
Visualization of convolutional networks and
neural style transfer

Javier Zazo

April 4, 2018

Abstract

In this section we will present some advances in the visualization
and understanding of convolutional networks. We will discuss how the
different activation elements in a network correspond to specific image
patches of an input image. We will also discuss about how textures in
images are coded in a trained network. And finally, we will see how
using these two visualization ideas result in the creation of artistic
images that combine content and style in a very appealing form.

1 Visualizing convolutional networks

When studying neural networks we have little insight about what the network
is actually learning and the internal operations. Understanding how neural
networks work through visualization, can help us understand how the input
stimuli excites the individual feature maps. It can allow us to observe the
evolution of features and diagnose potential problems during training. It can
also help us make more substantiated designs, rather than simply building
models through trial and error. All in all, improve general performance if we
can address all of these matters.

1.1 Architecture

There has been several advances on how to visualize deep neural networks,
and how to understand what they are actually learning. Here, we will focus
on one of the first approaches presented in [1].

1

Input Image

stride 2

image size 224

3

96

5

2

110

55

3x3 max pool
stride 2

96
3

1

26

256

f lter size 7

3x3 max
pool

stride 2

13
256

3
1

13

384
3

1

13

384

Layer 1 Layer 2

13

256

3x3 max
pool

stride 2

6

Layer 3 Layer 4 Layer 5

256

4096
units

4096
units

Layer 6 Layer 7

C
class

softmax

Output

contrast
norm.

contrast
norm.

Figure 1: Convolutional network for image visualization [1], inspired by [2].

The authors follow the similar architecture as AlexNet, a trained net-
work discussed in [2]. They train a network on the ImageNet 2012 training
database and the input are images of size 256 × 256 × 3. The network is
depicted in Figure 1. In summary, it uses convolutional layers, max-pooling
and has fully connected layers in the last steps. The size of the feature set
decreases in depth, while the number of channels grows. The network is
trained for classification of 1000 elements.

For visualization, the authors employ a deconvolutional network (decon-
vnet) [3], where the objective is to project the hidden feature maps into the
original input space. The deconvnet has a structure depicted in Figure 2.
However, the name “deconvolutional” network may be unfortunate, since
the network does not perform any deconvolutions [4]. We will return to this
matter later.

On the right side of Figure 2 a normal convolutional layer is depicted. It
is formed of a convolution operation, a rectified linear activation, and max-
pooling. On the left side, the “deconvolutional layer”. We will refer to it as
“transposed convolutional layer”. It is formed by a convolutional layer with
transposed filters (flipped horizontally and vertically), rectified activation,
and unpooling layer.

• Unpooling: The max-pooling operation is non-invertible, however we
can follow the feature map that was used in the convnet layer by record-
ing the locations of the maxima at each max-pooling operation (in
switch variables). In the deconvnet, the unpooling operation places
the reconstructed features from the feature mapping into the recorded
locations. Figure 3 depicts this procedure.

• Rectification: To obtain a valid reconstructed signal at each layer
(which should be positive), the signals go through a ReLu operation.

2

Layer Below Pooled Maps

Feature Maps

Rectif ed Feature Maps

Filtering {F}

Pooled Maps

Max Pooling

Reconstruction

Rectif edUnpooledMaps

UnpooledMaps

Filtering {FT}

Layer Above
Reconstruction

Max Unpooling

Switches

Rec�fied linear
func�on

Rec�fied linear
func�on

Convolu�onal Convolu�onal

Figure 2: Deconvnet and convnet layer structure [1].

Figure 3: Unpooling operation in a deconvnet.

• Filtering: The deconvnet uses a transposed convolution of the learned
filters from the convnet. In practice, the filters have to be flipped hor-
izontally and vertically, but care has to be taken if padding or stride
greater than one was used, see [5] for details. Neural network frame-
works such as tensorflow and others implement the transposed convo-
lution efficiently, such as tf.conv2d transposed in tensorflow.

