#### Lecture 17: RNN CS 109B, STAT 121B, AC 209B, CSE 109B

#### Mark Glickman and Pavlos Protopapas



### Sequence Modeling



Economic growth has slowed down in recent years . Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt . Economic growth has slowed down in recent years .

La croissance économique s' est ralentie ces dernières années .

Winter is here. Go to the store and buy some snow shovels.

Winter is here. Go to the store and buy some snow shovels.

#### **Recurrent Networks**

- Image/grid data: convolution networks
- Sequence data: parameter sharing across time



### **Example: Machine Translation**



### Unfolding the network



#### Input sequence

Sequence length may vary for each input

#### Hidden-to-hidden Recurrence

E.g. language traslation



Recurrent connections between hidden units

#### Hidden-to-hidden Recurrence

$$h^{(t)} = \sigma(\mathbf{W}h^{(t-1)} + \mathbf{U}x^{(t-1)} + b)$$
$$\hat{y}^{(t)} = \operatorname{softmax}(\mathbf{V}h^{(t)} + c)$$

#### **Output-to-output Recurrence**

E.g. auto text completion



Recurrent connections between output and hidden units

### Single Output RNN

**Positive /Negative** 



**Product review** 

Output summarizes input sequence

# Outline

- RNN as a graphical model
- RNN training
- Long-term dependencies
- Gated RNN
- RNN variants

#### Loss Computation

**Target outputs** 



### **Conditioned on Target Outputs**

Log-likelihood (cross-entropy)

Ρ

$$-\log P\left(o^{(t)} = y^{(t)} | x^{(1)}, \dots, x^{(t)}, y^{(1)}, \dots, y^{(t-1)}\right)$$
  
rediction at t Target at t

### **Conditioned on Target Outputs**

Log-likelihood (cross-entropy)

$$-\log P\left(o^{(t)} = y^{(t)} | x^{(1)}, \dots, x^{(t)}, y^{(1)}, \dots, y^{(t-1)}\right)$$
  
Prediction at *t* Target at *t*

 Conditioned on past inputs and outputs, output at time t is independent of future outputs

### **Conditioned on Predicted Outputs**



### **Conditioned on Predicted Outputs**

Log-likelihood

Past predictions instead of true outputs

$$-\log P\left(o^{(t)} = y^{(t)} \middle| x^{(1)}, \dots, x^{(t)}, \underbrace{o^{(1)}, \dots, o^{(t-1)}}_{\text{Target at } t}\right)$$
Prediction at t

### **Conditioned on Predicted Outputs**

Log-likelihood

Past predictions instead of true outputs

$$-\log P\left(o^{(t)} = y^{(t)} \middle| x^{(1)}, \dots, x^{(t)}, \underbrace{o^{(1)}, \dots, o^{(t-1)}}_{\text{Target at } t}\right)$$
Prediction at  $t$ 
Target at  $t$ 

 Conditioned on inputs, output at time t is independent of everything else

### Fully-connected graphical model

#### Simple example: *Predict day's stock prices* based on previous prices



Inefficient parametrization

### RNN graphical model

Simple example: *Predict day's stock prices* based on previous prices



*Efficient* parametrization, but stationary distribution

# Outline

- RNN as a graphical model
- RNN training
- Long-term dependencies
- Gated RNN
- RNN variants

### Backprop Through Time

- For each input, unfold network for the sequence length *T*
- Back-propagation: apply forward and backward pass on unfolded network
- Memory cost: O(T)

### Case of Output Recurrence



No hidden-to-hidden recurrence



Test time

#### Case of Output Recurrence

Loss at time *t*:

**Teacher Forcing** 

$$L^{(t)} = -\log P\left(o^{(t)} = y^{(t)} \middle| x^{(1)}, \dots, x^{(t)}, \underbrace{y^{(1)}, \dots, y^{(t-1)}}_{\mathbf{A}}\right)$$
Use ground truth from previous time steps

Loss at different time steps are *decoupled* 

# Outline

- RNN as a graphical model
- RNN training
- Long-term dependencies
- Gated RNN
- RNN variants

#### **Deep Recurrent Nets**

Multiple layers between recurrent state and output

Multiple layers between input and recurrent state



Multiple layers between current and previous hidden states

### Long-term Dependencies

- Unfolded networks can be very deep
- Long-term interactions are given exponentially smaller weights than small-term interactions
- Gradients tend to either *vanish* or *explode*

### **Gradient Clipping**

- Prevents exploding gradients
- Clip the norm of gradient before update:

$$\begin{array}{l} \text{if } ||\boldsymbol{g}|| > v \\ \boldsymbol{g} \leftarrow \frac{\boldsymbol{g}v}{||\boldsymbol{g}||} \end{array}$$

### **Gradient Clipping**



### **Skip Connections**

- Add additional connections between units *d* time steps apart
- Creating paths through time where gradients neither vanish or explode



### Leaky Units

- Linear self-connections
- Maintain cell state: running average of past hidden activations

### Standard RNN





# Outline

- RNN as a graphical model
- RNN training
- Long-term dependencies
- Gated RNN
- RNN variants

### Long Short-Term Memory

- Handles long-term dependencies
- Leaky units where weight on self-loop α is context-dependent
- Allow network to decide whether to accumulate or forget past info

### Long Short-Term Memory



#### **Cell State** $h_t$ $C_t$ $C_{t-1}$ $(\mathsf{X})$ $h_{t-1}$ $h_t$

 $x_t$ 

#### Forget Gate



$$f^{(t)} = \sigma(W^{f}h^{(t-1)} + U^{f}x^{(t)})$$

#### Input Gate $h_t \blacktriangle$ $C_t$ $C_{t-1}$ $\tilde{C}_t$ tanh σ $h_t$ $h_{t-1}$ $x_t$

$$i^{(t)} = \sigma(W^{i}h^{(t-1)} + U^{i}x^{(t)})$$
  

$$\tilde{C}^{(t)} = \tanh(Wh^{(t-1)} + Ux^{(t)})$$

#### **Cell State Update**



 $C^{(t)} = f^{(t)}C^{(t-1)} + i^{(t)}\tilde{C}^{(t)}$ 

#### **Output Gate**



$$q^{(t)} = \sigma(W^{o}h^{(t-1)} + U^{o}x^{(t)})$$
$$h^{(t)} = \tanh(C^{(t)})$$

# Outline

- RNN as a graphical model
- RNN training
- Long-term dependencies
- Gated RNN
- RNN variants

#### **Encoder-decoder Networks**



### **Bidirectional Network**



Output prediction may depend on whole input sequence

E.g. speech recognition: current sound may depend on future phonemes

Backprop?

#### **Recursive Network**



Tree structure vs. chain E.g. parse tree in NLP

Reduce network depth by using taller trees