta} \sqrt{(y - \hat{y})^T (y - \hat{y})} = \min_{\beta} \sqrt{(y - X\beta)^T (y - X\beta)}$$

- Goal: find that the optimal $\beta = (X^T X)^{-1} X^T y$
- Steps:
 - 1. Drop the sqrt [why is that legal?]
 - 2. Distribute the transpose
 - 3. Distribute/FOIL all terms
 - 4. Take the derivative with respect to β (Matrix Cookbook (69) and (81): derivative of $\beta^T a$ is a^T , ...)
 - 5. Simplify and solve for beta CS109A, PROTOPAPAS, RADER


$$\hat{\beta} = (X^T X)^{-1} X^T y$$

• The best possible betas, $\hat{\beta} = (X^T X)^{-1} X^T y$ can be viewed in two parts:

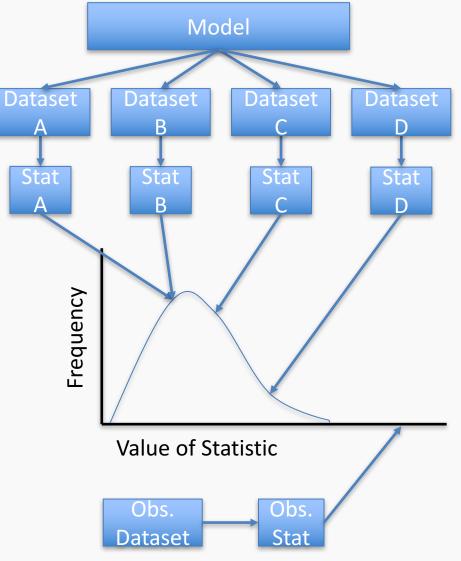
- Numerator (*X^Ty*): columns of X dotted with (the) column of y; how related are the feature vectors and y?
- Denominator (*X^TX*): columns of X dotted with columns of X; how related are the different features?
- If the variables have mean zero and variances are ones, "how related" is literally "correlation"
- Roughly, our solution assigns big values to features that predict y, but punishes features that are similar to (combinations of) other features
- Bad things happen if $X^T X$ is uninvertible (or nearly so)

Interpreting LR: Geometry

- The only points that CAN be expressed as $X\beta$ are those in the span/column space of X.
 - By minimizing distance, we're finding the point in the column space that is closest to the actual y vector
- The point $X\hat{\beta}$ is the projection of the observed y values onto the things linear regression can express
- Warnings:
 - Adding more columns (features) can only make the span bigger and the fit better
 - If some features are very similar, results will be unstable

STATISTICS: HYPOTHESIS TESTING

OR: WHAT PARAMETERS EXPLAIN THE DATA


- It's impossible to prove a model is correct
 - In fact, there are many correct models
 - Can you prove increasing a parameter by .0000001% is incorrect?
- We can only rule models out.
- The great tragedy is that we often simplify the problem to rule out just ONE model, and then quit.

Model Rejection

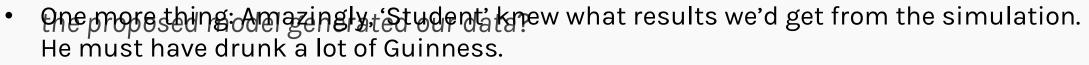
- Important: a 'model' is a (probabilistic) story about how the data came to be, complete with specified values of every parameter.
 - The model could produce many possible datasets
 - We only have one observed dataset
- How can we tell if a model is wrong?
 - If the model is unlikely to reproduce the aspects of the data that we care about and observe, it has to go
 - Therefore, we have some real-number summary of the dataset (a 'statistic') by which we'll compare model-generated datasets and our observed dataset
 - If the statistics produced by the model are clearly different than the one from the real data,

Recap: How to understand any statistical test

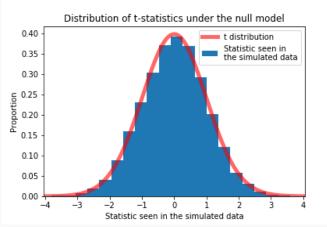
- A statistical test typically specifies:
 - 1. A 'hypothesized' (probabilistic) data generating processing on: the null hypothesis)
 - 2. A summary we'll use to compress/summarize a dataset (Jargon: a statistic)
 - 3. A rule for comparing the observed and the simulated summaries
- Example: t-test
 - 1. The y data are generated via the estimated line/plane, plus Normal(0, σ^2) noise,

EXCEPT a particular coefficient is assumed to actually be zero!