The purpose of the transposed convolution is to project the feature maps
computed by the convnet back to input space. The “transpose” name comes
from the analogy that backpropagation in multilayer perceptrons (MLPs)
uses a transposed weight matrix W [l] corresponding to the gradient of layer

3

l. Similarly, the transposed convolution corresponds to the backpropagation
gradient computation of convolutional networks.

Because of this scheme, the visualization method proposed in [1] computes
gradients from hidden layers and projects them to input space through back-
propagation. This interpretation was not commented in the original paper,
but further explained in [6], which generalizes this visualization procedure to
MLPs.

1.2 Feature visualization

The procedure of [1] to visualize features is as follows. To visualize the
features that activate a specific neuron1 in any layer, the authors evaluate
the whole validation database on the trained network. Then, they record the
nine highest activation values of each neuron’s output. And finally, they use
the deconvnet to project the recorded 9 outputs into input space for every
neuron. In the paper they provide a few of these outputs.

When using the deconvnet to project the layer’s output to input space,
all other activation units in the given layer are set to zero. This operation
ensures that we are only observing the gradient of a single neuron. Note also,
that the switch variables used to propagate the input signal are used in the
unpooling layers, and must be recorded.

Figure 4 show the reconstruction of input images through the deconvnet,
and their corresponding image patches. Figure 4a shows how the network
learns simple features such as edges and lines. Figure 4c shows more compli-
cated patterns, such as some backgrounds and more involved compositions.
And finally, Figure 4e is already recognizing complicated patterns, faces,
body parts, wheels and backgrounds as well. All in all, the authors obtained
quite direct correspondence from a reconstructed activation to an actual im-
age patch. Figure 5 show more complicated patterns, and we can discern,
eyes, faces, legs, bike wheels, bird peaks, flowers, etc. It is quite surprising
how a single neuron is excited by these kind of patterns. Note however, that
sometimes it is not straightforward to delimit a topic within a neuron, such as
birds, dogs, or wheels; this is possible because the same neuron may activated
by different pathways in lower layers. And finally, sometimes the neuron is
not activated by a main subject within an image, but by the background.

1In convolutional networks, there is an equivalence between neurons, channels and
numbers of filters on every layer. Therefore, I will use these terms interchangeably.

4

(a) Visualization on input space (l = 1). (b) Correspondence to image patches (l = 1).

(c) Visualization on input space (l = 2). (d) Correspondence to image patches (l = 2).

(e) Visualization on input space (l = 3). (f) Correspondence to image patches (l = 3).

Figure 4: Visualization of neurons from layers 1 to 3.

5

(a) Visualization on input space (l = 4). (b) Correspondence to image patches (l = 4).

(c) Visualization on input space (l = 5). (d) Correspondence to image patches (l = 5).

Figure 5: Visualization of neurons from layers 4 to 5.

6

Figure 6: Feature evolution during training for layers from 1 to 5.

1.3 Feature evolution during training

Figure 6 shows the evolution of features during training for 1, 2, 5, 10, 20, 30,
40 and 64 epochs. The picture shows the strongest activation response for
some random neurons at all 5 layers, and projected to input space using the
deconvnet. As before, when an activation is projected back to input space,
all other neuron responses are set to null.

What we can observe in Figure 6 is that low layers converge soon af-
ter a few single passes. However, fifth layer does not converge until a very
large number of epochs. This visualization indicates the need to verify that
all layers have fully converged, and that different layers present different
convergence speeds. Furthermore, lower layers may change their feature cor-
respondence after upper layers converge. This is indicated by hard changes
between epochs.

1.4 Architecture comparison

Finally, another useful use for visualizing features is to check if different
architectures respond similarly or more strongly to the same inputs. For
instance, Figure 7 shows the comparison of a modified Alexnet architecture
and the original Alexnet network. The architecture used for the picture on
the left used filters of size 7 × 7 instead of 11 × 11, and reduced the stride
from 4 to 2. The visualization provides evidence that there are many less
dead units on the modified network than on the original one.

