
Regularization methods and gradient check

Data Science 2 AC 209b

Javier Zazo Pavlos Protopapas

March 28, 2018

Abstract

In this section, we will motivate the reason why dropout is regarded
as a regularization technique. We will consider some simple neural
networks where a better understanding of dropout is available and
infer this interpretation to other deep networks. In addition to this, we
will describe “batch normalization” to enhance training speed in deep
networks. Finally, we will present gradient checking as a technique
to validate backpropagation gradients. This method is important to
verify manual implementations of the optimization procedure, or novel
functions not present in the framework’s library.

1 Dropout

Dropout is a regularization technique for deep neural networks, first proposed
in [1, 2]. It can be used in situations where overfitting or high variance
is expected or known to occur, and can be used in combination or as an
alternative to L2 penalization. The method is employed at training time, by
eliminating the output of some units randomly (setting the output to zero).
The frequency for a unit in a given layer to be switched off is governed by
the dropout probability, and this probability can vary for different hidden
layers, or input. This idea is depicted in Figure 1.

With the employment of dropout at training time, each training example
can be viewed as providing gradients from different, randomly sampled ar-
chitectures. The result of these operations can be regarded as an ensemble of

1



Figure 1: Dropout example, from [1].

Figure 2: Dropout unit at training and testing times, from [1].

different neural networks with better generalization capabilities compared to
the original architecture. At test and prediction times, all units are present,
and the disconnection of units is no longer performed, see Figure 2.

The main motivation behind the algorithm is to prevent the co-adaptation
of feature detectors for a set of neurons, and avoid overfitting. It works
by enforcing the neurons to develop an individual role on their own given
a population behavior, rather than relying two much on a specific set of
neurons that are always present. In [2] it is argued that this method reduces
the chances of complex co-adaptations that reduce the chance of individual
improvements for units of the network.

Dropout was first proposed eliminating units at training time, and re-
weighting network parameters at testing time (and prediction times) to cor-
rect the offset for eliminating units. Current frameworks normally implement
inverted dropout, where weighting is performed at training and no additional

2



correction is applied at testing or when predicting values. In particular, for
layer l,

z[l] =
1

pl
W [l]D[l]a[l−1] + b[l]

a[l] = g(z[l]),

(1)

where z[l] corresponds to the linear combination of the outcomes of previous
layers a[l−1], W [l] correspond to the network’s optimization weights and b[l]

is an offset. Diagonal matrix D[l] corresponds to a realization of Bernoulli
variables with probability of keeping the output pl on every diagonal element,
and g(·) refers to the activation function of the neural unit (ReL, tanh, etc.),
element-wise. Feedforward and backpropagation would carry this weight
parameter 1

pl
at training time, but should be omitted at evaluation time.

This form of inverted dropout is more common in most implementations.

1.1 Dropout in linear networks

Consider a linear neural network for which all activation units correspond to
the identity function. For a single training example and layer l, we get

z[l] = W [l]D[l]z[l−1], (2)

when using normal dropout.
For a fixed input vector z[l−1] and weights W [l], the expectation of the ac-

tivity of all units taken over all possible realizations of the dropout variables,
is given by

E{z[l]} = plW
[l]z[l−1], (3)

where pl corresponds to the probability of keeping a unit on layer l. The
ensemble average can therefore be easily computed using feedforward prop-
agation in the original network, replacing weights W [l] with plW

[l].

1.1.1 Dynamics of a single linear unit

Consider the error terms of a single linear unit Eens and Ed for the averaged
ensemble network and dropout network, respectively. For a single training
example pair (x(i), y(i)) we get

Eens = (y(i) − plW [l]x(i))2 (4)

Ed = (y(i) −W [l]D[l]x(i))2. (5)

3



Errors can be summed over all examples, but for simplicity we consider a
single example. We assume there is a single layer and refer to it with l.

Taking the gradient over the error function (4), and the expected gradient
for (5), it can be shown as in [3] that

E{Ed} = Eens +

n1∑
r=1

1

2
var(D[l])(x(i)r )2w2

r (6)

which corresponds to a ridge regression over variable w = [w1, . . . , wn1 ]
T .