2. The coefficient we'd calculate for that dataset (minus 0), over the SE of the coefficient

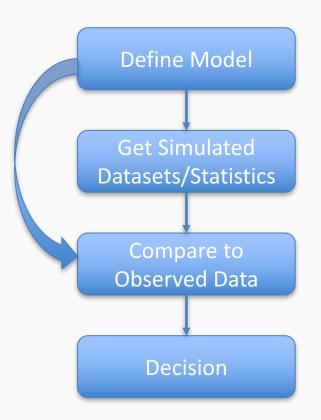

t statistic =
$$\frac{\hat{\beta}_{0\text{bserved}} - 0}{\widehat{SE}(\hat{\beta}_{0\text{bserved}})}$$

3. Declare the model bad if the observed result is in the top/bottom $\alpha/2$ of simulated results (commonly top/bottom 2.5%)



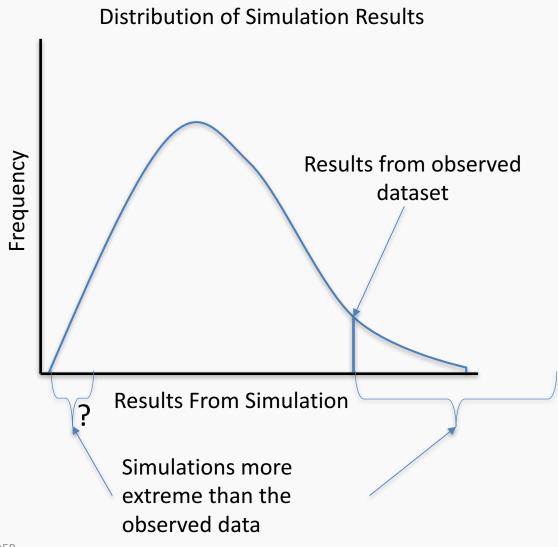
Walkthrough:

- We set a particular β (or set of β 's) we care about to zero (call them β_{null}).
- We simulate 10,000 new datasets using β_{null} as truth.
- In each of the 10,000 datasets, fit a regression against X and plot the values of the β we care about (the one we set to zero).
 - Plotting the t statistic in each simulation is a little nicer
- The t statistic calculated from the observed data was 17.8. Do we think


T-test for $\beta_2 = 0$ $\beta_{MLE} = [2.2, 5, 3, 1.6]$ $\beta_{null} = [2.2, 5, 0, 1.6]$ σ_{MLE} X_{obs} **Simulate y values y=N(X\beta,** σ) y_{sim1} y_{sim2} y_{sim3} ... $y_{sim10,000}$ **Fit linear regression y_sim** $\beta_{sim1} = X \underset{Psim2}{\mathbb{B}} \beta_{sim3}$... $\beta_{sim10,000}$

The Value of Assumptions

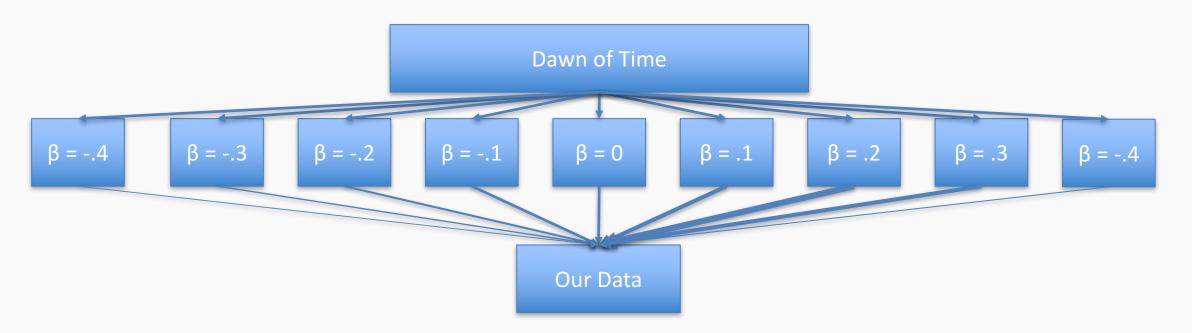
- Student's clever set-up let's us skip the simulation
- In fact, all classical tests are built around working out what distribution the results will follow, without simulating
 - Student's work lets us take infinite samples at almost no cost
- These shortcuts were *vital* before computers, and are still important today
 - Even so, via simulation we're freer to test and reject more diverse models and use wilder summaries
 - However, the summaries and rules we choose still require thought: some are much better than others