In the case of comparing the second layers, as in Figure 8, the modified
network has more defined features, whereas Alexnet has more aliasing ef-
fects. This however, is more difficult to observe. Overall, the comparison

7

Figure 7: Comparison of different architectures on the first layer.. Left: a
modified Alexnet architecture that uses smaller stride and filters. Right:
Alexnet original architecture.

provides a way to visually understand why some architectures present better
performance metrics than others.

This concludes our exposition about visualization of neural networks.
All in all, we have seen how different filters correspond to complex image
patterns. We were able to visualize gradients projected to input space of
specific activations, and verify how these stimulus correspond to an specific
image patch. In the next sections we will talk about image reconstruction
and texture synthesis.

2 Image reconstruction

We consider the reconstruction of an image assuming we have the latent
features (the encoding) of the image in the neural network. The presented
material is based on reference [7]. The authors show, that layers within the
network retain an accurate photographical representation about the image,
retaining different degrees of geometric and photometric invariance.

We describe the methodology. Assume a[l] corresponds to the latent rep-
resentation of layer l for some input image x, given the mapping of the neural
network Φ[l](x) = a[l](C). We write C to refer to the content image x, and
use G to refer to the generated image x̂. The objective is to recover a visual
representation of the encoding in the input space (a picture). In order to do

8

Figure 8: Comparison of different architectures on the second layer. Left:
a modified Alexnet architecture that uses smaller stride and filters. Right:
Alexnet original architecture.

so, [7] proposes to minimize the following cost function

x̂ = arg min
y

J [l](C)(x,y) + λR(y), (1)

where J
[l]
C (·) is a loss function for layer l and R(·) a regularizer. An Euclidean

loss function gives good results:

J
[l]
C (x,y) =

∥∥Φ[l](y)− Φ[l](x)
∥∥2
F =

∥∥a[l](G) − a[l](C)
∥∥2
F . (2)

As regularizer, the authors recommend to use a combination of α-norm reg-
ularizer, and a total variation regularizer. The α-norm consists on Rα(y) =
λα‖y‖αα, and the total variation encourages images to develop piece-wise con-
stant patches:

RVβ(y) = λVβ
∑
i,j,k

((
a
[l](G)
i,j+1,k − a

[l](C)
i,j,k

)2
+
(
a
[l](G)
i+1,j,k − a

[l](C)
i,j,k

)2)β/2
. (3)

The recommended parameters to choose for the regularization terms are spec-
ified in [7]. We skip such discussion.

To reconstruct an image, a random noise initialization is computed and
assigned to y. Then, gradients for the cost function (2) are determined and

9

Figure 9: Five possible reconstructions of a reference image extracted from
a 1000-dimensional encoding and the penultimate layer of Alexnet [2].

backpropagated to input space. The generated image G is updated with a
gradient step, and the process is repeated. Figure 9 presents five possible
reconstructions for a reference image. All these reconstructions possess sim-
ilar activation values at layer l. The effect of spikes is controlled with the
regularization parameters.

3 Texture synthesis using convnets

We present results of texture synthesis based on a generative model described
in [8]. The method is able to generate high perceptual quality images that
imitate a given texture. It uses a trained convolutional network (such as
VGG) for object classification, and uses the correlation of features among
layers as the generative process to obtain new textures. The authors show
that the texture representations are captured best by computing these corre-
lations across layers, eventually making the texture information increasingly
explicit.

The output a convolutional layer l is a block with width n
[l]
W , height n

[l]
H ,

and number of channels n
[l]
c . This is depicted in Figure 10. What we are

interested to compute, is the correlation among channels within a layer for
some input image (the texture to imitate). In other words, we have seen how
different filters are activated by different image patches, and what we want to
do now is to determine if these activations are correlated and occur together,

10

⇔

Figure 10: Output sizes of a convolutional layer.

or if they are uncorrelated and do not necessarily occur together. In order
to reproduce a texture, we compute the correlation that exists between all
the different filters within a layer l, and later compose a different figure that
imitates these correlations.

