
Lecture	17:	RNN
CS	109B,	STAT	121B,	AC	209B,	CSE	109B

Mark	Glickman	 and	Pavlos Protopapas



Sequence	Modeling



Recurrent	Networks

• Image/grid	data:	convolution	networks
• Sequence	data:	parameter	sharing	across	time



Example:	Machine	Translation

My					name						is					Pavlos
x(1) x(2) x(3) x(4)

h(1) h(2) h(3) h(4)

το	όνομά	μου είναι Pavlos
y(1) y(2) y(3) y(4)



Unfolding	the	network

Input	sequence

Sequence	length	may	
vary	for	each	input



Hidden-to-hidden	Recurrence

Recurrent	connections	between	hidden	units

E.g.	language	traslation



Hidden-to-hidden	Recurrence

h(t )  =  σ (Wh(t−1) +Ux(t−1) + b)
ŷ(t )  =  softmax(Vh(t ) + c)



Output-to-output	Recurrence

Recurrent	connections	between	output	and	hidden	units

E.g.	auto	text	completion



Single	Output	RNN	

Output	summarizes	input	sequence

Product	review

Positive	/Negative
E.g. sentiment	classification



Outline

• RNN	as	a	graphical	model
• RNN	training
• Long-term	dependencies
• Gated	RNN
• RNN	variants



Loss	Computation
Target	outputs

L = L(t )
t
∑



Conditioned	on	Target	Outputs	

• Log-likelihood		(cross-entropy)

− logP o(t ) = y(t ) x(1),…, x(t ),  y(1),…, y(t−1)( )
Prediction	at	t Target	at	t



Conditioned	on	Target	Outputs

• Log-likelihood	 (cross-entropy)

• Conditioned	on	past	inputs	and	outputs,	output	
at	time	t is	independent	of	future	outputs

− logP o(t ) = y(t ) x(1),…, x(t ),  y(1),…, y(t−1)( )
Prediction	at	t Target	at	t



Conditioned	on	Predicted	Outputs

L = L(t )
t
∑



Conditioned	on	Predicted	Outputs

• Log-likelihood
Past	predictions	

instead	of	true	outputs

Prediction	at	t Target	at	t

− logP o(t ) = y(t ) x(1),…, x(t ),  o(1),…,o(t−1)
! "###########( )



Conditioned	on	Predicted	Outputs

• Log-likelihood

• Conditioned	on	inputs,	output	at	time	t is	
independent	of	everything	else

− logP o(t ) = y(t ) x(1),…, x(t ),  o(1),…,o(t−1)
! "###########( )

Past	predictions	
instead	of	true	outputs

Prediction	at	t Target	at	t



Fully-connected	graphical	model

Inefficient parametrization

Simple	example: Predict	day’s	stock	prices	
based	on	previous	prices



RNN	graphical	model

Efficient parametrization,	
but	stationary	distribution

Simple	example: Predict	day’s	stock	prices	
based	on	previous	prices



Outline

• RNN	as	a	graphical	model
• RNN	training
• Long-term	dependencies
• Gated	RNN
• RNN	variants



Backprop Through	Time

• For	each	input,	unfold	network	for	the	
sequence	length	T

• Back-propagation:	apply	forward	and	
backward	pass	on	unfolded	network

• Memory	cost:	O(T)



Case	of	Output	Recurrence

No	hidden-to-hidden	
recurrence



Case	of	Output	Recurrence

Loss	at	time	t:

Use	ground	truth	from	
previous	time	steps

L(t ) = − logP o(t ) = y(t ) x(1),…, x(t ),  y(1),…, y(t−1)
! "###########( )

Loss	at	different	time	steps	are	decoupled

Teacher	Forcing



Outline

• RNN	as	a	graphical	model
• RNN	training
• Long-term	dependencies
• Gated	RNN
• RNN	variants



Deep	Recurrent	Nets

Multiple	layers	
between	current	and	
previous	hidden	states

Multiple	layers	
between	recurrent	
state	and	output

Multiple	layers	
between	input	and	
recurrent	state



Long-term	Dependencies

• Unfolded	networks	can	be	very	deep
• Long-term	interactions	are	given	exponentially	
smaller	weights	than	small-term	interactions

• Gradients	tend	to	either	vanish or	explode



Gradient	Clipping

• Prevents	exploding	gradients
• Clip	the	norm	of	gradient	before	update:



Gradient	Clipping



Skip	Connections

• Add	additional	connections	between	units	d
time	steps	apart

• Creating	paths	through	time	where	gradients	
neither	vanish or	explode

t-1 t t+1



Leaky	Units

• Linear	self-connections
• Maintain	cell	state:	running	average	of	past	
hidden	activations



Standard	RNN

C (t ) = tanh(Wh(t−1) +Ux(t−1) )
h(t )  =  C (t )

C (t )

colah.github.io



Leaky	Unit	
✕

C (t ) = tanh(Wh(t−1) +Ux(t−1) )
h(t )  =  αh(t−1)  +  (1-α)C (t )

C (t )

colah.github.io



Outline

• RNN	as	a	graphical	model
• RNN	training
• Long-term	dependencies
• Gated	RNN
• RNN	variants



Long	Short-Term	Memory

• Handles	long-term	dependencies
• Leaky	units	where	weight	on	self-loop	α is	
context-dependent

• Allow	network	to	decide	whether	to	
accumulate	or	forget past	info



Long	Short-Term	Memory

colah.github.io



Cell	State

colah.github.io



Forget	Gate

f (t )  =σ (W fh(t−1) +U f x(t ) ) 
colah.github.io



Input	Gate

i(t )  =σ (Wih(t−1) +Uix(t ) ) 
!C (t )  = tanh(Wh(t−1) +Ux(t ) ) 

colah.github.io



Cell	State	Update

C (t ) = f (t )C (t−1) + i(t ) !C (t )

colah.github.io



Output	Gate

q(t )  =σ (Woh(t−1) +Uox(t ) ) 
h(t )  = tanh(C (t ) ) 

qt

colah.github.io



Outline

• RNN	as	a	graphical	model
• RNN	training
• Long-term	dependencies
• Gated	RNN
• RNN	variants



Encoder-decoder	Networks

RNN	output	
sequence	can	be	of	
different	length	than	
input	sequence

RNN

RNN



Bidirectional	Network

Output	prediction	may	depend	on	
whole	input	sequence

E.g.	speech	recognition:	current	sound	
may	depend	on	future	phonemes

Backprop?



Recursive	Network

Tree	structure	vs.	chain	
E.g.	parse	tree	in	NLP

Reduce	network	depth	by	
using	taller	trees


