
Lecture	15:	Optimization
CS	109B,	STAT	121B,	AC	209B,	CSE	109B

Mark	Glickman	 and	Pavlos Protopapas

Learning	vs.	Optimization

• Goal	of	learning:	minimize	generalization	error

• In	practice,	empirical	risk	minimization:

J(θ) = E(x,y)~pdata L(f (x;θ), y)[]

Ĵ(θ) = 1
m

L
i=1

m

∑ (f (x(i);θ), y(i))

Quantity	optimized	
different	from	the	quantity	

we	care	about

Batch	vs.	Stochastic	Algorithms

• Batch	algorithms
– Optimize	empirical	risk	using	exact	gradients

• Stochastic	algorithms
– Estimates	gradient	from	a	small	random	sample

∇J(θ) = E(x,y)~pdata ∇L(f (x;θ), y)[]

Large	mini-batch:	gradient	computation	expensive

Small	mini-batch:	greater	variance	in	estimate,	
longer	steps	for	convergence

Critical	Points

• Points	with	zero	gradient	
• 2nd-derivate	(Hessian)	determines	curvature

Goodfellow et	al.	(2016)

Stochastic	Gradient	Descent

• Take	small	steps	in	direction	of	negative	gradient
• Sample	m examples	from	training	set	and	compute:

• Update	parameters:

g = 1
m

∇L(f (x(i);θ), y(i))
i
∑

θ =θ −εkg

In	practice:	shuffle
training	set	once	and	pass	
through	multiple	times

Stochastic	Gradient	Descent

Oscillations	because	
updates	do	not	exploit	
curvature	information

J(θ)

Goodfellow et	al.	(2016)

Outline

• Challenges	in	Optimization
• Momentum
• Adaptive	Learning	Rate
• Parameter	Initialization	
• Batch	Normalization

Local	Minima

Goodfellow et	al.	(2016)

Local	Minima

• Old	view:	local	minima	is	major	problem	in	
neural	network	training

• Recent	view:		
– For	sufficiently	large	neural	networks,	most	local	
minima	incur	low	cost

– Not	important	to	find	true	global	minimum

Saddle	Points

• Recent	studies	indicate	that	in	
high	dim,	saddle	points	are	
more	likely	than	local	min

• Gradient	can	be	very	small	
near	saddle	points

Both	local	min	
and	max

Goodfellow et	al.	(2016)

Saddle	Points

• SGD	is	seen	to	escape	saddle	points
–Moves	down-hill,	uses	noisy	gradients

• Second-order	methods	get	stuck
– solves	for	a	point	with	zero	gradient

Goodfellow et	al.	(2016)

Poor	Conditioning

• Poorly	conditioned	Hessian	matrix
– High	curvature:	small	steps	leads	to	huge	increase	

• Learning	is	slow	despite	strong	gradients

Oscillations	slow	
down	progress

Goodfellow et	al.	(2016)

No	Critical	Points

• Some	cost	functions	do	not	have	critical	points

Goodfellow et	al.	(2016)

No	Critical	Points

Gradient	norm	increases,	but	validation	error	decreases

Convolution	Nets	for	Object	Detection

Goodfellow et	al.	(2016)

Exploding	and	Vanishing	Gradients

h1 =Wx
hi =Whi−1, i = 2…n

y =σ (h1
n + h2

n), where σ (s) = 1
1+ e−s

Linear	
activation

deeplearning.ai

Exploding	and	Vanishing	Gradients

h1
1

h1
2

!

"

#
#

$

%

&
&
= a 0

0 b

!

"
#

$

%
&

x1

x2

!

"
#
#

$

%
&
&
 !

hn1
hn2

!

"

#
#

$

%

&
&
= an 0

0 bn
!

"
#
#

$

%
&
&

x1

x2

!

"
#
#

$

%
&
&

Suppose W = a 0
0 b

!

"
#

$

%
& :

y =σ (anx1 + b
nx2)

∇y = "σ (anx1 + b
nx2)

nan−1x1
nbn−1x2

$

%

&
&

'

(

)
)

Exploding	and	Vanishing	Gradients

Suppose x = 1
1

!

"
#

$

%
&

Case 1: a =1, b = 2 :

 y→1, ∇y→ n
n2n−1

!

"
#
#

$

%
&
&

Case 2: a = 0.5, b = 0.9 :

 y→ 0, ∇y→ 0
0

!

"
#

$

%
&

Explodes!

Vanishes!

Exploding	and	Vanishing	Gradients

• Exploding	gradients	lead	to	cliffs
• Can	be	mitigated	using	gradient	clipping

Goodfellow et	al.	(2016)

Poor	correspondence	between	
local	and	global	structure

Goodfellow et	al.	(2016)

Outline

• Challenges	in	Optimization
• Momentum
• Adaptive	Learning	Rate
• Parameter	Initialization	
• Batch	Normalization

Momentum

• SGD	is	slow	when	there	is	high	curvature

• Average	gradient	presents	faster	path	to	opt:
– vertical	components	cancel	out

J(θ)

Deeplearning.ai

Momentum
• Uses	past	gradients	for	update
• Maintains	a	new	quantity:	‘velocity’
• Exponentially	decaying	average of	gradients:

v = αv + (−εg)
controls	how	quickly	

effect	of	past	gradients	decay
α ∈ [0,1)

Current	gradient	update

Momentum

• Compute	gradient	estimate:

• Update	velocity:

• Update	parameters:

g = 1
m

∇θL(f (x
(i);θ), y(i))

i
∑

v =αv−εg

θ =θ + v

Momentum

Damped	oscillations:
gradients	in	opposite	
directions	get	
cancelled	out

J(θ)

Goodfellow et	al.	(2016)

Nesterov Momentum

• Apply	an	interim update:

• Perform	a	correction	based	on	gradient	at	the	
interim	point:

g = 1
m

∇θL(f (x
(i); !θ), y(i))

i
∑
v =αv−εg

θ =θ + v

!θ =θ + v

Momentum	based	on	
look-ahead	slope

Outline

• Challenges	in	Optimization
• Momentum
• Adaptive	Learning	Rate
• Parameter	Initialization	
• Batch	Normalization

Adaptive	Learning	Rates

• Oscillations	along	vertical	direction
– Learning	must	be	slower	along	parameter	2

• Use	a	different	learning	rate	for	each	parameter?

