Lecture 20: Deep Generative Models
CS 109B, STAT 121B, AC 209B, CSE 109B
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This lecture is based on the following tutorials:

|. Goodfellow, Generative Adversarial Networks
(GANSs), NIPS 2016 Tutorial

Shenlong Wang, Deep Generative Models, http://
www.cs.toronto.edu/~slwang/
generative_model.pdf



Generative Model

Density Estimation

Sample Generation
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Why generative modeling?

Modeling high-dim probability distributions
Denoising damaged samples

Simulate future events for planning and RL
Imputing missing data

— Semi-supervised Learning

Multi-modal data

— Multiple correct answers



Next Video Frame Prediction

Ground Truth MSE Adversarial

Lotter et al., 2016



Single Image Super-resolution

* Synthesize a high-resolution equivalent from a
low-resolution image

bicubic SRResNet SRGAN
(23.44dB/0.7777)
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Ledig et al., 2016



Interactive Image Generation

+ Generative Image Manipulation

Zhu et al., 2016



Image-to-Image Translation

Input Ground truth Output
Labels to Street Scene o

Isola et al., 2016



Taxonomy of Deep Generative Models
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Outline

* Explicit Density Models
— Boltzmann Machines & Deep Belief Networks (DBN)
— Variational Auto-encoders (VAE)

* Implicit Density Models

— Generative Adversarial Networks (GAN)



Boltzmann Machines

x: d-dimensional binary vector

P(X) _ eXp(_ZE(x))

Z =) exp(-E(x))

Energy function given by:

E(x)=-x"Ux-b"x



Visible and Hidden Units

x: d-dimensional binary vector

exp(—E(v,h))
V4

Z =" exp(=E(v,h))

v,h

P(v,h) =

Energy function given by:

EW,h) = vV Rv—v'Wh-h'Sh-b"v-c"h



Training Boltzmann Machines

e Maximume-likelihood estimation
e Partition function is intractable
* May be estimated with MCMC methods



Restricted Boltzmann Machines

* No connections among hidden units, and
among visible units (bipartite graph)




Restricted Boltzmann Machines

x: d-dimensional binary vector

exp(—E(v,h))
V4

Z =" exp(=E(v,h))

v,h

P(v,h) =

Energy function given by:

E(v,h) = "v—c"h=v'Wh



Training RBMs

* Conditional distributions have simple form
P(hj =1‘v) = O'(Cj+(WTV)j)

P(v,=1h)
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e Efficient MCMC: block Gibbs sampling
— Alternatively sample from P(h|v) and P(v|h)



Deep Belief Networks

. . Introduction of DBNs in
* MU|t|p|e hidden Iayers 2006 began the current
deep learning renaissance

Undirected
connections
between last
two layers




Deep Belief Networks
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(K-1) p(K)y _ (K-1) 7 (K)
P(h'",h") = exp(E(h Jh ))

P(hi(l) _ l‘h(z)) _ O’(bl(.Z) Fw® .h(z))
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Layer-wise DBN Training
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Train an RBM to
maximize

Ev~pdam log p@ (V)



Layer-wise DBN Training
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Layer-wise DBN Training
Train an RBM to
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Outline

* Explicit Density Models
— Boltzmann Machines & Deep Belief Networks (DBN)
— Variational Auto-encoders (VAE)

* Implicit Density Models

— Generative Adversarial Networks (GAN)



Recap: Autoencoder

B—) Encoder —)—) Decoder %B




Variational Autoencoder

e Easier to train using gradient-based methods
* VAE sampling:

Sample from P(z) Secod
Standard Gaussian |/ = ecoaer
P(x]|z)

B



VAE Likelihood

Neural network

;

po(x)= [ po (x| )py )z

Difficult to approximate in high
dim through sampling

For most z values p(x|z) close to O



VAE Likelihood

Another neural net

Po(x) = [ Py (x[) 4, (2]x)

y

dz

Proposal distribution:
Likely to produce values of x
for which p(x|z) is non-zero

()




VAE Architecture
Mean u
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VAE Loss

Reconstruction Loss

B, 108 (P (+12)



VAE Loss

Proposal distribution should
Reconstruction Loss resemble a Gaussian

-Ezlog(m(x\z)) + KL (g, (2]x) po(2)




VAE Loss

Proposal distribution should

Reconstruction Loss resemble a Gaussian
_Ezlog(pt9 (X‘Z)) + KL(‘% (Z‘xj pe(z))

= —log p, (x)

Variational upper bound
on loss we care about!



Training VAE

* Apply stochastic gradient descent
* Sampling step not differentiable
* Use are-parameterization trick

— Move sampling to input layer, so that the
sampling step is independent of the model



Boltzmann Machines vs. VAE

Pros:

* VAE is easier to train

* Does not require MCMC sampling

* Has theoretical backing

e Applicable to wider range of models

Cons:
 Samples from VAE tend to be blurry
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Outline

* Explicit Density Models
— Boltzmann Machines & Deep Belief Networks (DBN)
— Variational Auto-encoders (VAE)

* Implicit Density Models
— Generative Adversarial Networks (GAN)



Generative Adversarial Networks

* No Markov chains needed
* No variational approximations needed
e Often regarded as producing better examples



Two Player Game

Generator G

Seeks to create
samples fromp_,,

Seeks to trick discriminator
into believing that its samples
are genuine

Discriminator D

Classifies samples
as real or fake

Seeks to not get tricked
by the generator



GAN Overview

- 3 Gene6rator 3 B

Code drawn
from a prior
distribution

Training
sample



Min-max Cost

Discriminator seeks to
predict 1 on training
samples

V(6°,0°) =

E

X~ Pdata

log D(x)

+

Discriminator wants to

predict 0 on samples
generated by G

E, log(l-D(G(2)))

Generator wants D to not distinguish between
original and generated samples!

J(G) _ V(H(D) H(G))

J(D) _ —V(Q(D) H(G))




Min-max Cost

minmax J(6°,0")
6° 6"

* Equilibrium is a saddle-point
* Training is difficult in practice



Training GANSs

* Sample mini-batch of training images x, and
generator codes z

* Update G using back-prop
e Update D using back-prop

Optional: Run k steps of one player for every
step of the other player



Radford et al., 2015



