
Advanced Section #3: Visualization of convolutional
networks and neural style transfer

AC 209B: Data Science

Javier Zazo Pavlos Protopapas

Lecture Outline

Visualizing convolutional networks

Image reconstruction

Texture synthesis

Neural style transfer

DeepDream

2

Visualizing convolutional networks

3

Motivation for visualization

I When studying NN we have little insight about what the network is
actually learning and the internal operations.

I Through visualization we may
– understand how the input stimuli excites the individual feature maps.
– observe the evolution of features and diagnose potential problems during

training.
– help us make more substantiated designs, rather than simply building models

through trial and error.

I All in all, improve general performance if we can address all of these
matters.

4

Architecture

I Architecture similar to AlexNet, i.e., [1]
– Trained network on the ImageNet 2012 training database for 1000 classes.
– Input are images of size 256× 256× 3.
– Uses convolutional layers, max-pooling and fully connected layers at the end.

Input Image

stride 2

image size 224

3

96

5

2

110

55

3x3 max pool
stride 2

96
3

1

26

256

f lter size 7

3x3 max
pool

stride 2

13
256

3
1

13

384
3

1

13

384

Layer 1 Layer 2

13

256

3x3 max
pool

stride 2

6

Layer 3 Layer 4 Layer 5

256

4096
units

4096
units

Layer 6 Layer 7

C
class

softmax

Output

contrast
norm.

contrast
norm.

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classification with deep convolutional neural
networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[2] Matthew D. Zeiler and Rob Fergus, “Visualizing and understanding convolutional networks,” in Computer Vision.
2014, pp. 818–833, Springer.

5

Deconvolutional network

I For visualization, the authors employ a deconvolutional network.
I The objective is to project the hidden feature maps into the original

input space.
– A common alternative is to visualize the activation functions of a specific filter.

I The name “deconvolutional” network may be unfortunate, since the
network does not perform any deconvolutions.

Matthew D Zeiler, Graham W Taylor, and Rob Fergus, “Adaptive deconvolutional networks for mid and high level
feature learning,” in IEEE International Conference on Computer Vision (ICCV), 2011, pp. 2018–2025

6

Devonvolutional network structure

Layer Below Pooled Maps

Feature Maps

Rectif ed Feature Maps

Filtering {F}

Pooled Maps

Max Pooling

Reconstruction

Rectif edUnpooledMaps

UnpooledMaps

Filtering {FT}

Layer Above
Reconstruction

Max Unpooling

Switches

Rec�fied linear

func�on
Rec�fied linear

func�on

Convolu�onal Convolu�onal

7

Devonvolutional network description

I Unpooling:
– The max-pooling operation is non-invertible.
– Switch variables: record the locations of maxima.
– It places the reconstructed features into the recorded locations.

8

Devonvolutional network description

I Rectification: To obtain a valid reconstructed signal at each layer
(which should be positive), the signals go through a ReLu operation.

I Filtering:
– The deconvnet uses a transposed convolution of the learned filters from the

convnet.
– In practice, the filters have to be flipped horizontally and vertically, but care

has to be taken if padding or stride was used.
– Neural network frameworks such as tensorflow and others implement the

transposed convolution efficiently.

I The purpose of the transposed convolution is to project the feature maps
computed by the convnet back to input space.

I The transposed convolution corresponds to the backpropagation gradient
computation of convolutional networks (an analogy from MLPs).

9

Feature visualization

I To visualize the features that activate a specific neuron, the authors
evaluate the validation database on the trained network.

I Record the nine highest activation values of each neuron’s output.
I Then, project the recorded 9 outputs into input space for every neuron.

– When projecting, all other activation units in the given layer are set to zero.
– This operation ensures we only observe the gradient of a single neuron.
– Switch variables are used in the unpooling layers

10

First layer of Alexnet

11

Second layer of Alexnet

12

Fourth layer of Alexnet

13

Fifth layer of Alexnet

14

Feature evolution during training

I Evolution of features for 1, 2, 5, 10, 20, 30, 40 and 64 epochs.

I Strongest activation response for some random neurons at all 5 layers.

I Low layers converge soon after a few single passes.

I Fifth layer does not converge until a very large number of epochs.

I Lower layers may change their feature correspondence after converge.

15

Architecture comparison

I Check if different architectures respond similarly or more strongly to the same inputs.

I Left picture used filters 7× 7 instead of 11× 11, and reduced the stride from 4 to 2.

I Evidence that there are less dead units on the modified network.

I More defined features, whereas Alexnet has more aliasing effects.

16

Image reconstruction

17

Image reconstruction

I Reconstruction of an image with latent features, or encoding.

I Layers in the network retain an accurate photographical representation
about the image, retaining geometric and photometric invariance.

I Assume a[l] corresponds to the latent representation of layer l for some
input image x, for some mapping Φ[l](x) = a[l](C).

I Solve the optimization problem:

x̂ = arg min
y

J [l](C)(x,y) + λR(y),

where

J
[l]
C (x,y) =

∥∥Φ[l](y)− Φ[l](x)
∥∥2
F =

∥∥a[l](G) − a[l](C)
∥∥2
F .

