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Visualizing convolutional networks
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Motivation for visualization

I When studying NN we have little insight about what the network is
actually learning and the internal operations.

I Through visualization we may
– understand how the input stimuli excites the individual feature maps.
– observe the evolution of features and diagnose potential problems during

training.
– help us make more substantiated designs, rather than simply building models

through trial and error.

I All in all, improve general performance if we can address all of these
matters.

4



Architecture

I Architecture similar to AlexNet, i.e., [1]
– Trained network on the ImageNet 2012 training database for 1000 classes.
– Input are images of size 256× 256× 3.
– Uses convolutional layers, max-pooling and fully connected layers at the end.
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[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classification with deep convolutional neural
networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[2] Matthew D. Zeiler and Rob Fergus, “Visualizing and understanding convolutional networks,” in Computer Vision.
2014, pp. 818–833, Springer.
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Deconvolutional network

I For visualization, the authors employ a deconvolutional network.
I The objective is to project the hidden feature maps into the original

input space.
– A common alternative is to visualize the activation functions of a specific filter.

I The name “deconvolutional” network may be unfortunate, since the
network does not perform any deconvolutions.

Matthew D Zeiler, Graham W Taylor, and Rob Fergus, “Adaptive deconvolutional networks for mid and high level
feature learning,” in IEEE International Conference on Computer Vision (ICCV), 2011, pp. 2018–2025
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Devonvolutional network structure
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Devonvolutional network description

I Unpooling:
– The max-pooling operation is non-invertible.
– Switch variables: record the locations of maxima.
– It places the reconstructed features into the recorded locations.
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Devonvolutional network description

I Rectification: To obtain a valid reconstructed signal at each layer
(which should be positive), the signals go through a ReLu operation.

I Filtering:
– The deconvnet uses a transposed convolution of the learned filters from the

convnet.
– In practice, the filters have to be flipped horizontally and vertically, but care

has to be taken if padding or stride was used.
– Neural network frameworks such as tensorflow and others implement the

transposed convolution efficiently.

I The purpose of the transposed convolution is to project the feature maps
computed by the convnet back to input space.

I The transposed convolution corresponds to the backpropagation gradient
computation of convolutional networks (an analogy from MLPs).
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Feature visualization

I To visualize the features that activate a specific neuron, the authors
evaluate the validation database on the trained network.

I Record the nine highest activation values of each neuron’s output.
I Then, project the recorded 9 outputs into input space for every neuron.

– When projecting, all other activation units in the given layer are set to zero.
– This operation ensures we only observe the gradient of a single neuron.
– Switch variables are used in the unpooling layers
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First layer of Alexnet
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Second layer of Alexnet
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Fourth layer of Alexnet
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Fifth layer of Alexnet

14



Feature evolution during training

I Evolution of features for 1, 2, 5, 10, 20, 30, 40 and 64 epochs.

I Strongest activation response for some random neurons at all 5 layers.

I Low layers converge soon after a few single passes.

I Fifth layer does not converge until a very large number of epochs.

I Lower layers may change their feature correspondence after converge.
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Architecture comparison

I Check if different architectures respond similarly or more strongly to the same inputs.

I Left picture used filters 7× 7 instead of 11× 11, and reduced the stride from 4 to 2.

I Evidence that there are less dead units on the modified network.

I More defined features, whereas Alexnet has more aliasing effects.
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Image reconstruction
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Image reconstruction

I Reconstruction of an image with latent features, or encoding.

I Layers in the network retain an accurate photographical representation
about the image, retaining geometric and photometric invariance.

I Assume a[l] corresponds to the latent representation of layer l for some
input image x, for some mapping Φ[l](x) = a[l](C).

I Solve the optimization problem:

x̂ = arg min
y

J [l](C)(x,y) + λR(y),

where

J
[l]
C (x,y) =

∥∥Φ[l](y)− Φ[l](x)
∥∥2
F =

∥∥a[l](G) − a[l](C)
∥∥2
F .

Aravindh Mahendran and Andrea Vedaldi, “Understanding deep image representations by inverting them,” Nov. 2014
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Regularization and optimization

I Regularization

– Use a combination of α-norm regularizer,

Rα(y) = λα‖y‖αα

– and a total variation regularizer:

RVβ(y) = λVβ
∑
i,j,k

((
a
[l](G)
i,j+1,k − a

[l](C)
i,j,k

)2
+
(
a
[l](G)
i+1,j,k − a

[l](C)
i,j,k

)2)β/2
.

