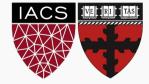
Advanced Section #2: Examples of convolutional neural networks

AC 209B: Data Science

Javier Zazo Pavlos Protopapas



Lecture Outline

Convnets overview

Classic Networks

Residual networks

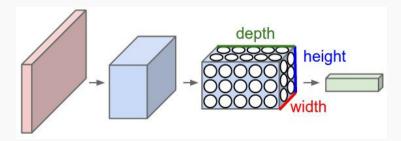
Other combination blocks

Face recognition systems

Convnets overview

Motivation for convnets

- ▶ Less parameters (weights) than a FC network.
- ► Invariant to object translation.
- ► Can tolerate some distortion in the images.
- ► Capable of generalizing and learning features.
- ► Require grid input.

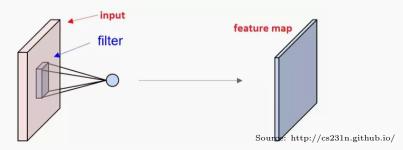


Convolutional layers

- ► Convolutional layer is formed by:
 - filters, feature maps, and activation functions.
- ► Convolution is determined by:
 - filter size, stride and padding.
- ▶ The formula that governs the output size:

$$n_{\text{output}} = \left\lfloor \frac{n_{\text{input}} - f + 2p}{s} + 1 \right\rfloor.$$

 \blacktriangleright #N channel filters \rightarrow design decision for every layer.

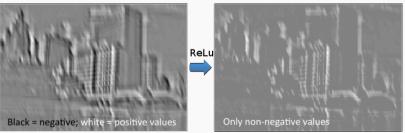


Convolution example

Operation	Filter	Convolved Image	
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$		
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$		
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$		
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$		

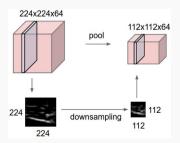
Convolutional layer example

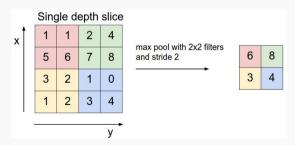
- ► 'Same' convolution:
 - Input image: 63×63 pixels
 - $n_c = 8$ filters of size f = 3, s = 1 and p = 1.
 - $-n_{\text{output}} = \frac{63-3+2\cdot1}{1} + 1 = 63$
 - $-63 \times 63 \times 8 = 31752$ feature maps.
- ► 'Valid' convolution:
 - 8 filters, f = 3, p = 0 and s = 2
 - Output size $30 \times 30 \times 8 = 7200$.
- \blacktriangleright Nonlinear element-wise activation function. \rightarrow ReLu.



Other layers

- ► Pooling layers
 - Down-sample the previous layer's feature maps.
 - Stride value usually s > 1.
 - Technique to compress feature representations
 - Generally reduces overfitting.
- ► Fully connected layers
 - Flat feed-forward type of layer.
 - Normally at the end of a convolutional network.

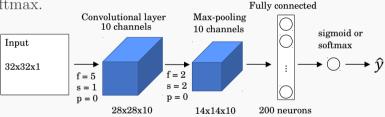




Source: http://cs231n.github.io/

First convolutional network example

- 1. Input 32×32 images.
- 2. 'Valid' convolution with f = 5.
- 3. Max-pooling, f = 2, s = 2.
- 4. FC and softmax.



- ► Training parameters:
 - -250 weights on the conv. filter +10 bias terms.
 - 0 weights on the max-pool.
 - $-13 \times 13 \times 10 = 1,690$ output elements after max-pool.
 - $-1,690 \times 200 = 338,000 \text{ weights} + 200 \text{ bias in the FC layer.}$
 - Total: 338,460 parameters to be trained.

