Lecture 21: Adversarial Neural Networks
CS 109B, STAT 121B, AC 209B, CSE 109B

Mark Glickman and Pavlos Protopapas
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Deep Learning Impact
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Deep Learning Impact

Overrated Underrated
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Cifar10 dataset

Fully connected) : 60-70%
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Deep learning success story: ImageNet competition

1.28M training samples ~300x300 pixels

50k validation samples

Top-secret test set

Low prediction accuracy before deep learning. <50%
Still challenging. ~83%
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Deep learning success story: ImageNet

In the competition’s first year
— teams had varying success.
Every team got at least 25%

wrong.
In 2012, the team to first use
deep learning was the only
team to get their error rate
below 25%.
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Data augmentation is very helpful!

Random flip left-right: Random shifts/crops:
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How vulnerable are Neural Networks?

Uses of Neural Networks
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How vulnerable are Neural Networks?

Or1g1na1 Image Detected Whole Image Attaeked ~Sign Reglon Attacked B

original Small perturbations. No detection Small perturbations. Vase was detected

Jiajun Lu, Hussein Sibai, Evan FabryUniversity of Illinois at Urbana Champaign 1098
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How vulnerable are Neural Networks?

CS1098




Explaining Adversarial Examples

[Goodfellow et. al “15]
1. Robust attacks with FGSM
2. Robust defense with Adversarial Training

“Panda” Strategic “Gibbon”
57.7% Noise 99.3%
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Explaining Adversarial Examples

correct +distort ostrich correct +distort ostrich
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Adversarial examples: How bad is it?

Not that bad on MNIST
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Some of these adversarial examples can even fool humans:

Cat Cat or dog?
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CIFAR10

Pretty bad on Cifar10

pred.: cat pred.: dog

pred.: ship

pred.: frog

pred.: truck
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pred.: deer
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Attacking with Fast Gradient Sign Method (FGSM)
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Attacking with Fast Gradient Sign Method (FGSM)
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Defending with Adversarial Training

“Panda” “Gibbon”

1. Generate adversarial examples
2. Adjust labels
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Defending with Adversarial Training

“Panda”

1. Generate adversarial examples
2. Adjust labels

” & ‘Panda’
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Defending with Adversarial Training

“Panda”

Generate adversarial examples

” & ‘Panda’

Adjust labels
Add them to the training set
Train new network
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Attack methods post GoodFellow 2015

e FGSM [Goodfellow et. al ‘15]
e JSMA [Papernot et. al “16]
e C&W [Carlini + Wagner ‘16]
e Step-LL [Kurakin et. al 17]
® |-FGSM [Tramer et. al ‘18]
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White box attacks
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“Black Box” Attacks

“Black Box” Attacks [Papernot et. al 17]
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“Black Box” Attacks

Examine inputs and outputs of the model

IACS
M CS1098

ﬂ?ﬁ'ﬂ?{w




“Black Box” Attacks
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“Black Box” Attacks

Danda
Gibbon
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“Black Box” Attacks

PDanda
Gihhnn

Ostrich
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“Black Box” Attacks

Train a model that performs the same as the black box
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“Black Box” Attacks

Train a model that performs the same as the black box

Panda
Gibbon
Ostrich
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“Black Box” Attacks

Now attack the model you just trained with “white” box attack
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“Black Box” Attacks

Use those adversarial examples to the “black” box
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CleverHans

~rhans

A Python I|brary to benchmark machlne Iearnmg systems'
vulnerability to adversarial examples.

https://github.com/tensorflow/cleverhans
http://www.cleverhans.io/
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More Defenses

Mixup:
* Mix two training examples
* Augment training set

Smooth decision boundaries:

* Regularize the derivatives wrt
to X
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Physical attacks

* Object Detection
 Adversarial Stickers
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