Advanced Section \#1:
 Linear Algebra and Hypothesis Testing

CS109A Introduction to Data Science Pavlos Protopapas, Kevin Rader and Chris Tanner

Advanced Section 1

WARNING

This deck uses animations to focus attention and break apart complex concepts.

Either watch the section video or read the deck in Slide Show mode.

Advanced Section 1

Today's topics:
Linear Algebra (Math 21b, 8 weeks)
Maximum Likelihood Estimation (Stat 111/211, 4 weeks)
Hypothesis Testing (Stat 111/211, 4 weeks)
Our time limit: 75 minutes

- We will move fast
- You are only expected to catch the big ideas
- Much of the deck is intended as notes
- I will give you the TL;DR of each slide
- We will recap the big ideas at the end of each section

LINEAR
(THE HIGHLIGHTS)
ALGEBRA

Interpreting the dot product

What does a dot product mean?

$$
(1,5,2) \cdot(3,-2,4)=1 \cdot(3)+5 \cdot(-2)+2 \cdot(4)
$$

- Weighted sum: We weight the entries of one vector by the entries of the other
- Either vector can be seen as weights
- Pick whichever is more convenient in your context
- Measure of Length: A vector dotted with itself gives the squared distance from $(0,0,0)$ to the given point
- $(1,5,2) \cdot(1,5,2)=1 \cdot(1)+5 \cdot(5)+2 \cdot(2)=(1-0)^{2}+(5-0)^{2}+(2-0)^{2}=28$
- $(1,5,2)$ thus has length $\sqrt{28}$
- Measure of orthogonality: For vectors of fixed length, $a \cdot b$ is biggest when a and b point are in the same direction, and zero when they are at a 90° angle
- Making a vector longer (multiplying all entries by c) scales the dot product by the same amount

Question: how could we get a true measure of orthogonality (one that ignores length?)

Dot Product for Matrices

Matrix multiplication is a bunch of dot products

- In fact, it is every possible dot product, nicely organized
- Matrices being multiplied must have the shapes $(n, m) x(m, p)$ and the result is of size (n, p)
- (the middle dimensions have to match, and then drop out)

Column by Column

- \quad Since matrix multiplication is a dot product, we can think of it as a weighted sum
- We weight each column as specified, and sum them together
- This produces the first column of the output
- The second column of the output combines the same columns under different weights
- Rows?

- Apply a row of A as weights on the rows B to get a row of output

Span

LINEAR
(THE HIGHLIGHTS)
ALGEBRA

Span and Column Space

- Span: every possible linear combination of some vectors
- If vectors are the columns of a matrix call it the column space of that matrix
- If vectors are the rows of a matrix it is the row space of that matrix
- Q : what is the span of $\{(-2,3),(5,1)\}$? What is the span of $\{(1,2,3),(-2,-4,-6)$, (1,1,1)\}

Bases

LINEAR ALGEBRA

(THE HIGHLIGHTS)

Basis Basics

- Given a space, we'll often want to come up with a set of vectors that span it
- If we give a minimal set of vectors, we've found a basis for that space
- A basis is a coordinate system for a space
- Any element in the space is a weighted sum of the basis elements
- Each element has exactly one representation in the basis
- The same space can be viewed in any number of bases - pick a good

Function Bases

- Bases can be quite abstract:
- Taylor polynomials express any analytic function in the infinite basis ($1, x, x^{2}, x^{3}, \ldots$)
- The Fourier transform expresses many functions in a basis built on sines and cosines
- Radial Basis Functions express functions in yet another basis
- In all cases, we get an 'address' for a particular function
- In the Taylor basis, $\sin (x)=$

$$
\left(0,1,0, \frac{1}{6}, 0, \frac{1}{120}, \ldots\right)
$$

- Bases become super important in feature

Taylor approximations to $y=\sin (x)$ engineering

- Y may depend on some transformation of x, but we only have x itself
- We can include features $\left(1, x, x^{2}, x^{3}, \ldots\right)$ to approximate