Aravindh Mahendran and Andrea Vedaldi, “Understanding deep image representations by inverting them,” Nov. 2014

18

Regularization and optimization

I Regularization

– Use a combination of α-norm regularizer,

Rα(y) = λα‖y‖αα

– and a total variation regularizer:

RVβ(y) = λVβ
∑
i,j,k

((
a
[l](G)
i,j+1,k − a

[l](C)
i,j,k

)2
+
(
a
[l](G)
i+1,j,k − a

[l](C)
i,j,k

)2)β/2
.

I Image reconstruction:

1. Initialize y with random noise.
2. Compute gradients of the cost and backpropagate to input space.
3. Update generated image G with a gradient step.

19

Example of image reconstruction

20

Example of image reconstruction

21

Deep layer invariances

I At deeper layers, feature maps capture more object deformations, at
different scales and positions.

I This corresponds to a more abstract and less precise representation of
the image. The CNN captures a sketch of the original image.

22

Texture synthesis

23

Texture synthesis using convnets

I Generate high perceptual quality images that imitate a given texture.

I Uses a trained convolutional network (such as VGG) for object
classification.

I Employs the correlation of features among layers as a generative process
to obtain new textures.

I Output of a layer:

⇔

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “Texture synthesis using convolutional neural networks”.

24

Cross-correlation of feature maps: Gram matrices

I Denote the output of a given filter k at layer l with a
[l]
ijk.

I Indexes i and j refer to the spatial latent features, and k to channel.

I The cross-correlation between this output and a different channel k′:

G
[l]
kk′ =

n
[l]
H∑

i=1

n
[l]
W∑

j=1

a
[l]
ijka

[l]
ijk′ .

I The Gram matrix:
G[l] = A[l](A[l])T

where (A[l])T = (a
[l]
::1, . . . , a

[l]

::n
[l]
C

).

25

Generating new textures

I To create a new texture, we synthesize an image that has similar
correlation as the one we want to reproduce.

I G[l](S) refers to the Gram matrix of the style image, and G[l](G) to the
newly generated image.

J
[l]
S (G[l](S), G[l](G)) =

1

4(n
[l]
Wn

[l]
H)2

∥∥∥G[l](S) −G[l](G)
∥∥∥2
F
,

where ‖G‖F =
√∑

ij(gij)
2 corresponds to the Frobenius norm.

I We combine all of the layer losses into a global cost function:

JS(x,y) =
L∑
l=0

λlJ
[l]
S (G[l](S), G[l](G)),

for given weights λ1, . . . , λL:
26

Process description

conv3_
1

256...
4

3
2

1

conv1_ 2
1

1
64...

conv4_
1

512...
4

3
2

1

conv5_
1

512...
4

3
2

1

feature
maps

pool1

pool2

pool4

pool3

conv2_1
128...

2
1

input Gradient
descent

27

Texture examples

conv1_1pool1pool4 pool3 pool2original

28

Neural style transfer

29

Neural style transfer

I It is the artistic generation of high perceptual quality images that
combine the style or texture of some input image, and the elements or
content from a different one.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A neural algorithm of artistic style,” Aug. 2015.

30

Other examples

31

Methodology

32

Objective function

I Neural style transfer combines content reconstruction and style
resemblance.

Jtotal(x,y) = αJ
[l]
C (x,y) + βJS(x,y)

I Need to choose a layer to represent content.
– middle layers are recommended (not too shallow, not too deep) for best results.

I A set of layers to represent style.

I Combined cost is minimized using gradient descent or any other method
typical of neural networks combined with backpropagation.

I The input y is initialized with random noise.

I Replacing the max-pooling layers with average pooling improves the
gradient flow, and this produces more appealing pictures.

33

DeepDream

34

Art from visualization techniques

35

Inceptionism: Going Deeper into Neural Networks

I Discriminative trained network for classification.
– First layer maybe looks for edges or corners.
– Intermediate layers interpret the basic features to look for overall shapes or

components, like a door or a leaf.
– Final layers assemble those into complete interpretations: trees, buildings, etc.

I Turn NN upside down: what sort of image would result in Banana.
– need to add texture information (prior).

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html 36

Class generation

37

Visualizing mistakes

I Generating dumbbells always pictures them with an arm:

I The network failed to completely distill the essence of a dumbbell.

I Visualization can help us correct these kinds of training mishaps.

38

Enhancing feature maps

I Instead of prescribing which feature we want the network to amplify, we
can also let the network make that decision.

– feed the network an image.
– then pick a layer and ask the network to enhance whatever it detected.

I Lower layers tend to produce strokes or simple ornament-like patterns:

39

Enhancing feature maps: higher layers

I With higher level layers complex features or even whole objects tend to emerge.

– these identify more sophisticated features in images...

I The process creates a feedback loop: if a cloud looks a little bit like a bird, the
network will make it look more like a bird.

I If we train on pictures of animals:

40

Enhancing features: bias

I Results vary quite a bit with the kind of image, because the features that are entered
bias the network towards certain interpretations.

41

We must go deeper: Iterations

I Apply the algorithm iteratively on its own outputs and apply some
zooming after each iteration.

I We get an endless stream of new impressions.
I We can even start this process from a random-noise image.

42

	Visualizing convolutional networks
	Image reconstruction
	Texture synthesis
	Neural style transfer
	DeepDream