p-values

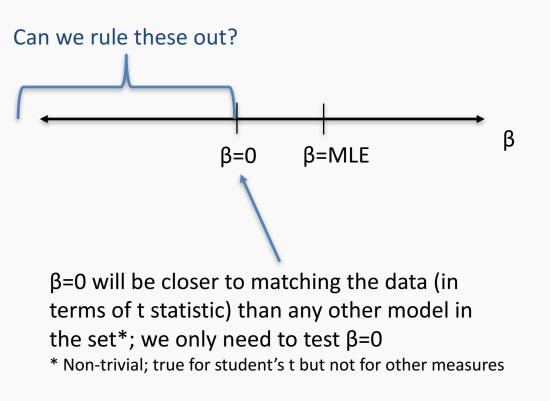
- Hypothesis (model) testing leads to comparing a distribution against a specific value
- A natural way to summarize: report what percentage of results are more extreme than the observed data
 - Basically, could the model frequently produce data that looks like ours?
- This is the p value: p=0.031 means that your observed data is in the top 3.1% of extreme results under this model (using our statistic)
 - There is some ambiguity about what 'extreme' should mean

Jargon: **p-values** are "the probability, assuming the null model is true, of seeing a value of [your statistic] as extreme or more extreme than what was seen in PtheA, Protopapas, Rader observed data"

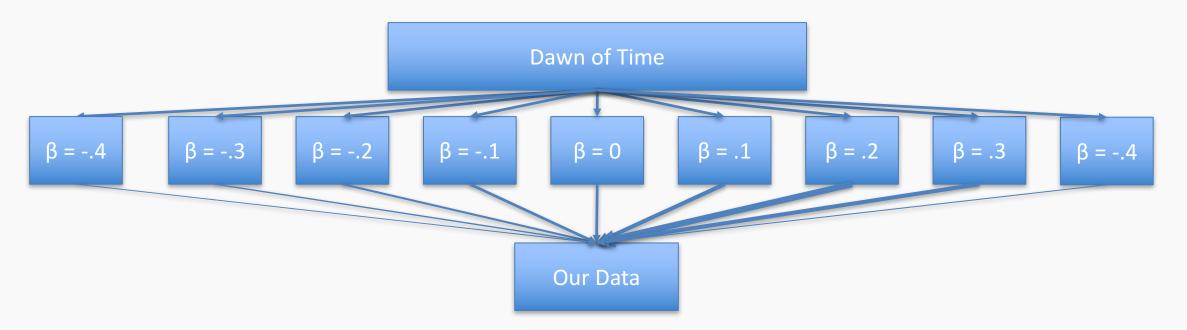

- p values are just one possible measure of the evidence against a model
- Rejecting a model when p<threshold is only one possible decision rule
 - Get a book on Decision Theory for more
- Even if the null model is exactly true, 5% of the time, we'll get a dataset with p<.05
 - p<.05 doesn't prove the null model is wrong, it just suggests it.
 - It does mean that anyone who wants to believe in the null must explain with why something unlikely happened

- We can't rule models in (it's difficult); we can only rule them out (much easier)
- We rule models out when the data they produce is different from the observed data
 - We pick a particular candidate (null) model
 - A statistic summarizes the simulated and observed datasets
 - We compare the statistic on the observed data to the [simulated or theoretical] sampling distribution of statistics the null model produces
 - We rule out the null model if the observed data doesn't seem to come from the model (disagrees with the sampling distribution).
- A p value summarizes the level of evidence against a particular
 ^{CS109A, Protopapas, Rader}

STATISTICS: HYPOTHESIS TESTING


CONFIDENCE INTERVALS AND COMPOSITE HYPOTHESES

- Let's talk about what we just did
 - That t-test was ONLY testing the model where the coefficient in question is set to zero
 - Ruling out this model makes it more likely that other models are true, but doesn't tell us which ones
 - If the null is β = 0, getting p<.05 only rules out THAT ONE model
- When would it make sense to stop after ruling out $\beta = 0$, without testing $\beta = .1$?


