Lecture 21: Adversarial Neural Networks CS 109B, STAT 121B, AC 209B, CSE 109B

Mark Glickman and Pavlos Protopapas

Material taken from presentations given by:

Amil Merchant, Alex Lin, Thomas Chang, ZiZi Zhang Harvard

Ekin Dogus Cubuk Google Brains

Deep Learning Impact

Deep Learning Impact

Overrated

Underrated

Cifar10 dataset

Fully connected) : 60-70% Convolutional network: ~90-93% Wide-Resnet: 96.1% NASNet-A: 97.6%

These models are big! 50k training samples 32x32 pixels >25M parameters

airplane automobile bird cat deer dog frog horse ship truck

Deep learning success story: ImageNet competition

1.28M training samples ~300x300 pixels

50k validation samples

Top-secret test set

Low prediction accuracy before deep learning. <50%

Still challenging. ~83%

CS109b

Deep learning success story: ImageNet

CS109b

Data augmentation is very helpful!

Random flip left-right:

Cutout / Random erasing:

Random shifts/crops:

Mixup / Pairing images:

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j$$
$$\tilde{y} = \lambda y_i + (1 - \lambda) y_j$$

How vulnerable are Neural Networks?

Uses of Neural Networks

How vulnerable are Neural Networks?

original

Small perturbations. No detection

Small perturbations. Vase was detected

Jiajun Lu, Hussein Sibai, Evan FabryUniversity of Illinois at Urbana Champaign

How vulnerable are Neural Networks?

[Goodfellow et. al '15]

- 1. Robust attacks with FGSM
- 2. Robust defense with Adversarial Training

Explaining Adversarial Examples

Adversarial examples: How bad is it?

Some of these adversarial examples can even fool humans:

CIFAR10

Pretty bad on Cifar10

СS109в

Attacking with Fast Gradient Sign Method (FGSM)

Pavlos Protopapas

Attacking with Fast Gradient Sign Method (FGSM)

Pavlos Protopapas

Pavlos Protopapas

Defending with Adversarial Training

"Panda"

"Gibbon"

- 1. Generate adversarial examples
- 2. Adjust labels

Defending with Adversarial Training

- 2 Adjust labels
- 2. Adjust labels

1.

Defending with Adversarial Training

- 2 Adjust labels
- 2. Adjust labels
- 3. Add them to the training set
- 4. Train new network

1.

Attack methods post GoodFellow 2015

- FGSM [Goodfellow et. al '15]
- JSMA [Papernot et. al '16]
- C&W [Carlini + Wagner '16]
- Step-LL [Kurakin et. al '17]
- I-FGSM [Tramer et. al '18]

White box attacks

"Black Box" Attacks [Papernot et. al '17]

Examine inputs and outputs of the model

Train a model that performs the same as the black box

Train a model that performs the same as the black box

Now attack the model you just trained with "white" box attack

Use those adversarial examples to the "black" box

CleverHans

A Python library to benchmark machine learning systems' vulnerability to adversarial examples.

https://github.com/tensorflow/cleverhans http://www.cleverhans.io/

Mixup:

- Mix two training examples
- Augment training set

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j$$
$$\tilde{y} = \lambda y_i + (1 - \lambda) y_j$$

Smooth decision boundaries:

• Regularize the derivatives wrt to x

Physical attacks

- Object Detection
- Adversarial Stickers