Let’s denote the output of a given filter k at layer l with a
[l]
ijk. Indexes i

and j refer to the spatial latent features, and k to a specific channel. The
cross-correlation between this output and a different channel k′ is given by:

G
[l]
kk′ =

n
[l]
H∑

i=1

n
[l]
W∑

j=1

a
[l]
ijka

[l]
ijk′ . (4)

By computing this elements for all k and k′ ∈ { 1, . . . , n
[l]
C }, we obtain the

Gram matrix G[l] of size n
[l]
C×n

[l]
C . Expression (4) can be vectorized as follows.

Assume a
[l]
::k is a vector of size n

[l]
Hn

[l]
W ×1, and (A[l])T = (a

[l]
::1, . . . , a

[l]

::n
[l]
C

). Then,

G[l] = A[l](A[l])T (5)

is an efficient calculation for the channel correlation matrix.
Remark: Matrix G[l] is a Gram matrix. Strictly speaking, it is not a

correlation matrix as it is normally defined in statistics, because when we
compute it we are not subtracting the mean of the elements. However, the
authors of [8] referred to it as correlation matrix, and it implicitly indicates
correlation.

In order to generate a new texture, we will create a new image that has
similar correlation as the one we want to reproduce. We introduce a cost
function that relates the Gram matrices of the texture of interest, and the
new image to generate. We denote with G[l](S) the Gram matrix of the style
image we want to imitate, and G[l](G) the corresponding one of the newly

11

generated image. We build these correlations for every layer l, and define the
following cost function:

J
[l]
S (G[l](S), G[l](G)) =

1

4(n
[l]
Wn

[l]
H)2

∥∥∥G[l](S) −G[l](G)
∥∥∥2
F
, (6)

where ‖G‖F =
√∑

ij(gij)
2 corresponds to the Frobenius norm.

Additionally, we combine all of the layer losses into a global cost function,
for given weights λ1, . . . , λL:

JS(x,y) =
L∑
l=0

λlJ
[l]
S (G[l](S), G[l](G)). (7)

For notational simplicity, we use x and y as the original texture to imitate
and the generated image, respectively, for the cost function.

Finally, the synthesis procedure is described in Figure 11. The algorithm
is initialized with a random noise picture, and then modified iteratively until
convergence. Latent features are computed on the style image, and the ran-
dom noise image. We compute the correlations, and determine the Frobenius
distances between the Gram matrices. Then, we determine the gradient on
the cost function (7) and project it back to input space using backprop-
agation. Finally, we mofify the generated image accordingly using some
optimization technique, such as gradient descent, or L-BFGS. We repeat
the process iteratively until convergence. Tensorflow and other frameworks
have automatic differentiation to compute the gradient descent algorithm
and backprop, so in essence, the algorithm is not difficult to implement.

Examples of generated textures are given in Figure 12. The different
rows correspond to different cost functions that incorporate more or less
layer costs. The last column shows the result for an image without texture.

4 Neural style transfer

Neural style transfer is the artistic generation of high perceptual quality im-
ages that combine the style or texture of some input image, and the elements
or content from a different one. We describe the idea presented in [9]. Fig-
ure 13 gives an example of the results achieved in the original publication.
In the following, we refer to the style image with S, the content image with
C, and the generated image with G.

12

conv3_
1

256...
4

3
2

1

conv1_ 2
1

1
64...

conv4_
1

512...
4

3
2

1

conv5_
1

512...
4

3
2

1

feature
maps

pool1

pool2

pool4

pool3

conv2_1
128...

2
1

input Gradient
descent

Figure 11: Graphical generation of a texture image.

Every layer in a convnet defines a non-linear filter bank whose complex-
ity increases with the position of the layer. The methodology to combine
images consists on optimizing a cost function that uses the activations of the
network of the content image, and the style correlations of the style image.
Figure 14 shows how the different activation values in the convnet are used
after propagation to reconstruct the content, or the textures, according to
Sections 2 and 3, respectively.

