
Lecture	20:	Deep	Generative	Models		
CS	109B,	STAT	121B,	AC	209B,	CSE	109B	

	
	

Mark	Glickman		and	Pavlos	Protopapas	



This	lecture	is	based	on	the	following	tutorials:	
	
I.	Goodfellow,	Generative	Adversarial	Networks	
(GANs),	NIPS	2016	Tutorial	
	
Shenlong	Wang,	Deep	Generative	Models,	http://
www.cs.toronto.edu/~slwang/
generative_model.pdf	



Generative	Model	
Density	Estimation	

Sample	Generation	



Why	generative	modeling?	

•  Modeling	high-dim	probability	distributions		
•  Denoising	damaged	samples	
•  Simulate	future	events	for	planning	and	RL	
•  Imputing	missing	data	
– Semi-supervised	Learning	

•  Multi-modal	data	
– Multiple	correct	answers	



Next	Video	Frame	Prediction	

Lotter	et	al.,	2016	



Single	Image	Super-resolution	

•  Synthesize	a	high-resolution	equivalent	from	a	
low-resolution	image	

Ledig	et	al.,	2016	



Interactive	Image	Generation	

Zhu	et	al.,	2016	



Image-to-Image	Translation	

Isola	et	al.,	2016	



Taxonomy	of	Deep	Generative	Models	

Deep	
Generative	
Models	

Explicit	
Density	

Markov	
Chain	

Variational	

Implicit	
Density	

Markov	
Chain	

Direct	

Variational		
Auto-encoders	(VAE)	

Boltzmann	Machines	
Deep	Belief	Networks	

Generative	Adversarial	
Networks	(GAN)	

Generative	Moment	
Matching	Networks	

(GMM)	



Outline	

•  Explicit	Density	Models	
– Boltzmann	Machines	&	Deep	Belief	Networks	(DBN)	
– Variational	Auto-encoders	(VAE)	

•  Implicit	Density	Models	
– Generative	Adversarial	Networks	(GAN)	



Boltzmann	Machines	

E(x) = −xTUx − bT x

x:	d-dimensional	binary	vector	
	
	
	
	
Energy	function	given	by:	

P(x) = exp(−E(x))
Z

Z = exp(−E(x))
x
∑



Visible	and	Hidden	Units	

E(v,h) =  − vTRv− vTWh− hTSh− bTv− cTh

x:	d-dimensional	binary	vector	
	
	
	
	
Energy	function	given	by:	

P(v,h) = exp(−E(v,h))
Z

Z = exp(−E(v,h))
v,h
∑



Training	Boltzmann	Machines	

•  Maximum-likelihood	estimation		
•  Partition	function	is	intractable	
•  May	be	estimated	with	MCMC	methods	



Restricted	Boltzmann	Machines	

•  No	connections	among	hidden	units,	and	
among	visible	units	(bipartite	graph)	



Restricted	Boltzmann	Machines	

E(v,h) =  − bTv− cTh− vTWh

x:	d-dimensional	binary	vector	
	
	
	
	
Energy	function	given	by:	

P(v,h) = exp(−E(v,h))
Z

Z = exp(−E(v,h))
v,h
∑



•  Conditional	distributions	have	simple	form	

	
•  Efficient	MCMC:	block	Gibbs	sampling	
– Alternatively	sample	from	P(h|v)	and	P(v|h)	

P hj =1 v( )  =  σ c j + (WTv) j( )
P vj =1 h( )  =  σ b j + (Wh) j( )

Sigmoid	

Training	RBMs	



Deep	Belief	Networks	

•  Multiple	hidden	layers	
	

Undirected	
connections	
between	last	
two	layers	

Introduction	of	DBNs	in	
2006	began	the	current	
deep	learning	renaissance		



Deep	Belief	Networks	

h(K)	

h(K-1)	

h(1)	

v	

h(2)	
…	

P vi =1 h(1)( )  =  σ bi
(1) +wi

(1) •h(1)( )

P hi
(1) =1 h(2)( )  =  σ bi

(2) +wi
(2) •h(2)( )

P(h(K−1),h(K ) ) =  1
Z

exp E(h(K−1),h(K ) )( )
…
	



Layer-wise	DBN	Training	

h(K)	

h(K-1)	

h(1)	

v	

h(2)	
…	

Ev~pdata
log pθ (v)

Train	an	RBM	to	
maximize	



Layer-wise	DBN	Training	

h(K)	

h(K-1)	

h(1)	

v	

h(2)	
…	

Ev~pdata
E
h(1)~p h(1) v( ) log pθ1 (h

(1) )

Train	an	RBM	to	
maximize	



Layer-wise	DBN	Training	

h(K)	

h(K-1)	

h(1)	

v	

h(2)	
…	

Ev~pdata
!E

h(K )~p h(K ) h(K−1)( )
log pθK (h

(K ) )