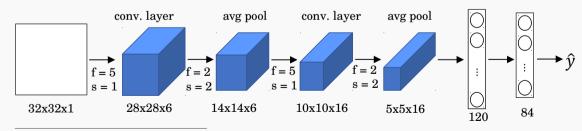
Classic Networks

Motivation

- ▶ Help you design your own models.
- ▶ Help you extrapolate successful architectures or good practices to your application of interest.
- ► Reuse existing architectures (transfer learning)

LeNet-5

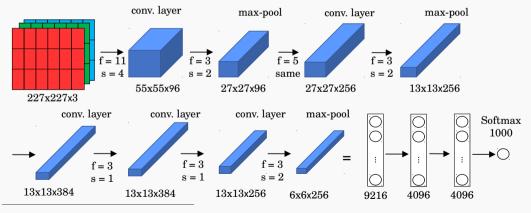
- ► Formulation is a bit outdated considering current practices.
- ▶ Uses convolutional networks followed by pooling layers and finishes with fully connected layers.
- ► Starts with high dimensional features and reduces their size while increasing the number of channels.
- ► Around 60k parameters.



Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner, "Gradient-based learning applied to document recognition," *Proceedings of the IEEE*, vol. 86, no. 11, pp. 2278–2324, 1998.

AlexNet

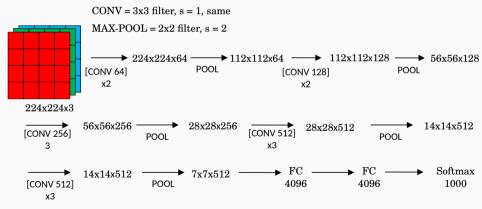
- ▶ 1.2 million high-resolution (227x227x3) images in the ImageNet 2010 contest;
- ▶ 1000 different classes; NN with 60 million parameters to optimize (~ 255 MB);
- ▶ Uses ReLu activation functions;. GPUs for training; 12 layers.



Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, "Imagenet classification with deep convolutional neural networks," in *Advances in neural information processing systems*, pp. 1097–1105, 2012

VGG-16 and VGG-19

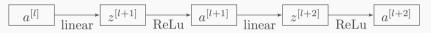
- ▶ ImageNet Challenge 2014; 16 or 19 layers; 138 million parameters (522 MB).
- ightharpoonup Convolutional layers use 'same' padding and stride s=1.
- ▶ Max-pooling layers use a filter size f = 2 and stride s = 2.



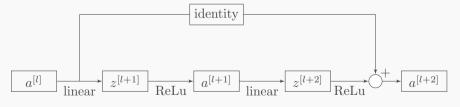
Residual networks

Residual block

- ▶ Residual nets appeared in 2016 to train very deep NN (100 or more layers).
- ► Their architecture uses 'residual blocks'.
- ▶ Plain network structure:



► Residual network block:



Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, "Deep residual learning for image recognition," in $\it The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.$

Equations of the residual block

► Plain network:

$$a^{[l]} = g(z^{[l]})$$

$$z^{[l+1]} = W^{[l+1]}a^{[l]} + b^{[l+1]}$$

$$a^{[l+1]} = g(z^{[l+1]})$$

$$z^{[l+2]} = W^{[l+2]}a^{[l+1]} + b^{[l+2]}$$

$$a^{[l+2]} = g(z^{[l+2]})$$

► Residual block:

$$a^{[l]} = g(z^{[l]})$$

$$z^{[l+1]} = W^{[l+1]}a^{[l]} + b^{[l+1]}$$

$$a^{[l+1]} = g(z^{[l+1]})$$

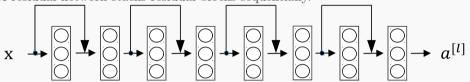
$$z^{[l+2]} = W^{[l+2]}a^{[l+1]} + b^{[l+2]}$$

$$a^{[l+2]} = g(z^{[l+2]} + a^{[l]})$$

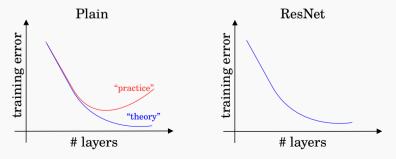
- ▶ With this extra connection gradients can travel backwards more easily.
- ▶ The residual block can very easily learn the identity function by setting $W^{[l+2]} = 0$ and $b^{[l+2]} = 0$.
- ► In such case, $a^{[l+2]} = g(a^{[l]}) = a^{[l]}$ for ReLu units.
 - It becomes a flexible block that can expand the capacity of the network, or simply transform into a identity function that would not affect training.