Thus, remarkably, the expectation of the gradient with dropout is the
gradient of the regularized ensemble error. This justifies the regularization
effect of dropout for linear units.

1.2 Dropout in linear regression

Let’s consider applying dropout to the classical problem of linear regression.
We have a set of features given by X ∈ Rm×n where m is the total number of
data points and n the dimension of our linear model; and y ∈ Rn observations
as a column vector. The problem consists of minimizing

min
w∈Rn

‖y −Xw‖2. (7)

Problem (7) corresponds to a network in which each row of X is a training
example. Using dropout every component of the training examples is kept
with probability p, and the input can be transformed into D � X, where
‘�’ corresponds to the Hadamard or element-wise product; D is a random
matrix formed of Bernoulli variables with probability p. We obtain

min
w

ED∼Bernoulli(p)

{
‖y −D �Xw‖2

}
(8)

Operating over the previous expression (see [2]) we get

min
w

‖y − pXw‖2 + p(1− p)‖Γw‖2 (9)

with Γ = (diag(XTX))−1/2. This last expression corresponds to a ridge
regression with a particular form of Γ that depends on the data X. If some
component i of Γ is big, then the objective penalizes such component in w
more than others.

4



If we make the change of variable w̃ = pw, we get

min
w̃

‖y −Xw̃‖2 +
1− p
p
‖Γw̃‖2, (10)

where the penalization term is explicit with λ = 1−p
p

. If we decrease p to
have a greater dropout rate, we are increasing the regularization effect. This
result explicitly relates dropout to a particular form of ridge regression.

1.3 Dropout in logistic regression

Consider a single logistic unit with n inputs such that σ(z) = 1/(1 + e−z)
and z = xTw. Variable w corresponds to the network weights. The total
number of possible network configurations connecting or disconnecting in-
puts is m = 2n, so we can get O1, . . . , Om possible outcomes depending on
these connections. Each sampled subnetwork has an associated probability
P1, . . . , Pm, which corresponds to a specific output.

We define the following values: the mean over possible outcomes E =∑
i PiOi; the weighted geometric mean G =

∏
iO

Pi
i ; and the weighted geo-

metric mean of the complements G′ =
∏

i(1−Oi)
Pi . Finally we also define the

normalized weighted geometric mean NWGM = G/(G + G′). With simple
operations, we can show that

NWGM =
1

1 + e−
∑

j pwjxj
= σ(pz). (11)

In the previous result p corresponds to the probability of keeping the input
component when using dropout.

The implication is that using dropout over a single logistic unit cor-
responds to a weighted geometric average over all possible sampled sub-
networks, which already has a regularization effect.

1.3.1 Dynamics of a single logistic unit

The result from a single linear unit generalizes to a sigmoidal unit as well.
In this case the expected gradient of the dropout network approximates

E
{∂Ed

∂wi

}
≈ ∂Eens

∂wi
+ λσ′(pz)x2i var(p)wi. (12)

Thus, the expectation of the dropout gradient corresponds approximately
to the gradient of the ensemble network plus a ridge regularization term with
proper adaptive coffecients.

5



1.4 Dropout in Deep Neural Networks

A similar analysis can be extended to deeper networks, as well as using ReLu
units [4]. Consider a network of sigmoidal units. The output of unit i in layer
l:

a
[l]
i = σ

(∑
j

W
[l]
ij a

[l−1]
)
.

The normalized weighted geometric mean over all possible network configu-
rations is

NWGM(a
[l]
i ) =

ΠN(a
[l]
i )P (N)

ΠN(1− a[l]i )P (N) + ΠN(a
[l]
i )P (N)

,

and the averaging properties of dropout take the following form:

E{a[l]i } = σ
(
E
{∑

j

W
[l]
ij a

[l−1]
i

})
.