Interpreting Transpose and Inverse

LINEAR
(THE HIGHLIGHTS)
ALGEBRA

Transpose

- Transposes switch columns and rows. Written A^{T}
- Better dot product notation: $a \cdot b$ is often expressed as $a^{T} b$
- Interpreting: The matrix multiplilcation $A B$ is rows of A dotted with columns of B
- $A^{T} B$ is columns of A dotted with columns of B
- $\quad A B^{T}$ is rows of A dotted with rows of B
- Transposes (sort of) distribute over multiplication and addition:

$$
(A B)^{T}=B^{T} A^{T} \quad(A+B)^{T}=A^{T}+B^{T} \quad\left(A^{T}\right)^{T}=A
$$

Inverses

- Algebraically, $A A^{-1}=A^{-1} A=1$
- Geometrically, A^{-1} writes an arbitrary point b in the coordinate system provided by the columns of A
- Proof (read this later):
- Consider $A x=b$. We're trying to find weights x that combine A 's columns to make b
- Solution $x=A^{-1} b$ means that when A^{-1} multiplies a vector we get that vector's coordinates in A's basis
- Matrix inverses exist iff columns of the matrix form a basis
- 1 Million other equivalents to invertibility: Invertible Matrix Theorem

Eigenvalues and Eigenvectors

LINEAR ALGEBRA

(THE HIGHLIGHTS)

Eigenvalues

- Sometimes, multiplying a vector by a matrix just scales the vector
- The red vector's length triples
- The orange vector's length halves
- All other vectors point in new directions
- The vectors that simply stretch are called egienvectors. The amount they stretch is their eigenvalue
- Anything along the given axis is an eigenvector; Here, $(-2,5)$ is an eigenvector so $(-4,10)$ is too
- We often pick the version with length 1
- When they exist, eigenvectors/eigenvalues can be used to understand what a matrix does

Original vectors:

After multiplying by 2×2 matrix A :

Interpreting Eigenthings

Warnings and Examples:

- Eigenvalues/Eigenvectors only apply to square matrices
- Eigenvalues may be 0 (indicating some axis is removed entirely)
- Eigenvalues may be complex numbers (indicating the matrix applies a rotation)
- Eigenvalues may be repeat, with one eigenvector per repetition (the matrix may scales some n-dimension subspace)
- Eigenvalues may repeat, with some eigenvectors missing (shears)
- If we have a full set of eigenvectors, we know everything about the given matrix S, and $S=$ $Q D Q^{-1}$

- Q's columns are eigenvectors, D is diagonal matrix of eigenvalues

Calculating Eigenvalues

- Eigenvalues can be found by:
- A computer program
- But what if we need to do it on a blackboard?
- The definition $A x=\lambda x$
- This says that for special vectors x , multiplying by the matrix A is the same as just scaling by λ (x is then an eigenvector matching eigenvalue $\lambda)$
- \quad The equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$
- $\quad I_{n}$ is the n by n identity matrix of size n by n . In effect, we subtract lambda from the diagonal of A
- Determinants are tedious to write out, but this produces a polynomial in λ which can be solved to find eigenvalues

- Eigenvectors matching known eigenvalues can be found by solving $\left(\mathrm{A}-\lambda I_{n}\right) x=$ 0 for x

Matrix Decomposition

LINEAR
(THE HIGHLIGHTS)
ALGEBRA

Matrix Decompositions

- Eigenvalue Decomposition: Some square matrices can be decomposed into scalings along particular axes
- Symbolically: $S=Q D Q^{-1}$; $\quad D$ diagonal matrix of eigenvalues; Q made up of eigenvectors, but possibly wild (unless S was symmetric; then Q is orthonormal)
- Polar Decomposition: Every matrix M can be expressed as a rotation (which may introduce or remove dimensions) and a stretch
- Symbolically: M = UP or M=PU; P positive semi-definite, U's columns orthonormal
- Singular Value Decomposition: Every matrix M can be decomposed into a rotation in the original space, a scaling, and a rotation in the final space
- Symbolically: $M=U \Sigma V^{T} ; \quad U$ and V orthonormal, Σ diagonal (though not square)

