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Deep Learning Impact

Overrated Underrated
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Cifar10 dataset

Fully connected) : 60-70%

Convolutional network: ~90-93%

Wide-Resnet: 96.1%

NASNet-A: 97.6%

These models are big!
50k training samples

32x32 pixels

>25M parameters
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Deep learning success story: ImageNet competition

1.28M training samples ~300x300 pixels

50k validation samples

Top-secret test set

Low prediction accuracy before deep learning. <50%

Still challenging. ~83%
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Deep learning success story: ImageNet
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Data augmentation is very helpful!

Random flip left-right: Random shifts/crops:

Cutout / Random erasing: Mixup / Pairing images:

x̃ = �xi + (1� �)xj

ỹ = �yi + (1� �)yj
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How vulnerable are Neural Networks?

Uses of Neural Networks
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How vulnerable are Neural Networks?

Jiajun Lu, Hussein Sibai, Evan FabryUniversity of Illinois at Urbana Champaign

original Small	perturbations.	No	detection Small	perturbations.	Vase	was	detected
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How vulnerable are Neural Networks?
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Explaining Adversarial Examples

[Goodfellow et. al ‘15]

1. Robust attacks with FGSM

2. Robust defense with Adversarial Training
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Explaining Adversarial Examples
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Adversarial examples: How bad is it?
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Some of these adversarial examples can even fool humans:
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CIFAR10
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Attacking with Fast Gradient Sign Method (FGSM)
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Attacking with Fast Gradient Sign Method (FGSM)
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Defending with Adversarial Training

1. Generate adversarial examples

2. Adjust labels
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Defending with Adversarial Training

1. Generate adversarial examples

2. Adjust labels

“Panda”
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Defending with Adversarial Training

1. Generate adversarial examples

2. Adjust labels

3. Add them to the training set 

4. Train new network 

“Panda”
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Attack methods post GoodFellow 2015

● FGSM [Goodfellow et. al ‘15]

● JSMA [Papernot et. al ‘16]

● C&W [Carlini + Wagner ‘16]

● Step-LL [Kurakin et. al ‘17]

● I-FGSM [Tramer et. al ‘18]
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White box attacks

W

x+ � ·rxL ) x⇤

L

x+ � · sign(rxL) ) x⇤
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“Black Box” Attacks

“Black Box” Attacks [Papernot et. al ‘17]
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“Black Box” Attacks

Examine inputs and outputs of the model
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“Black Box” Attacks

Panda
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“Black Box” Attacks

Panda
Gibbon
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“Black Box” Attacks

Panda
Gibbon
Ostrich
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“Black Box” Attacks

Train a model that performs the same as the black box
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“Black Box” Attacks

Train a model that performs the same as the black box

Panda

Gibbon

Ostrich
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“Black Box” Attacks

Now attack the model you just trained with “white” box attack

L

W

x+ � ·rxL ) x⇤x+ � · sign(rxL) ) x⇤
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“Black Box” Attacks

Use those adversarial examples to the “black” box
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CleverHans

A	Python	library	to	benchmark	machine	learning	systems'	
vulnerability	to adversarial	examples.	

https://github.com/tensorflow/cleverhans
http://www.cleverhans.io/



More Defenses

Mixup:
• Mix two training examples

• Augment training set

Smooth decision boundaries:
• Regularize the derivatives wrt

to x

x̃ = �xi + (1� �)xj

ỹ = �yi + (1� �)yj
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Physical attacks

• Object Detection

• Adversarial Stickers