Composite Hypotheses: Multiple Models

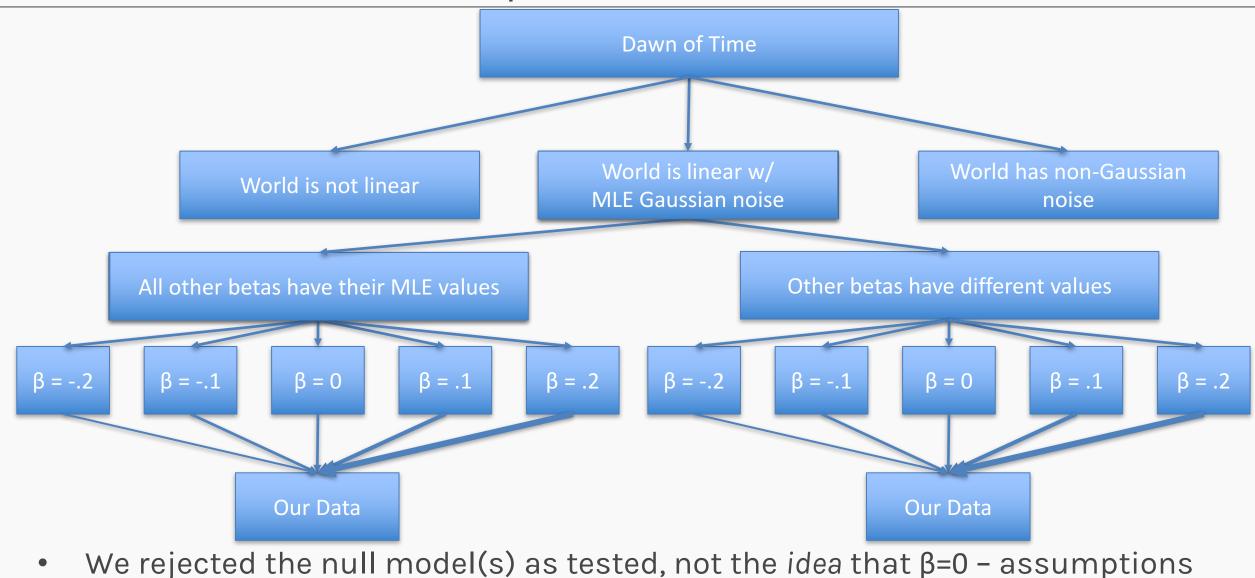
- Often, we're interested in trying out more than one candidate model
 - E.g. Can we disprove all models with a negative value of beta?
 - This amounts to simulating data from each of those models (but there are infinitely many...)
- Sometimes, ruling out the nearest model is enough; we know that the other models have to be worse
- If a method claims it can test θ<0, this is how

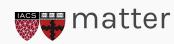
THE Null vs A Null

- What if we tested LOTS of possible values of beta?
 - Special conditions must hold to avoid multiple-testing issues; again, the t test model+statistic pass them
- We end up with a set/interval of surviving values, e.g. [.1,.3]
 - Sometimes, we can directly calculate what the endpoints would be from probability theory
- Since each beta was tested under the rule "reject this beta if the observed results are in the top 5% of weird datasets under this model", we have [.1,.3] as a 95% confidence interval

Confidence Interval Warnings

- WARNING: This kind of accept/reject confidence interval is rare
 - Most confidence intervals <u>do not</u> map accept/reject regions of a (useful) hypothesis test
 - A confidence interval that excludes zero does not usually mean a result is statistically significant
 - Statistically significant: The data resulting from an experiment/data collection have p<.05 (or some other threshold) against a no-effect model, meaning we reject the no-effect model
 - It depends on how that confidence interval was built
- A confidence interval's <u>only</u> promise: if you were to repeatedly recollect the data and build 95% CIs, (assuming our story about data generation is correct) 95% of the intervals would contain the true value


- WARNING: A 95% confidence interval DOES NOT have a 95% chance of holding the true value
 - There may be no such thing as "the true value", b/c the model is wrong
- Even if the model is true, a "95% chance" statement requires prior assumptions about how nature sets the true value



- The 209 homework touches on another kind of confidence interval
 - Class: "How well have I estimated beta?"
 - HW: "How well can I estimate the *mean* response at each X?"
 - Bonus: "How well can I estimate the possible responses at each X"?

Remember those assumptions?

- Ruling out a single model isn't much
- Sometimes, ruling out a single model is enough to rule out a whole class of models
- Assumptions our model makes are weak points that should be justified and checked for accuracy
- Confidence intervals give a reasonable idea of what some unknown value might be
- Any single confidence intervals cannot give a probability
- Statistical significance is 99% unrelated to confidence intervals

STATISTICS: REVIEW

You made it!

Review

- To test a particular model (a particular set of parameters) we must:
 - 1. Specify a data generating process
 - 2. Pick a way to measure whether our data plausibly comes from the process
 - 3. Pick a rule for when a model cannot be trusted (when is the range of simulated results too different from the observed data?)
- What features make for a good test?
 - We want to make as few assumptions as possible, and choose a measure that is sensitive to deviations from the model
 - If we're clever, we might get math that lets us skip simulating from the model
 - Tension: more assumptions make math easier, fewer assumptions make results broader
- There is no such thing as THE null hypothesis. It's only **A** null hypothesis.
 - A p value only tests one null hypothesis and is rarely enough

As the course moves on, we'll see

- Flexible assumptions about the data generating process
 - Generalized Linear Models
- Ways of making fewer assumptions about the data generating process:
 - Bootstrapping
 - Permutation tests
- Easier questions: Instead of 'find a model that explains the world', 'pick the model that predicts best'
 - Validation sets and cross validation