I Image reconstruction:

1. Initialize y with random noise.
2. Compute gradients of the cost and backpropagate to input space.
3. Update generated image G with a gradient step.
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Example of image reconstruction
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Example of image reconstruction
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Deep layer invariances

I At deeper layers, feature maps capture more object deformations, at
different scales and positions.

I This corresponds to a more abstract and less precise representation of
the image. The CNN captures a sketch of the original image.

22



Texture synthesis
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Texture synthesis using convnets

I Generate high perceptual quality images that imitate a given texture.

I Uses a trained convolutional network (such as VGG) for object
classification.

I Employs the correlation of features among layers as a generative process
to obtain new textures.

I Output of a layer:

 

 
  

 

 

⇔

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “Texture synthesis using convolutional neural networks”.
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Cross-correlation of feature maps: Gram matrices

I Denote the output of a given filter k at layer l with a
[l]
ijk.

I Indexes i and j refer to the spatial latent features, and k to channel.

I The cross-correlation between this output and a different channel k′:

G
[l]
kk′ =

n
[l]
H∑

i=1

n
[l]
W∑

j=1

a
[l]
ijka

[l]
ijk′ .

I The Gram matrix:
G[l] = A[l](A[l])T

where (A[l])T = (a
[l]
::1, . . . , a

[l]

::n
[l]
C

).
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Generating new textures

I To create a new texture, we synthesize an image that has similar
correlation as the one we want to reproduce.

I G[l](S) refers to the Gram matrix of the style image, and G[l](G) to the
newly generated image.

J
[l]
S (G[l](S), G[l](G)) =

1

4(n
[l]
Wn

[l]
H)2

∥∥∥G[l](S) −G[l](G)
∥∥∥2
F
,

where ‖G‖F =
√∑

ij(gij)
2 corresponds to the Frobenius norm.

I We combine all of the layer losses into a global cost function:

JS(x,y) =
L∑
l=0

λlJ
[l]
S (G[l](S), G[l](G)),

for given weights λ1, . . . , λL:
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Process description
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Texture examples

conv1_1pool1pool4 pool3 pool2original
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Neural style transfer
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Neural style transfer

I It is the artistic generation of high perceptual quality images that
combine the style or texture of some input image, and the elements or
content from a different one.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A neural algorithm of artistic style,” Aug. 2015.
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Other examples
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Methodology
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Objective function

I Neural style transfer combines content reconstruction and style
resemblance.

Jtotal(x,y) = αJ
[l]
C (x,y) + βJS(x,y)

I Need to choose a layer to represent content.
– middle layers are recommended (not too shallow, not too deep) for best results.

I A set of layers to represent style.

I Combined cost is minimized using gradient descent or any other method
typical of neural networks combined with backpropagation.

I The input y is initialized with random noise.

I Replacing the max-pooling layers with average pooling improves the
gradient flow, and this produces more appealing pictures.
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DeepDream
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Art from visualization techniques
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Inceptionism: Going Deeper into Neural Networks

I Discriminative trained network for classification.
– First layer maybe looks for edges or corners.
– Intermediate layers interpret the basic features to look for overall shapes or

components, like a door or a leaf.
– Final layers assemble those into complete interpretations: trees, buildings, etc.

I Turn NN upside down: what sort of image would result in Banana.
– need to add texture information (prior).

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html 36



Class generation
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Visualizing mistakes

I Generating dumbbells always pictures them with an arm:

I The network failed to completely distill the essence of a dumbbell.

I Visualization can help us correct these kinds of training mishaps.
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Enhancing feature maps

I Instead of prescribing which feature we want the network to amplify, we
can also let the network make that decision.

– feed the network an image.
– then pick a layer and ask the network to enhance whatever it detected.

I Lower layers tend to produce strokes or simple ornament-like patterns:
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Enhancing feature maps: higher layers

I With higher level layers complex features or even whole objects tend to emerge.

– these identify more sophisticated features in images...

I The process creates a feedback loop: if a cloud looks a little bit like a bird, the
network will make it look more like a bird.

I If we train on pictures of animals:
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Enhancing features: bias

I Results vary quite a bit with the kind of image, because the features that are entered
bias the network towards certain interpretations.
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We must go deeper: Iterations

I Apply the algorithm iteratively on its own outputs and apply some
zooming after each iteration.

I We get an endless stream of new impressions.
I We can even start this process from a random-noise image.
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