This result states that the output of a logistic unit within a NN of the
ensemble network corresponds to that of the normalized geometric mean.
Furthermore, the dynamics of deep neural network can be approximated in
a similar way as performed for a single logistic unit.

Overall, the take-out message is that the expected dropout gradient cor-
responds to an approximated ensemble network, regularized by an adaptive
weight decay with a propensity for self-consistent variance minimization.

To conclude, the convergence properties of the dropout method can be
understood via the stochastic gradient descent.

2 Batch normalization

Batch normalization is a novel method of adaptive reparametrization, moti-
vated by the difficulty of training very deep models [5]. When we use gradient
descent, parameters from all layers are updated at the same time. Then, the
composition of many functions can have unexpected results because all of
these functions have been changed simultaneously. This makes learning with
gradient descent challenging, because the learning rate can easily explode the
gradients or not affect them at all.

The previous idea is justified as follows. Consider a linear network with a
single neuron per layer and single input x ∈ R. The output has the following

6



form ŷ = w[1]w[2] . . . w[L]x, which is nonlinear in the w parameters. If we
update w ← w − εg, where g = ∇wŷ, we get the following updated output:

ŷ ← (w[1] − εg[1])(w[2] − εg[2]) . . . (w[L] − εg[L])x. (13)

The previous expression contains many high order components (up to order
L), that can influence greatly the value of ŷ. This makes the learning rate
very hard to adjust. Batch normalization provides a novel reparametrization
that significantly reduces the problem of coordinating updates across many
layers.

The method can be applied to any hidden layer, and is inspired by the nor-
malization step normally applied to an input. Consider that the input to the
network is a minibatch X{i} = (x{i}(1), . . . , x{i}(m)), where m refers to the size
of the minibatch, {i} to the minibatch index, and Y {i} = (y{i}(1), . . . , y{i}(m))
indicates labels. The input can be normalized simply with

X̃{i} =
X{i} − µ
σ + ε

(14)

where ε = 10−8 is frequently used,

µ =
1

m

∑
r

x{i}(r), and σ2 =
1

m
(x{i}(r) − µ)2. (15)

This technique normalizes the input to have zero mean and unit variance.
Batch normalization extends this concept to other hidden layers. Assume

that Z{i}[l] = W [l]A{i}[l−1] + b[l] is the linear combination performed at layer l
before the activation function, such as ReLu, or tanh. Weights W [l] and b[l]

correspond to the linear coefficients and offset, respectively, and A{i}[l−1] the
output of the previous layer. One way to implement batch normalization is
to normalize the linear outcomes:

Z{i}[l]norm =
Z{i}[l] − µ{i}[l]

σ{i}[l] + ε
(16)

where

µ{i}[l] =
1

m

∑
r

z{i}[l](r), and (σ{i}[l])2 =
1

m

∑
r

(z{i}[l](r) − µ{i}[l])2. (17)

We remark that the normalization parameters depend on the minibatch and
change with different examples. Another option is to normalize A{i}[l−1] be-
fore the linear transformation, but [5] recommends the former option.

7



Once that the linear outputs are normalized, the outcome is rescaled
with new parameters γ{i}[l] and β{i}[l] that need to be learned in the training
process:

Z̃{i}[l] = γ{i}[l]Z{i}[l]norm + β{i}[l]. (18)

Although this reparametrization may seem repetitive, it actually helps to
decompose the learning process of the weights between layers. The scheme
has the same expressive capabilities as before (simply by setting β{i}[l] =
µ{i}[l] and γ{i}[l] = σ{i}[l]), but the new parametrization has better learning
dynamics.

These dynamics are justified because the weights from one layer do not
affect the statistics (first and second order) of the next layer. The mean and
deviation are always normalized, and an increase of the values in the previous
layer does not produce an immediate increase in the next layer. The values
of every layer are updated independently because of this normalization step.

Another aspect is that the normalization of Z
{i}[l]
norm make the offsets b[l]

obsolete, so they should be removed from the optimization process. Note
also that weights W [l] are shared for different minibatches, but γ{i}[l] and
β{i}[l] depend greatly on the statistics of the minibatch and the number of
elements. For this reason, at testing time, a weighted average of these terms
is computed during training for a robust evaluation.

