Lecture 14: Regularization
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Lecture 3
Regularization



Regularization is any modification we make to a
learning algorithm that is intended to reduce its
generalization error but not its training error
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Norm Penalties

* Optimize:

Biases not

J(Q, X,y) n ag(e) penalized

* L, regularization: |
— decays weights Q(0) = EHW
— MAP estimation with Gaussian prior
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* L, regularization: 2(0) = HWH1

— encourages sparsity
— MAP estimation with Laplacian prior



L, Regularization
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Norm Penalties as Constraints

min J(0; X,y)

Q(0) <K

e Useful if Kis known in advance

* Optimization:
— Construct Lagrangian and apply gradient descent
— Projected gradient descent



Early Stopping

Early stopping: terminate while validation set
performance is better
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Early Stopping = Weight Decay
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* Weight decay on activations instead of

parameters
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y € R™ B ¢ Rmxn

J( O, X,y) + aQ(h)

Sparse Representations

Output of
hidden layer

h ¢ R"
Weights in output layer



Data Augmentation

Affine , Elastic
Noise

Distortion Deformation
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Noise Robustness

 Random perturbation of network weights

— Gaussian noise: Equivalent to minimizing loss with
regularization term E[||V,,y(x)|]

— Encourages smooth function: small perturbation
in weights leads to small changes in output

* |njecting noise in output labels

— Better convergence: prevents pursuit of hard
probabilities



Bagging

Original dataset
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Dropout
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Dropout: Stochastic GD

* For each new example/mini-batch:

— Randomly sample a binary mask « independently,
where u; indicates if input/hidden node i is included

— Multiply output of node i with u«;, and perform
gradient update

e Typically, an input node is included with
prob.0.8, hidden node with prob. 0.5



Dropout: Weight Scaling

* During prediction time use all units, but scale
weights with probability of inclusion

w W

Present with Always

probability p present

Training Time Prediction Time

* Approximates the following inference rule:

pensemble Y | 33 = 2d Hp | T p,
Cristina Scheau (2016)



Adversarial Examples

. T +
* SIgn(Val0:2,9))  gion(v,(0,z,))
y ="“panda” “nematode” “gibbon”
w/ 57.7% w/ 8.2% w/ 99.3 %
confidence confidence confidence

Training on adversarial examples is mostly
intended to improve security, but can sometimes

rovi ric regularization.
prov de SCNETIC Tegula, atlo deeplearningbook.org



Multi-task Learning
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