θ1

θ2

J(θ)

AdaGrad

• Accumulate	squared	gradients:

• Update	each	parameter:

• Greater	progress	along	gently	sloped	
directions

ri = ri + gi
2

θi =θi −
ε

δ + ri
gi

Inversely	
proportional	to	
cumulative	
squared	gradient

RMSProp

• For	non-convex	problems,	AdaGrad can	
prematurely	decrease	learning	rate

• Use	exponentially	weighted	average	for	
gradient	accumulation

ri = ρri + (1− ρ)gi
2

θi =θi −
ε

δ + ri
gi

Adam

• RMSProp +	Momentum
• Estimate	first	moment:

• Estimate	second	moment:

• Update	parameters:

vi = ρ1vi + (1− ρ1)gi

θi =θi −
ε

δ + ri
vi

ri = ρ2ri + (1− ρ2)gi
2

Also	applies	
bias	correction	

to	v and	r

Works	well	in	practice,	
is	fairly	robust	to	
hyper-parameters

Outline

• Challenges	in	Optimization
• Momentum
• Adaptive	Learning	Rate
• Parameter	Initialization	
• Batch	Normalization

Parameter	Initialization

• Goal:	break	symmetry	between	units
– so	that	each	unit	computes	a	different	function

• Initialize	all	weights	(not	biases)	randomly
– Gaussian	or	uniform	distribution

• Scale	of	initialization?
– Large ->	grad	explosion,		Small ->	grad	vanishing

Xavier	Initialization

• Heuristic	for	all	outputs	to	have	unit	variance
• For	a	fully-connected	layer	with	m inputs:

• For	ReLU units,	it	is	recommended:

Wij ~ N 0, 1
m

!

"
#

$

%
&

Wij ~ N 0, 2
m

!

"
#

$

%
&

Normalized	Initialization
• Fully-connected	layer	with	m inputs,	n outputs:

• Heuristic	trades	off	between	initialize	all	layers	
have	same	activation	and	gradient	variance

• Sparse variant	when	m is	large
– Initialize	k nonzero	weights	in	each	unit

Wij ~U −
6

m+ n
, 6

m+ n

"

#
$

%

&
'

Bias	Initialization

• Output	unit	bias
–Marginal	statistics	of	the	output	in	the	training	set

• Hidden	unit	bias
– Avoid	saturation	at	initialization
– E.g.	in	ReLU,	initialize	bias	to	0.1	instead	of	0

• Units	controlling	participation	of	other	units
– Set	bias	to	allow	participation	at	initialization

Outline

• Challenges	in	Optimization
• Momentum
• Adaptive	Learning	Rate
• Parameter	Initialization	
• Batch	Normalization

Feature	Normalization

• Good	practice	to	normalize	features	before	
applying	learning	algorithm:

• Features	in	same	scale:	mean	0	and	variance	1
– Speeds	up	learning

!x = x −µ
σ

Vector	of	mean	feature	values

Vector	of	SD	of	feature	values

Feature	vector

Feature	Normalization

Before	normalization After	normalization

J(θ)

Internal	Covariance	Shift

Each	hidden	layer	changes	distribution	of	
inputs	to	next	layer:	slows	down	learning

Normalize	
inputs	to	layer	2

Normalize	
inputs	to	layer	n

…

Batch	Normalization

• Training	time:
–Mini-batch	of	activations	for	layer	to	normalize

H =

H11 ! H1K

" # "
HN1 ! HNK

!

"

#
#
#
#

$

%

&
&
&
&

K hidden	layer	
activations

N data	points	in	
mini-batch

Batch	Normalization

• Training	time:	
–Mini-batch	of	activations	for	layer	to	normalize

where

H ' = H −µ
σ

µ =
1
m

Hi,:
i
∑ σ =

1
m

(H −µ)i
2 +δ

i
∑

Vector	of	mean	activations	
across	mini-batch

Vector	of	SD	of	each	unit	
across	mini-batch

Batch	Normalization

• Training	time:	
– Normalization	can	reduce	expressive	power
– Instead	use:

– Allows	network	to	control	range	of	normalization

Learnable	parameters

γ !H +β

µ1 =
1
m

Hi,:
i
∑

σ 1 =
1
m

(H −µ)i
2 +δ

i
∑

Batch	Normalization

…
..

Batch	1

Batch	N
Add	normalization	
operations	for	layer	1

µ 2 =
1
m

Hi,:
i
∑

σ 2 =
1
m

(H −µ)i
2 +δ

i
∑

Batch	Normalization

Batch	1

Batch	N
…
..

Add	normalization	
operations	for	layer	2	
and	so	on	…	

Batch	Normalization

• Differentiate	the	joint	loss	for	Nmini-batches
• Back-propagate	through the	norm	operations

• Test	time:
–Model	needs	to	be	evaluated	on	a	single	example
– Replace	μ and	σ with	running averages	collected	
during	training