This weighted moving average consists of the following update:

γt = αγt + (1− α)γ{i}[l], (19)

where γ{i}[l] is the outcome of a minibatch training process, and γt is updated
every time a minibatch is processed and used for testing time. A similar
procedure is employed to track βt. All frameworks that implement batch
normalization incorporate a way to track these values for testing time.

The update rate α is set such that low values (∼ 0.5) establish a very non-
smoothed moving average, whereas high values (∼ 0.99) result into a very
smooth outcome and incorporate many values into the averaged estimate.
The estimates in the first part of the averaging process are biased, so early
estimates would need to be corrected if used for testing purposes: γt

1−αt . In
general, this step can be overlooked if the number of epochs and minibatches
become high enough.

8



3 Gradient checking

Gradient checking is a useful technique to debug code of manual implemen-
tations of neural networks. I briefly want to discuss this technique because
it is easy to understand and use if needed. It is not intended for training of
networks because it is slow, but it can help to identify errors in a backprop-
agation implementation.

We use the definition of the derivative of a function to motivate its ap-
proximation:

f ′(x) = lim
ε→0

f(x+ ε)− f(x− ε)
2ε

≈ f(x+ ε)− f(x− ε)
2ε

. (20)

The previous expression approximates the derivative for small ε. The ap-
proximation error is of the order O(ε2). In the multivariate case, the ε
term affects a single component. We define θ+r = (θ1, . . . , θr + ε, . . . , θn)
and θ−r = (θ1, . . . , θr − ε, . . . , θn) If f(·) represents the loss function of the
neural network, we have for a single the following partial derivative:

df(θr) ≈
f(θ+r )− f(θ−r )

2ε
(21)

The whole procedure of gradient checking is described in Algorithm 1.

Algorithm 1 Gradient checking.

1: Reshape input vector in a column vector θ.
2: for each r component do
3: θold ← θr
4: Calculate f(θ+r ) and f(θ−r ).
5: Compute dθapproxr .
6: Restore θr ← θold
7: end for
8: Verify relative error is below some threshold:

ξ =
‖dθapprox − dθ‖
‖dθapprox‖+ ‖dθ‖

(22)

9



References

[1] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R Salakhutdinov, “Improving neural networks by preventing
co-adaptation of feature detectors,” 2012, arXiv:1207.0580.

[2] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting.,” Journal of machine learning research, vol.
15, no. 1, pp. 1929–1958, 2014, http://jmlr.org/papers/volume15/

srivastava14a/srivastava14a.pdf.

[3] Pierre Baldi and Peter J Sadowski, “Understanding dropout,” in Ad-
vances in Neural Information Processing Systems, 2013, pp. 2814–2822,
http://papers.nips.cc/paper/4878-understanding-dropout.pdf.

[4] Pierre Baldi and Peter Sadowski, “The dropout learning algo-
rithm,” Artificial Intelligence, vol. 210, pp. 78 – 122, 2014,
doi:10.1016/j.artint.2014.02.004.

[5] Sergey Ioffe and Christian Szegedy, “Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference on Machine Learn-
ing, Francis Bach and David Blei, Eds., Lille, France, 07–09 Jul 2015,
vol. 37 of Proceedings of Machine Learning Research, pp. 448–456, PMLR,
http://proceedings.mlr.press/v37/ioffe15.html.

10

http://arxiv.org/abs/1207.0580
http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://papers.nips.cc/paper/4878-understanding-dropout.pdf
http://dx.doi.org/10.1016/j.artint.2014.02.004
http://proceedings.mlr.press/v37/ioffe15.html

	Dropout
	Dropout in linear networks
	Dynamics of a single linear unit

	Dropout in linear regression
	Dropout in logistic regression
	Dynamics of a single logistic unit

	Dropout in Deep Neural Networks

	Batch normalization
	Gradient checking

