
Advanced Section #2: Understanding dropout, optimization
algorithms and batch normalization

AC 209B: Data Science

Javier Zazo Pavlos Protopapas



Lecture Outline

Review

Dropout

Optimization algorithms

Batch normalization

Gradient checking

2



Review

3



Estimators

I Point estimation is the attempt to provide the single “best” prediction of
some quantity of interest:

θ̂m = g(x(1), . . . ,x(m)).

– θ: true value.
– θ̂m : estimator for m samples.

I Frequentist perspective: θ fixed but unkwown.

I Data is random =⇒ θ̂m is a r.v.

4



Bias and Variance

I Bias: expected deviation from the true value.

I Variance: deviation from the expected estimator.

Examples:
– Sample mean: µ̂m = 1

m

∑
i x

(i)

– Sample variance σ̂2
m = 1

m

∑
i(x

(i) − µ̂m)2:

E[σ̂2
m] =

m− 1

m
σ2

– Unbiased sample variance: σ̃2
m = 1

m−1
∑
i(x

(i) − µ̂m)2

I How to choose estimators with different statistics?
– Cross-validation: empirical.
– Mean square error (MSE).

5



Bias-Variance Example

high bias &
underfitting

appropriate

high variance &
overfitting

high bias & variance
6



Diagnose bias-variance

I In high dimensions we cannot draw decision curves to inspect bias-variance.

I We calculate error values to infer the source of errors on the training set, as well as
on the val set.

I To determine bias, we need a base line, such as human level performance.

Bayes
error

Training
error

Val error

Avoidable
bias

Avoidable
variance

I Example:

Human level error ≈ 0%

Training error 0.5% 15% 1% 12%
Val error 1% 16% 11% 20%

low bias high bias high variance high bias
low variance high variance

7



Orthogonalization

Human
level error

Training
error

Val error

Avoidable
bias

Avoidable
variance

Train longer/better optimization alg.

Train a bigger model

NN architecture/hyperparameter search.

Use regularization (L2, dropout, data aug., etc.)

Get more data.

NN architecture/hyperparameter search.

I Orthogonalization aims to decompose the process to adjust NN performance.

I It assumes the errors come from different sources and uses a systematic approach to
minimize them.

I Early stopping is a popular regularization mechanism, but couples the bias and
variance errors.

8



Dropout

9



Dropout

I Regularization technique for deep NN.

I Employed at training time.

I Eliminates the output of some units randomly.

I Can be used in combination with other regularization techniques (such as L2, batch
normalization, etc.).

10



Motivation and direct implementation

I Purpose: prevent the co-adaptation of feature detectors for a set of neurons, and
avoid overfitting.

– It enforces the neurons to develop an individual role on their own given an
overall population behavior.

– Training weights are encouraged to be spread along the NN, because no neuron
is permanent.

I Interpretation: training examples provide gradients from different, randomly
sampled architectures.

I Direct implementation:

– At training time: eliminate the output of some units randomly.
– At test time: all units are present.

11



Inverted dropout

I Current implementations use inverted dropout

– Weighting is performed during training.
– Does not require re-weighting at test time.

I In particular, for layer l,

z[l] =
1

pl
W [l]D[l]a[l−1] + b[l]

a[l] = g(z[l]),
I Notation:

pl : Retention probability.

D[l] : Dropout activations.

a[l−1] : Output from previous layer.

W [l] : Layer weights.

b[l] : Offset weights.

z[l] : Linear output.

g(·) : Nonlinear activation function.
12



Understanding dropout

We aim to understand dropout as a regularization technique on simplified neural
architectures such as:

I Linear networks.

I Linear regression.

I Logistic regression.

I Deep networks.

These results are are based on the following reference:

Pierre Baldi and Peter J Sadowski, “Understanding dropout,”
in Advances in Neural Information Processing Systems, 2013, pp. 2814–2822.

13



Dropout in linear networks

I Linear network: all activations units correspond to the identity function.

I For a single training example we get

z[l] = W [l]D[l]z[l−1].

I The expectation over all possible network realizations:

E{z[l]} = plW
[l]z[l−1],

I pl corresponds to the probability of keeping a unit on layer l.

14



Dynamics of a single linear unit

I Consider the error terms for the averaged ensemble network, and dropout (single
example):

Eens = (y(i) − plW [l]x(i))2

Ed = (y(i) −W [l]D[l]x(i))2.