After the derivation of content reconstruction and style resemblance, the
objective function for neural style transfer simply becomes the combination
of both cost functions:

Jtotal(x,y) = αJ
[l]
C (x,y) + βJS(x,y) (8)

where J
[l]
C (x,y) corresponds to (2), and JS(x,y) to (7). Note that (2) requires

the choice of some layer l to compute the cost. In principle, middle layers are
recommended (not too shallow, not too deep) for best results. Furthermore,
regularization in (2) can be set to null, and obtain good results.

A few final remarks. Equation (8) is minimized using gradient descent or
any other method typical of neural networks combined with backpropagation.

13

co
nv

1_
1

po
ol

1
po

ol
4

po
ol

3
po

ol
2

or
ig

in
al

Figure 12: Texture generated examples.

14

Figure 13: Images that combine the contents and styles of different sources.
Picture A credit to Andreas Praefcke. Artwork shown in the bottom left cor-
ner of each panel. B The Shipwreck of the Minotaur by J.M.W. Turner, 1805.
C The Starry Night by Vincent van Gogh 1889. D Der Schrei by Edvard
Munch, 1893. E Femme nue assise by Pablo Picasso, 1910. F Composition
VII by Wassily Kandinsky, 1913.

15

Figure 14: Convolutional activations, content and texture reconstructions.

The input y is initialized with random noise. After convergence, we assign
the output to x̂, obtaining the generated image. For image synthesis, we use
a discriminating trained convolutional network for image classification, such
as VGG. Finally, the authors from [9] found that replacing the max-pooling
layers with average pooling improves the gradient flow, and this produces
more appealing pictures.

16

References

[1] Matthew D. Zeiler and Rob Fergus, “Visualizing and understanding con-
volutional networks,” in Computer Vision. 2014, pp. 818–833, Springer,
doi:10.1007/978-3-319-10590-1 53, arXiv:1311.2901.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Ima-
genet classification with deep convolutional neural networks,” in Ad-
vances in neural information processing systems, 2012, pp. 1097–1105,
doi:10.1145/3065386.

[3] Matthew D Zeiler, Graham W Taylor, and Rob Fergus, “Adaptive de-
convolutional networks for mid and high level feature learning,” in IEEE
International Conference on Computer Vision (ICCV), 2011, pp. 2018–
2025, doi:10.1109/ICCV.2011.6126474.

[4] “What are deconvolutional layers?,” https://datascience.

stackexchange.com/a/12110.

[5] Vincent Dumoulin and Francesco Visin, “A guide to convolution arith-
metic for deep learning,” Mar. 2016, arXiv:1603.07285.

[6] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, “Deep in-
side convolutional networks: Visualising image classification models and
saliency maps,” Dec. 2013, arXiv:1312.6034.

[7] Aravindh Mahendran and Andrea Vedaldi, “Understanding deep image
representations by inverting them,” Nov. 2014, arXiv:1412.0035.

[8] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “Texture syn-
thesis using convolutional neural networks,” Nov. 2015, arXiv:1505.07376.

[9] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A neural
algorithm of artistic style,” Aug. 2015, arXiv:1508.06576.

Acknowledgments

This manuscript was composed by Javier Zazo, and the material was obtained
from the cited references. Figures 1 to 8 were obtained from [1]. Figure 9
from [7]. Figure 10 from deeplearning.ai course. Figures 11 and 12 from [8].
Figures 13 and 14 from [9].

17

http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://arxiv.org/abs/1311.2901
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/ICCV.2011.6126474
https://datascience.stackexchange.com/a/12110
https://datascience.stackexchange.com/a/12110
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1412.0035
http://arxiv.org/abs/1505.07376
http://arxiv.org/abs/1508.06576

	Visualizing convolutional networks
	Architecture
	Feature visualization
	Feature evolution during training
	Architecture comparison

	Image reconstruction
	Texture synthesis using convnets
	Neural style transfer