Where we've been

Vector and Matrix dot product

Reading

- What about all the facts about inverses and dot products l've forgotten since undergrad? [Matrix Cookbook] [Linear Algebra Formulas]

LINEAR

(SUMMARY)

ALGEBRA

Notes

- Matrix multiplication: every dot product between rows of A and columns of B
- Important special case: a matrix times a vector is a weighted sum of the matrix columns
- Dot products measure similarity between two vectors: 0 is extremely un-alike, bigger is pointing in the same direction and/or longer
- Alternatively, a dot product is a weighted sum
- Bases: a coordinate system for some space. Everything in the space has a unique address
- Matrix Factorization: all matrices are rotations and stretches. We can decompose 'rotation and stretch' in different ways
- Sometimes, re-writing a matrix into factors helps us with algebra
- Matrix Inverses don't always exist. The 'stretch' part may collapse a dimension. M^{-1} can be thought of as the matrix that expresses a given point in terms of columns of M
- Span and Row/Column Space: every weighted sum of given vectors
- Linear (In)Dependence is just "can some vector in the collection be represented as a weighted sum of the others" if not, vectors are Linearly Independent

LINEAR REGRESSION

Review and Practice: Linear Regression

- In linear regression, we're trying to write our response data y as a linear function of our [augmented] features X

$$
\begin{gathered}
\left.{\text { response }=\beta_{1} \text { feature }_{1}+\beta_{2} \text { feature }_{2}+\beta_{3} \text { feature }_{3}+\ldots}_{y=X \beta} \begin{array}{c}
\\
y
\end{array}\right]
\end{gathered}
$$

- Our response isn't actually a linear function of our features, so we instead find betas that produce a column \hat{y} that is as close as possible to y (in Euclidean distance)

$$
\min _{\beta} \sqrt{(y-\hat{y})^{T}(y-\hat{y})}=\min _{\beta} \sqrt{(y-X \beta)^{T}(y-X \beta)}
$$

- Goal: find that the optimal $\beta=\left(X^{T} X\right)^{-1} X^{T} y$
- Steps:

1. Drop the sqrt [why is that legal?]
2. Distribute the transpose
3. Distribute/FOIL all terms
4. Take the derivative with respect to β (Matrix Cookbook (69) and (81): derivative of $\beta^{T} a$ is a^{T}, \ldots)
5. Simplify and solve for beta

Interpreting LR: Algebra

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y
$$

- The best possible betas, $\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y$ can be viewed in two parts:
- Numerator $\left(X^{T} y\right)$: columns of X dotted with (the) column of y; how related are the feature vectors and y ?
- Denominator ($X^{T} X$): columns of X dotted with columns of X; how related are the different features?
- If the variables have mean zero and variances are ones, "how related" is literally "correlation"
- Roughly, our solution assigns big values to features that predict y, but punishes features that are similar to (combinations of) other features
- Bad things happen if $X^{T} X$ is uninvertible (or nearly so)

Interpreting LR: Geometry

$$
\hat{y}=X \hat{\beta}=X\left(X^{T} X\right)^{-1} X^{T} y
$$

- The only points that CAN be expressed as $X \beta$ are those in the span/column space of X.
- By minimizing distance, we're finding the point in the column space that is closest to the actual y vector
- The point $\mathrm{X} \hat{\beta}$ is the projection of the observed y values onto the things linear regression can express
- Warnings:
- Adding more columns (features) can only make the span bigger and the fit better
- If some features are very similar, results will be unstable

STATISTICS: HYPOTHESIS TESTING

OR: WHAT PARAMETERS EXPLAIN THE DATA

A Popper's Grave

- It's impossible to prove a model is correct
- In fact, there are many correct models
- Can you prove increasing a parameter by .0000001\% is incorrect?
- We can only rule models out.
- The great tragedy is that we often simplify the problem to rule out just ONE model, and then quit.