1. We minimize these cost functions with gradient descent.

2. Compute the gradients.

3. Take expectation over dropout realizations.

4. Obtain:

E{Ed} = Eens +

n1∑
r=1

1

2
var(D[l])(x(i)r )2w2

r

I Dropout corresponds to a regularized cost function of the ensemble network.

15



Dropout in linear regression

I Features X ∈ Rm×n; Observations y ∈ Rn.

I Objective:

min
w∈Rn

‖y −Xw‖2.

I With dropout: the input is transformed into D �X, where D ∼ Bernoulli(p).

I Operating over the previous expression we get

min
w

‖y − pXw‖2 + p(1− p)‖Γw‖2

with Γ = (diag(XTX))−1/2.

I Change of variable w̃ = pw

min
w̃

‖y −Xw̃‖2 +
1− p
p
‖Γw̃‖2,

with λ = 1−p
p .

16



Dropout in logistic regression

I Single logistic unit with n inputs:

σ(z) = a[1] =
1

1 + e−z
and z = wTx.

I The normalized weighted geometric mean over al possible network
configurations corresponds to a feedforward pass of the averaged weights.

NWGM =
G

G+G′
=

1

1 + e−
∑

j pwjxj
= σ(pz).

I Definitions:

– Total number of network configurations: m = 2n.

– a
[1]
1 , . . . , a

[1]
m possible outcomes.

– Weighted geometric mean: G =
∏
i(a

[1]
i )Pi .

– Weighted geometric mean of the complements G′ =
∏
i(1− a

[1]
i )Pi .

17



Dynamics of a single logistic unit

I The result from a single linear unit generalizes to a sigmoidal unit as well.

I The expected gradient of the dropout network:

E
{∂Ed

∂wi

}
≈ ∂Eens

∂wi
+ λσ′(pz)x2i var(p)wi.

I The expectation of the dropout gradient corresponds approximately to the gradient
of the ensemble network plus a ridge regularization term.

18



Dropout in Deep Neural Networks

I Network of sigmoidal units.

I Output of unit i in layer l: a
[l]
i = σ

(∑
jW

[l]
ij a

[l−1]
)

I Normalized weighted geometric mean :

NWGM(a
[l]
i ) =

ΠN (a
[l]
i )P (N)

ΠN (1− a[l]i )P (N) + ΠN (a
[l]
i )P (N)

where N ranges over all possible configuration networks.

I Averaging properties of dropout:

E{a[l]i } = σ
(
E
{∑

j

W
[l]
ij a

[l−1]
i

})
I Take-out message: the expected dropout gradient corresponds to an approximated

ensemble network, regularized by an adaptive weight decay with a propensity for
self-consistent variance minimization.

I Convergence can be understood via analysis of stochastic gradient descent.

19



Optimization algorithms

20



Exponentially weighted moving average

I Recursive equation to compute moving averages:

vt = βvt−1 + (1− β)θt,

– θt is a data point, vt the moving average estimate.

I β controls the amount of points to consider (variance):

– Rule of thumb: N = 1+β
1−β amounts to 86% of influence.

– β = 0.9 corresponds to 19 points.
– β = .98 corresponds to 99 points (wide window).
– β = 0.5 corresponds to 3 points (susceptible to outliers).

points

va
lu
es

21



Bias correction

I The rule of thumb works for sufficiently large N .
I Otherwise, the first values are biased.
I We can correct the variance with:

vcorrectedt =
vt

1− βt
.

points

va
lu
es

22



Gradient descent

I Gradient descent will have high variance if the problem is ill-conditioned.

I We aim to estimate directions of high variance and reduce its influence.

I Descent with momentum, RMSprop or Adam, help reduce the variance
and speed up convergence.

23



Gradient descent with momentum

I The algorithm:

1: On iteration t:
2: Compute dW , db on current mini-batch.
3: vdW = βvdW + (1− β)dW .
4: vdb = βvdb + (1− β)db.
5: W = W − αvdW .
6: b = b− αvdbW .

I Gradient with momentum performs an exponential moving average over
the gradients.

I This will reduce the variance and give more stable descent directions.

I Bias correction is usually not applied.