Train	an	RBM	to	
maximize	



Outline	

•  Explicit	Density	Models	
– Boltzmann	Machines	&	Deep	Belief	Networks	(DBN)	
– Variational	Auto-encoders	(VAE)	

•  Implicit	Density	Models	
– Generative	Adversarial	Networks	(GAN)	



Recap:	Autoencoder	

Encoder	 Decoder	z	



Variational	Autoencoder	

•  Easier	to	train	using	gradient-based	methods	
•  VAE	sampling:	

Decoder	
P(x|z)	z	

Sample	from	P(z)		
Standard	Gaussian	



VAE	Likelihood	

pθ (x) = pθ x z( )
z
∫ pθ (z)dz

Difficult	to	approximate	in	high	
dim	through	sampling	

	

For	most	z	values	p(x|z)	close	to	0	

Neural	network	

z ~N (0, I )

X
θ



VAE	Likelihood	

pθ (x) = pθ x z( )
z
∫  qφ z x( )dz

Proposal	distribution:	
Likely	to	produce	values	of	x	
for	which	p(x|z)	is	non-zero	

	

X
θ

Another	neural	net	 z

φ



VAE	Architecture	

Encoder	

Decoder	
pθ(x|z)	

z	

Mean µ

SD σ

Sample 
from 

N (µ,σ )

qϕ(z|x)	



VAE	Loss	

−Ez~qφ z x( ) log pθ x z( )( )  +  KL qφ z x( ) pθ (z)( )
Reconstruction	Loss	

Proposal	distribution	should	
resemble	a	Gaussian	



VAE	Loss	

−Ez~qφ z x( ) log pθ x z( )( )  +  KL qφ z x( ) pθ (z)( )
Reconstruction	Loss	

Proposal	distribution	should	
resemble	a	Gaussian	



VAE	Loss	

−Ez~qφ z x( ) log pθ x z( )( )  +  KL qφ z x( ) pθ (z)( )
Reconstruction	Loss	

Proposal	distribution	should	
resemble	a	Gaussian	

≥ − log pθ (x)

Variational	upper	bound	
on	loss	we	care	about!	



Training	VAE	

•  Apply	stochastic	gradient	descent	
•  Sampling	step	not	differentiable	
•  Use	a	re-parameterization	trick	
– Move	sampling	to	input	layer,	so	that	the	
sampling	step	is	independent	of	the	model	



Boltzmann	Machines	vs.	VAE		

Pros:	
•  VAE	is	easier	to	train	
•  Does	not	require	MCMC	sampling	
•  Has	theoretical	backing	
•  Applicable	to	wider	range	of	models	

Cons:	
•  Samples	from	VAE	tend	to	be	blurry	



Kingma	and	Welling,	2014	



Outline	

•  Explicit	Density	Models	
– Boltzmann	Machines	&	Deep	Belief	Networks	(DBN)	
– Variational	Auto-encoders	(VAE)	

•  Implicit	Density	Models	
– Generative	Adversarial	Networks	(GAN)	



Generative	Adversarial	Networks	

•  No	Markov	chains	needed	
•  No	variational	approximations	needed	
•  Often	regarded	as	producing	better	examples	



Two	Player	Game	

Generator	G	
	

Seeks	to	create	
samples	from	pdata		

Discriminator	D	
	

Classifies	samples	
as	real	or	fake	

Seeks	to	trick	discriminator	
into	believing	that	its	samples	

are	genuine	

Seeks	to	not	get	tricked	
by	the	generator	



GAN	Overview	

Generator		
G	

Discriminator	
D	

z	

Real	
or	

Fake	

Training	
sample	

Code	drawn	
from	a	prior	
distribution	



Min-max	Cost	

V (θ D,θG ) =  Ex~pdata
logD(x) +  Ez log(1−D(G(z)))

Discriminator	seeks	to	
predict	1	on	training	

samples	

	Discriminator		wants	to	
predict	0	on	samples	

generated	by	G	

Generator	wants	D	to	not	distinguish	between	
original	and	generated	samples!	

J (G ) =V (θ (D),θ (G ) ) J (D) = −V (θ (D),θ (G ) )



Min-max	Cost	

•  Equilibrium	is	a	saddle-point	
•  Training	is	difficult	in	practice	

min
θG
max
θD

J(θG,θ D )



Training	GANs	

•  Sample	mini-batch	of	training	images	x,	and	
generator	codes	z	

•  Update	G	using	back-prop	
•  Update	D	using	back-prop	

Optional:	Run	k	steps	of	one	player	for	every	
step	of	the	other	player	



Radford	et	al.,	2015	