Model Rejection

- Important: a 'model' is a (probabilistic) story about how the data came to be, complete with specified values of every parameter.
- The model could produce many possible datasets
- We only have one observed dataset
- How can we tell if a model is wrong?
- If the model is unlikely to reproduce the aspects of the data that we care about and observe, it has to go
- Therefore, we have some real-number summary of the dataset (a 'statistic') by which we'll compare model-generated datasets and our observed dataset
- If the statistics produced by the model are
 clearly different than the one frôph thereatodata,

Recap: How to understand any statistical test

- A statistical test typically specifies:

1. A 'hypothesized' (probabilistic) data generating procefofgon: the null hypothesis)
2. A summary we'll use to compress/summarize a dataset (Jargon: a statistic)
3. A rule for comparing the observed and the simulated summaries

- Example: t-test

1. The y data are generated via the estimated line/plane, plus Normal($0, \sigma^{2}$) noise,
EXCEPT a particular coefficient is assumed to actually be zero!
2. The coefficient we'd calculate for that dataset (minus 0), over the SE of the coefficient

$$
\text { t statistic }=\frac{\widehat{\beta}_{\text {observed }}-0}{\widehat{S E}\left(\widehat{\beta}_{\text {observed }}\right)}
$$

3. Declare the model bad if the observed result is in the top/bottom $\alpha / 2$ of simulated results (commondy totoplbottom 2.5\%)

The t-test

Walkthrough:

- We set a particular β (or set of β 's) we care about to zero (call them $\beta_{\text {null }}$).
- We simulate 10,000 new datasets using $\beta_{\text {null }}$ as truth.
- In each of the 10,000 datasets, fit a regression against X and plot the values of the β we care about (the one we set to zero).
- Plotting the tstatistic in each
simulation
is a little nicer
- The t statistic calculated from the observed data was 17.8. Do we think

T-test for $\boldsymbol{\beta}_{\mathbf{2}}=\mathbf{0}$

$$
\beta_{M L E}=[2.2,5,3,1.6]
$$

 He must have drunk a lot of Guinness.

The Value of Assumptions

- Student's clever set-up let's us skip the simulation
- In fact, all classical tests are built around working out what distribution the results will follow, without simulating
- Student's work lets us take infinite samples at almost no cost
- These shortcuts were vital before computers, and are still important today
- Even so, via simulation we're freer to test and reject more diverse models and use wilder summaries
- However, the summaries and rules we choose still require thought: some are much better than others

p-values

- Hypothesis (model) testing leads to comparing a distribution against a specific value
- A natural way to summarize: report what percentage of results are more extreme than the observed data
- Basically, could the model frequently produce data that looks like ours?
- This is the p value: $p=0.031$ means that your observed data is in the top 3.1% of extreme results under this model (using our statistic)
- There is some ambiguity about what 'extreme' should mean

Jargon: p-values are "the probability, assuming the null model is true, of seeing a value of [your statistic] as

Distribution of Simulation Results
 observed data

- p values are just one possible measure of the evidence against a model
- Rejecting a model when p<threshold is only one possible decision rule
- Get a book on Decision Theory for more
- Even if the null model is exactly true, 5% of the time, we'll get a dataset with $p<.05$
- p<. 05 doesn't prove the null model is wrong, it just suggests it.
- It does mean that anyone who wants to believe in the null must explain with why something unlikely happened

Recap

- We can't rule models in (it's difficult); we can only rule them out (much easier)
- We rule models out when the data they produce is different from the observed data
- We pick a particular candidate (null) model
- A statistic summarizes the simulated and observed datasets
- We compare the statistic on the observed data to the [simulated or theoretical] sampling distribution of statistics the null model produces
- We rule out the null model if the observed data doesn't seem to come from the model (disagrees with the sampling distribution).
- A p value summarizes the level of evidence against a particular null

