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Abstract

We present the basic concepts of unconstrained and constrained op-
timization. This will allow you to understand the derivations to obtain
the dual problem of SVMs.

1 Intro to optimization

We say an optimization problem is unconstrained when we minimize in the
whole Euclidean space, i.e., x ∈ Rn:

min
x∈Rn

f(x). (1)

We have a constrained optimization problem when the minimization is with
respect to X ⊂ Rn:

min
x∈X

f(x). (2)

A set X ⊆ Rn is convex if every point between two points belonging to the
set, also belongs to the same set. Examples of convex sets include the whole
Euclidean space, half-spaces (subspaces divided by hyperplanes), hyperplanes,
polytopes (the intersection of multiple halfspaces), etc. See also Figure 1.

A function f(x) is convex in an open set X, if for every two points x1

and x2 ∈ X, the points connecting f(x1) and f(x2) are greater than or equal
to the function f evaluated at those points. If the function f(x) is doubly
differentiable, the function is convex if its Hessian is positive semidefinite on
every point x ∈ X. An example is given in Figure 2.
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Figure 1: Three sets. The hexagon on the left is convex, the kidney shaped
set is non-convex, the squared set excluding part of the boundary is also non-
convex.

(x f(x))

(y f(y))

Figure 2: Example of a convex function.

2 Unconstrained optimization

We want to solve problem (1). If the function is differentiable, a necessary
condition for optimality on point x∗ is that its gradient is null evaluated on
that point, i.e.,

∇xf(x
∗) = 0. (3)

If f(x) is additionally a convex function, then the condition is both necessary
and sufficient.

An example is to minimize the convex parabola f1(x) = ax2 + bx+ c with
a > 0. Its derivate is d

dx
f(x) = 2ax + b, and its minimum becomes x∗ = −b

2a
.

We can generalize to the multivariate case:

f2(x) = xTAx+ 2bTx+ c, (4)

with A being a symmetric positive definite matrix. The gradient is

∇xf2(x) = 2Ax+ 2b, (5)

and finding its root we obtain x∗ = −A−1b.

3 Constrained optimization

We want to solve problem (2). We can assume that X is represented in ana-
lytical with equality and inequality equations as follows:

X = {x ∈ Rn | gi(x) ≤ 0 ∧ hj(x) = 0, i ∈ { 1, . . . ,m } , j ∈ { 1, . . . , p } } .
(6)
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This allows us to rewrite (2) in standard form:

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0 i ∈ { 1, . . . ,m }
hj(x) = 0 j ∈ { 1, . . . , p } .

(7)

We say that problem (7) is convex if f(x) is convex, every gi(x) is convex, and
every hj(x) are affine functions. Otherwise, the problem is non-convex. The
SVM problem that we introduced in the course is convex.

If we have a constrained convex problem, and it satisfies a special constraint
qualification, then we can use duality theory to solve it. The motivation to
derive the dual is threefold: it allows to check specific conditions for optimality;
it introduces other optimization tools to solve the original problem, hopefully
more efficient; it may give some theoretical insights about the problem, such
as pricing of a certain resource in an economic model.

Regarding the constraint qualification we mentioned, we need to verify if
the problem satisfies Slater’s condition:

∃x̂ | gi(x̂) < 0 ∀i and hj(x̂) = 0 ∀j. (8)

The previous expression can be relaxed to a simple feasibility requirement as
gi(x̂) ≤ 0, if gi is an affine expression.

We call (7) the primal problem, because we optimize in the primal variable
x. We will derive now the dual problem. First we form the Lagrangian:

L(x, λ, ν) = f(x) +
∑
i

λigi(x) +
∑
j

νjhj(x). (9)

The dual function is the minimum of the Lagrangian over variable x, and it is
a function over λi and νj:

q(λ, ν) = min
x

L(x, λ, ν). (10)

And finally, the dual problem consists on the maximization of the dual function
over λi ≥ 0:

max
λ∈Rm,νRp

q(λ, ν)

s.t. λi ≥ 0 ∀i.
(11)

The motivation behind using duality theory to solve problem (7) is that
sometimes it is easy to solve the minimum over x in the Lagrangian, and the
dual problem has an amenable form. Notice that the minimization over x of
the Lagrangian is an unconstrained problem, and therefore it is necessary that

∇xL(x
∗, λ, ν) = 0 (12)
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for any candidate solution x∗. This is the first necessary condition of the
Karush-Kuhn-Tucker (KKT) conditions. The rest of them refer to feasibility:

gi(x
∗) ≤ 0 ∀i (13a)

hj(x
∗) = 0 ∀j (13b)

λ∗
i ≥ 0 ∀i (13c)

ν∗
j ∈ R ∀j, (13d)

and complementarity slackness:∑
i

λ∗
i gi(x

∗) = 0 (14a)∑
j

ν∗
j hj(x

∗) = 0. (14b)

The reason of imposing (14) is to have the following relation:

max
λ,ν

min
x

L(x, λ, ν)

= f(x∗) +
∑
i

λ∗
i gi(x

∗)︸ ︷︷ ︸
=0

+
∑
j

ν∗
j hj(x

∗)︸ ︷︷ ︸
=0

= f(x∗).

We see then that when the KKT conditions are satisfied for points x∗,
λ∗
i , ν

∗
j , and the problem is convex, then we achieve optimality of the primal

problem. The KKT conditions (provided that Slater condition holds) are then
necessary and sufficient.

During class we formulate the dual problem of the SVM because it presents
nice computational properties (many solvers solve the dual problem rather than
the primal), but also because it allows an easy derivation of kernel methods
within SVCs. This tutorial should help you understand the use of the KKT
conditions for the SVC problem.
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