Residual network

 $\blacktriangleright\,$ A residual network stacks residual blocks sequentially.



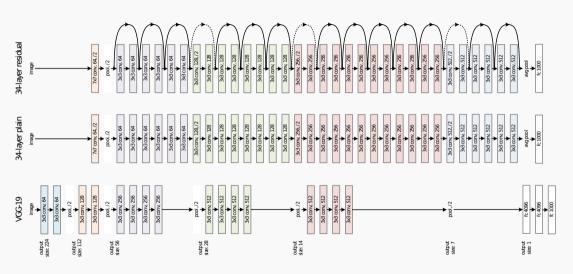
▶ The idea is to allow the network to become deeper without increasing the training complexity.



Residual network

- ► Residual networks implement blocks with convolutional layers that use 'same' padding option (even when max-pooling).
 - This allows the block to learn the identity function.
- ▶ The designer may want to reduce the size of features and use 'valid' padding.
 - In such case, the shortcut path can implement a new set of convolutional layers that reduces the size appropriately.

Residual network 34 layer example



Source: He2016

Classification error values on Imagenet

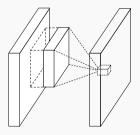
- ► Alexnet (2012) achieved a top-5 error of 15.3% (second place was 26.2%).
- ► ZFNet (2013) achieved a top-5 error of 14.8% (visualization of features).

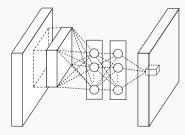
method	top-1 err.	top-5 err.
VGG [40] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [43] (ILSVRC'14)	-	7.89
VGG [40] (v5)	24.4	7.1
PReLU-net [12]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

Other combination blocks

Network in network

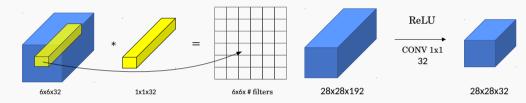
- ▶ Influential concept in the deep learning literature [Lin2013].
- ▶ Authors goal was to generate a deeper network without simply stacking more layers.
- ▶ They replace few filters with a smaller perceptron layers:
 - It is compatible with the backpropagation logic of neural nets.
 - It can itself be a deep model leading to rich separation between latent features.
- ▶ There is a ReLu operation after every neuron:
 - A richer nonlinear function approximator can serve as a better feature extractor.





1x1 Convolution

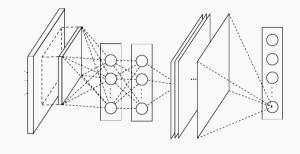
▶ A particular case from the previous concept are 1x1 convolutions.



- ▶ If the input had two dimensions, the 1×1 convolution would correspond to a scalar multiplication.
- ▶ With a greater number of channels (say, 32), the convolutional filter will have $1 \times 1 \times 32$ elements (more than a simple scaling) + **non-linear activation**.
- ▶ 1x1 convolution leads to dimension reductionality \rightarrow feature pooling technique.
 - Reduces the overfitting capacity of the network.
- \blacktriangleright FC layers can be regarded as 1x1 convolutions if they go after a FC layer.

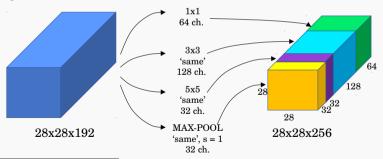
Global Average Pooling

- ▶ Another idea from [Lin2013] is a technique to simplify the last layers of CNNs.
- ▶ In traditional CNNs, feature maps of the last convolution layer are flattened and passed on to one or more fully FC, which are then passed on to softmax.
 - An estimate says that the last FC layers contain 90% of parameters of the NN.
- Global Average Pooling uses a FC layer with as many outputs as the number of classes being predicted.
- ► Then, each map is averaged given rise to the raw scores of the classes and fed to softmax.
 - No new parameters to train (unlike the FC layers), leading to less overfitting.
 - Robust to spatial translations of the input.



