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Estimators

» Point estimation is the attempt to provide the single “best” prediction of
some quantity of interest:

0,, = g(xV, ..., x™).

— 6: true value.
— 0, : estimator for m samples.

» Frequentist perspective: 0 fixed but unkwown.

» Data is random = 6,, is a r.v.



Bias and Variance

» Bias: expected deviation from the true value.

» Variance: deviation from the expected estimator.

Examples:

— Sample mean: fi,, = = 3. x®

— Sample variance 62, = L 3 (2() — fi,,)%:

—1
E[6%] = =0
m
— Unbiased sample variance: 52, = 1= 3 (2 — fi,,)?

» How to choose estimators with different statistics?

— Cross-validation: empirical.
— Mean square error (MSE).



Bias-Variance Example

high bias &
underfitting
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high variance &
overfitting
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Diagnose bias-variance

> In high dimensions we cannot draw decision curves to inspect bias-variance.

» We calculate error values to infer the source of errors on the training set, as well as
on the val set.

» To determine bias, we need a base line, such as human level performance.

Avoidable Avoidable
Bayes bias Training variance Val error
error error
» Example:
’ Human level error \ ~ 0% ‘
Training error 0.5% 15% 1% 12%
Val error 1% 16% 11% 20%

low bias high bias high variance high bias
low variance high variance



Orthogonalization

Human
level error . .
. Train a bigger model
Av?)l.dable Train longer /better optimization alg.
ias
NN architecture/hyperparameter search.
Training
error
) Get more data.
AVO}dable Use regularization (L2, dropout, data aug., etc.)
variance
NN architecture/hyperparameter search.
Val error

» Orthogonalization aims to decompose the process to adjust NN performance.

» It assumes the errors come from different sources and uses a systematic approach to
minimize them.

» Early stopping is a popular regularization mechanism, but couples the bias and
variance errors.
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Dropout

» Regularization technique for deep NN.
» Employed at training time.
» Eliminates the output of some units randomly.

» Can be used in combination with other regularization techniques (such as L2, batch
normalization, etc.).

(a) Standard Neural Net (b) After applying dropout.
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Motivation and direct implementation

» Purpose: prevent the co-adaptation of feature detectors for a set of neurons, and
avoid overfitting.
— It enforces the neurons to develop an individual role on their own given an
overall population behavior.
— Training weights are encouraged to be spread along the NN, because no neuron
is permanent.

» Interpretation: training examples provide gradients from different, randomly
sampled architectures.
» Direct implementation:

— At training time: eliminate the output of some units randomly.
— At test time: all units are present.

w pwW
Present with Always
probability p present

(a) At training time (b) At test time
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Inverted dropout

» Current implementations use inverted dropout
— Weighting is performed during training.
— Does not require re-weighting at test time.
» In particular, for layer [,
L= Lyupugi-u g
b
all = g(z11),
» Notation:

p; : Retention probability.

D . Dropout activations.
ali—1

Present with
: Output from previous layer. probability p

(a) At training time

wil . Layer weights.
bl Offset weights.

2 Linear output. Always
present

g(+) : Nonlinear activation function. (b) At test time



Understanding dropout

We aim to understand dropout as a regularization technique on simplified neural
architectures such as:

» Linear networks.
» Linear regression.
» Logistic regression.

» Deep networks.

These results are are based on the following reference:

Pierre Baldi and Peter J Sadowski, “Understanding dropout,”
in Advances in Neural Information Processing Systems, 2013, pp. 2814-2822.
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Dropout in linear networks

» Linear network: all activations units correspond to the identity function.

» For a single training example we get
L0 — i pl =11
» The expectation over all possible network realizations:

E{z1} — pw -1,

» p; corresponds to the probability of keeping a unit on layer [.

14



Dynamics of a single linear unit

» Counsider the error terms for the averaged ensemble network, and dropout (single
example):

Eens — (y(z) _plW[l]x(i))2
Ed = (4@ — wll pllg))2,

We minimize these cost functions with gradient descent.
Compute the gradients.
Take expectation over dropout realizations.

Obtain:

> 80P

ni 1 )
E{EY} = E*™ + Z 5 var(DU) (2922
r=1

» Dropout corresponds to a regularized cost function of the ensemble network.
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Dropout in linear regression

» Features X € R™*"; Observations y € R".
» Objective:

i — Xuw|?.
mmin -y - Xwl|

» With dropout: the input is transformed into D ® X, where D ~ Bernoulli(p).

» Operating over the previous expression we get

n}li)n Ily —prH2 +p(1 —p)||FwH2

with T’ = (diag(X7T X))~ /2.

» Change of variable W = pw
. . 1=pPn-
min |}y — X + —Z|a?

with \ = =2
p
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Dropout in logistic regression

> Single logistic unit with n inputs:

and z = w”z.

— 1] —

g) =g =

o(2) 14+e 7
» The normalized weighted geometric mean over al possible network

configurations corresponds to a feedforward pass of the averaged weights.

G 1
N M — = = .
WG G101 Srum o(pz)

» Definitions:

— Total number of network configurations: m = 2.
— a[ll], e ,aL}J possible outcomes.
Weighted geometric mean: G = Hi(agl])Pf.

Weighted geometric mean of the complements G’ = [],(1 — aE”)P 8
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Dynamics of a single logistic unit

» The result from a single linear unit generalizes to a sigmoidal unit as well.