24



RMSprop

I The algorithm:

1: On iteration t:
2: Compute dW , db on current mini-batch.
3: sdW = β2sdW + (1− β2)dW 2.
4: sdb = β2sdb + (1− β2)db2.
5: W = W − α dW√

sdW+ε
.

6: b = b− α db√
sdb+ε

.

I The algorithm performs an exponential moving average over the squared
gradient components.

I ε = 10−8 controls numerical stability.
I High variance gradients will have larger values → the squared averages

will be large → reduces the step size.
I Allows a higher learning rate → faster convergence.

25



Adaptive moment estimation (Adam)

I The algorithm:

1: On iteration t for W update:

2: Compute dW on current mini-batch.
3: vdW = β1vdW + (1− β1)dW .
4: sdW = β2sdW + (1− β2)dW 2.
5: vcorrected = vdW

1−β1
6: scorrected = sdW

1−β2
7: W = W − α vcorrected√

sdW+ε
.

I Same equations to update b.

I Adam estimates the moving average of gradients as well as its second
momentum.

I It also incorporates bias correction.

26



Batch normalization

27



Problems of deep networks

I Adaptive reparametrization, motivated by the difficulty of training very
deep models.

I In gradient descent, parameters from all layers are updated at the same
time.

– composition of many functions can have unexpected results because all
functions have been changed simultaneously.

– learning rate becomes difficult to tune.

I Consider a linear network with a single neuron per layer and single input.

I We update w ← w − εg, where g = ∇wJ :

ŷ ← (w[1] − εg[1])(w[2] − εg[2]) . . . (w[L] − εg[L])x.

I Previous update has many high order components, that can influence
greatly the value of ŷ.

28



Input normalization

I The method is inspired by the normalization step normally applied to an
input:

X̃{i} =
X{i} − µ
σ + ε

where ε = 10−8 is frequently used,

µ =
1

m

∑
r

x{i}(r), and σ2 =
1

m
(x{i}(r) − µ)2.

29



Batch normalization

I Batch normalization extends the concept to other hidden layers.

Z{i}[l]norm =
Z{i}[l] − µ{i}[l]

σ{i}[l] + ε

where

µ{i}[l]{i}[l] =
1

m

∑
r

z{i}[l](r), and (σ{i}[l])2 =
1

m

∑
r

(z{i}[l](r) − µ{i}[l])2.

I i refers to the mini-batch index; m to the number of elements.

– the normalization depends on the minibatch.

I The outcome is rescaled with new parameters:

Z̃{i}[l] = γ{i}[l]Z{i}[l]norm + β{i}[l],

where γ{i}[l] and β{i}[l] are incorporated in the learning process.

30



Batch normalization

I The scheme has the same expressive capabilities
– setting β{i}[l] = µ{i}[l] and γ{i}[l] = σ{i}[l].

I The weights from one layer do not affect the statistics (first and second
order) of the next layer.

I The offsets b[l] become obsolete.

I Testing: a weighted average on all parameters:

γt = αγt + (1− α)γ{i}[l]

βt = αβt + (1− α)β{i}[l]

µt = αµt + (1− α)µ{i}[l]

σt = ασt + (1− α)σ{i}[l]

31



Gradient checking

32



Gradient checking

I Useful technique to debug code of manual implementations of neural networks.

I Not intended for training of networks, but it can help to identify errors in a
backpropagation implementation.

I Derivative of a function:

f ′(x) = lim
ε→0

f(x+ ε)− f(x− ε)
2ε

≈ f(x+ ε)− f(x− ε)
2ε

.

I The approximation error is in the order O(ε2).

I In the multivariate case, the ε term affects a single component:

df(θ)

dθr
≈ f(θ+r )− f(θ−r )

2ε

where θ+r = (θ1, . . . , θr + ε, . . . , θn), θ−r = (θ1, . . . , θr − ε, . . . , θn).

33



Algorithm for gradient checking

1: Reshape input vector in a column vector θ.
2: for each r component do
3: θold ← θr
4: Calculate f(θ+r ) and f(θ−r ).

5: Compute approx. df(θ)
dθr

.
6: Restore θr ← θold
7: end for
8: Verify relative error is below some threshold:

ξ =
‖dθapprox − dθ‖
‖dθapprox‖+ ‖dθ‖

34


	Review
	Dropout
	Optimization algorithms
	Batch normalization
	Gradient checking