STATISTICS: HYPOTHESIS TESTING

CONFIDENCE INTERVALS AND COMPOSITE HYPOTHESES

Recap

- Let's talk about what we just did
- That t-test was ONLY testing the model where the coefficient in question is set to zero
- Ruling out this model makes it more likely that other models are true, but doesn't tell us which ones
- If the null is $\beta=0$, getting $p<.05$ only rules out THAT ONE model
(wio When would it make sense to stop after ruling out $\beta=0$, without

Composite Hypotheses: Multiple Models

- Often, we're interested in trying out more than one candidate model
- E.g. Can we disprove all models with a negative value of beta?
- This amounts to simulating data from each of those models (but there are infinitely many...)
- Sometimes, ruling out the nearest model is enough; we know that the other models have to be worse
- If a method claims it can test $\theta<0$, this is how

THE Null vs A Null

- What if we tested LOTS of possible values of beta?
- Special conditions must hold to avoid multiple-testing issues; again, the t test model+statistic pass them
- We end up with a set/interval of surviving values, e.g. [.1,.3]
- Sometimes, we can directly calculate what the endpoints would be from probability theory
- Since each beta was tested under the rule "reject this beta if the observed results are in the top 5% of weird datasets under this model", we have [.1,.3] as a 95% confidence interval

Confidence Interval Warnings

- WARNING: This kind of accept/reject confidence interval is rare
- Most confidence intervals do not map accept/reject regions of a (useful) hypothesis test
- A confidence interval that excludes zero does not usually mean a result is statistically significant
- Statistically significant: The data resulting from an experiment/data collection have p<. 05 (or some other threshold) against a no-effect model, meaning we reject the no-effect model
- It depends on how that confidence interval was built
- A confidence interval's only promise: if you were to repeatedly recollect the data and build $95 \% \mathrm{Cls}$, (assuming our story about data generation is correct) 95% of the intervals would contain the true value

Confidence Interval Warnings

- WARNING: A 95\% confidence interval DOES NOT have a 95\% chance of holding the true value
- There may be no such thing as "the true value", b/c the model is wrong
- Even if the model is true, a " 95% chance" statement requires prior assumptions about how nature sets the true value

HW Preview

- The 209 homework touches on another kind of confidence interval
- Class: "How well have I estimated beta?"
- HW: "How well can I estimate the mean response at each X?"
- Bonus: "How well can I estimate the possible responses at each X"?

Remember those assumptions?

- We rejected the null model(s) as tested, not the idea that $\beta=0$ - assumptions

Review

- Ruling out a single model isn't much
- Sometimes, ruling out a single model is enough to rule out a whole class of models
- Assumptions our model makes are weak points that should be justified and checked for accuracy
- Confidence intervals give a reasonable idea of what some unknown value might be
- Any single confidence intervals cannot give a probability
- Statistical significance is 99% unrelated to confidence intervals

STATISTICS: REVIEW

You made it!

Review

- To test a particular model (a particular set of parameters) we must:

1. Specify a data generating process
2. Pick a way to measure whether our data plausibly comes from the process
3. Pick a rule for when a model cannot be trusted (when is the range of simulated results too different from the observed data?)

- What features make for a good test?
- We want to make as few assumptions as possible, and choose a measure that is sensitive to deviations from the model
- If we're clever, we might get math that lets us skip simulating from the model
- Tension: more assumptions make math easier, fewer assumptions make results broader
- There is no such thing as THE null hypothesis. It's only A null hypothesis.
- A p value only tests one nulldnypathesis, and is rarely enough

Going forward

As the course moves on, we'll see

- Flexible assumptions about the data generating process
- Generalized Linear Models
- Ways of making fewer assumptions about the data generating process:
- Bootstrapping
- Permutation tests
- Easier questions: Instead of 'find a model that explains the world', 'pick the model that predicts best'
- Validation sets and cross validation