» The expected gradient of the dropout network:

+ Ao’ (pz)x? var(p)w;.

d ens
o)~

» The expectation of the dropout gradient corresponds approximately to the gradient
of the ensemble network plus a ridge regularization term.
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Dropout in Deep Neural Networks

Network of sigmoidal units.
Output of unit 7 in layer I: a = O'(Z W[l] b= 1])
Normalized weighted geometric mean:

Iy (al)P™)
Ty(1 - a))P() + Ty (a

where N ranges over all possible configuration networks.

l
NWGM(a!) = 1) p(N)

Averaging properties of dropout:
1 1-1]
Bla) = o(B{ S Wila™))

Take-out message: the expected dropout gradient corresponds to an approximated
ensemble network, regularized by an adaptive weight decay with a propensity for
self-consistent variance minimization.

Convergence can be understood via analysis of stochastic gradient descent.
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Optimization algorithms
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Exponentially weighted moving average

» Recursive equation to compute moving averages:
vp = Bui_1 + (1 — B)0:,

— 0, is a data point, v; the moving average estimate.

> (3 controls the amount of points to consider (variance):

— Rule of thumb: N = % amounts to 86% of influence.

— [ =10.9 corresponds to 19 points.
— B = .98 corresponds to 99 points (wide window).
— [ = 0.5 corresponds to 3 points (susceptible to outliers).
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Bias correction

» The rule of thumb works for sufficiently large N.
» Otherwise, the first values are biased.
» We can correct the variance with:

,Uzzorrected _

values

points
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Gradient descent

=

» Gradient descent will have high variance if the problem is ill-conditioned.
» We aim to estimate directions of high variance and reduce its influence.

» Descent with momentum, RMSprop or Adam, help reduce the variance
and speed up convergence.
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Gradient descent with momentum

» The algorithm:

1: On iteration t:

2: Compute dW, db on current mini-batch.
Vaw = ﬁvdw aly (1 — ﬁ)dW

Vap = ﬁvdb -+ (1 — ﬁ)db

W=WwW — QUqW -

b=0b-— QUGpW -

» Gradient with momentum performs an exponential moving average over
the gradients.

» This will reduce the variance and give more stable descent directions.

» Bias correction is usually not applied.
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RMSprop

» The algorithm:

v

v

v

v

1: On iteration t:

2

Compute dW, db on current mini-batch.
Saw = Basaw + (1 — B2)dW?2.
Sap = Basap + (1 — Bo)db*.

W = W—QW+E
b=0b—«

\/Sdb"l‘E ’

The algorithm performs an exponential moving average over the squared
gradient components.

€ = 10~® controls numerical stability.

High variance gradients will have larger values — the squared averages
will be large — reduces the step size.

Allows a higher learning rate — faster convergence.
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Adaptive moment estimation (Adam)

» The algorithm:
1: On iteration t for W update:
2: Compute dW on current mini-batch.

3: Vaw = /Bl'UdW =+ (1 — 51)dW
4: Saw = /BZSdW + (1 = Bg)dWQ
Be Ucorrected — fd‘g
—b1
6: Scorrected — Sdw
1—
. W o W ,Uégrrected
o =W T e

» Same equations to update b.

» Adam estimates the moving average of gradients as well as its second
momentum.

» [t also incorporates bias correction.
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Batch normalization
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Problems of deep networks

Adaptive reparametrization, motivated by the difficulty of training very
deep models.

In gradient descent, parameters from all layers are updated at the same
time.

— composition of many functions can have unexpected results because all
functions have been changed simultaneously.
— learning rate becomes difficult to tune.

Consider a linear network with a single neuron per layer and single input.

We update w < w — €g, where g =V, J:
g (Wl — egth(w® — gy . (Wit — eglthz.

Previous update has many high order components, that can influence
greatly the value of 3.
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Input normalization

» The method is inspired by the normalization step normally applied to an
input:
- {1y _
el P
o+e¢
where € = 1078 is frequently used,

1 , 1,
= 2NT L0 and 02 = (210 _ )2
p= E 2, and 0® = —(z 1)

original data zero-centered data normalized data
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Batch normalization

» Batch normalization extends the concept to other hidden layers.
i il
203 _ z{B0 i
norm O'{l}[l] +e

where

3 ) 1 ) i i 1 3 i )
Pt = 157 00 0) | ang (oA0)2 = 2 30 (o (000) _ i (idiy2,

m m
T T

» i refers to the mini-batch index; m to the number of elements.
— the normalization depends on the minibatch.

» The outcome is rescaled with new parameters:

ZUH — Azl gladll,

norm

where 710 and {3 are incorporated in the learning process.
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Batch normalization

» The scheme has the same expressive capabilities
~ setting AU = (i) and A{l = o{a}0,

» The weights from one layer do not affect the statistics (first and second
order) of the next layer.

» The offsets bl become obsolete.

» Testing: a weighted average on all parameters:

Y=oy + (1 — )yl

By = afy + (1 - a)ﬁ{z}[l
pe = oty + (1 — Oé)u{
)

oy = aoy + 1—a)ol
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Gradient checking
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Gradient checking

Useful technique to debug code of manual implementations of neural networks.

Not intended for training of networks, but it can help to identify errors in a
backpropagation implementation.

Derivative of a function:

oy JE e —fle—e flete)—flz—e
f(x)_!l—rf(l) 2¢ - 2¢ '

The approximation error is in the order O(e?).

In the multivariate case, the e term affects a single component:

af (o)  f(65) = f67)

~
~

do, 2¢

where 0 = (01,...,0, +¢€,...,0,), 07 =(01,...,0, —€,...,0,).
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Algorithm for gradient checking

1
2
S
4
5:
6
7
8

: for each r component do

Restore 0, < 0,4
. end for

é‘_

: Reshape input vector in a column vector 6.

eold — ‘91"
Calculate f(6) and f(6,).
Compute approx. %.

: Verify relative error is below some threshold:

“d@approx o dQH

~ [ld6ewerex|[ + ]|ab)]
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