Notation

January 19, 2018

1 General notation

1.1 Sizes and common indexes:

- (i) Superscript refers to the ith training example.
- [l] Superscript refers to the lth layer in the neural network.
- $\{i\}$ Superscript refers to the *i*th minibatch.
- m Number of examples in the dataset, or minibatch, depending on context.
- n_x Input size.
- n_y Output size.
- $n_h^{[l]}$ Number of hidden units of the *l*th layer.
- L Total number of layers in the network.

1.2 Objects:

- $X \in \mathbb{R}^{n_x \times m}$ Input matrix.
- $Y \in \mathbb{R}^{n_y \times m}$ Label matrix.
- $x^{(i)}$ ith training example.
- $y^{(i)}$ ith label.

 $W^{[l]}$ Weight matrix of layer l.

 $b^{[l]}$ Bias vector of the lth layer.

 $\hat{y} \in \mathbb{R}^{n_y}$ Predicted output vector.

1.3 Common forward progapation equations:

 $z^{[l]} = W^{[l]} a^{[l-1]} + b^{[l]} \text{ Linear combination at layer } l.$

 $a^{[l]} = g(z^{[l]})$ Output after activation function.

 $g(\cdot)$ Activation function: ReLu, tanh, sigmoid, etc.

 $\hat{y} = a^{[L]}$ Predicted output vector.

 $x = z^{[0]} = a^{[0]}$ Input vector.

1.4 Example of neural network

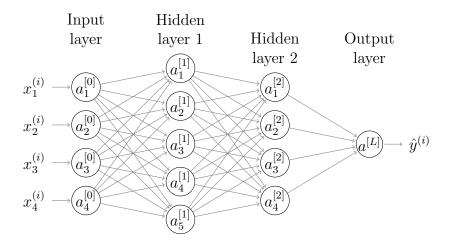


Figure 1: Example of neural network of depth L=3. Weight and offset parameters have been omitted for clarity.

1.5 Convolutional networks

- $n_W^{[l]}$ Width size of the output at the lth layer.
- $n_H^{[l]}$ Height size of the output at the lth layer.
- $n_C^{[l]}$ Number of filters (channels) at the lth layer.
- f Filter size of the convolutional layer.
- p Padding value of the convolutional layer.
- s Stride size of the convolutional layer.

Acknowledgements

The notation used has been heavily inspired from the deeplearning.ai course.