Inception module

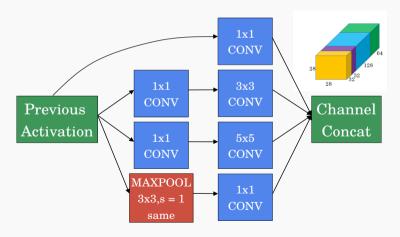
- ▶ The motivation behind inception networks is to use more than a single type of convolutional layer at each layer.
- ▶ Use 1×1 , 3×3 , 5×5 convolutional layers, and max-pooling layers in parallel.
- ▶ All modules use *same* convolution.
- ► Naïve implementation:



Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, "Going deeper with convolutions," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2015, pp. 1–9.

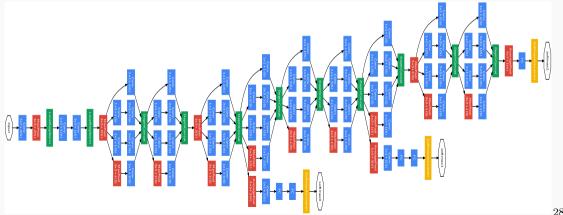
Inception module with dimension reductions

- ▶ Use 1×1 convolutions that reduce the size of the channel dimension.
 - The number of channels can vary from the input to the output.



GoogLeNet network

- ▶ The inception network is formed by concatenating other inception modules.
- It includes several softmax output units to enforce regularization.



Summary of networks

▶ We are now reaching top-5 error rates lower than human manual classification.

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	

Face recognition systems

Face recognition systems

- ► Verification
 - Input: Image from a person to identify and a ID.
 - **Objective:** decide whether the input image corresponds to the ID.
- ► Recognition
 - **Database** of K people.
 - **Input:** Image from a person to identify.
 - Objective: Identify the person in the database or reject recognition.
- ▶ Recognition is a much harder problem than verification for a specified performance.

One-shot learning

Verification:

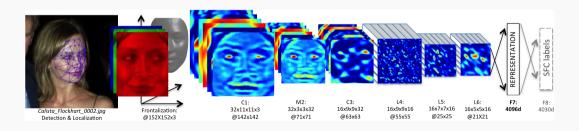
- ▶ We only have a single photo to learn the characteristics of a given person.
- ▶ Then, given a new photo, output if they correspond to the same person.
- ▶ We can construct a similarity function or distance between images:

– Then, set a threshold to balance accuracy and precision.

Siamese network

- ▶ Build a NN to generate a latent representation of an image.
- ▶ Perform two independent calculations on the input.
- ▶ Construct a loss function to determine distance between latent features:
 - The parameters of the NN define an encoding.
 - We can compare encodings with different loss functions.

$$f(x,y) = ||a_x^{[L]} - a_y^{[L]}||^2$$



Taigman, Yaniv, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. "Deepface: Closing the gap to human-level performance in face verification." In Proceedings of the IEEE conference on computer vision and pattern recognition, 2014.

Loss functions

- ► Loss should be small for the same person and far apart for different people.
- ▶ Use cross-entropy and define:

$$f(x,y) = \sum_{i} w_i |a_i^{[L](x)} - a_i^{[L](y)}| + b_i$$

 $\rightarrow \chi^2$ loss:

$$f(x,y) = \sum_{i} w_{i} \frac{(a_{i}^{[L](x)} - a_{i}^{[L](y)})^{2}}{(a_{i}^{[L](x)} + a^{[L](y)})}$$

- The representations in DeepFace are normalized between 0 and 1 to reduce the sensitivity to illumination changes.

Triplet loss

► Given three images A, P, N:

$$\mathcal{L}(A, P, N) = \max (\|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 + \alpha, 0)$$

► For training:

$$J = \sum_{i}^{m} \mathcal{L}(A^{(i)}, P^{(i)}, N^{(i)})$$

► To evaluate:

$$f(x,y) = ||a_x^{[L]} - a_y^{[L]}||^2 \le \tau$$

- ► Train on 10k pictures of 1k persons.
- ▶ Need to choose triplets thatre "hard to train on.

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 815-823. 2015.

Thank you!

Any questions?