Lecture 12-13: Basic Neural Nets

Deep Feedforward Networks
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* http://video.arstechnica.com/watch/sunsprin
g-sci-fi-short-film



Today’s news
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An Al just beat top lawyers at their own
game

IMAGE: BOB AL-GREEN/MASHABLE
The nation's
top lawyers recently battled artificial intelligence in
a competition to interpret contracts — and they
lost.

A new study, conductr e lnnnl Al nindorm
LawGeex in consultati £ Share 09016 ssors from
Stanford University, Duke University School of Law,
and University of Southern California, pitted twenty
experienced lawyers against an Al trained to
evaluate legal contracts.

Competitors were given four hours to review five
non-disclosure agreements (NDAs) and identify 30
legal issues, including arbitration, confidentiality of
relationship, and indemnification. They were scored
by how accurately they identified each issue.

SEE ALSO: Google's new Al can predict heart
disease by simply scanning your eyes



Google's new Al can predict heart
disease by simply scanning your eyes

|
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A The secret to identifying certain health conditions
‘ gy may be hidden in our eyes.

MONICA

CHIN Researchers from Google and its health-tech

E subsidiary Verily announced on Monday that they
2@2 have successfully created algorithms to predict
whether someone has high blood pressure or is at
risk of a heart attack or stroke simply by scanning a
person's eyes, the Washington Post reports.

SEE ALSO: This fork helps you stay healthy

Google's researchers trained the algorithm with
images of scanned retinas from more than 280,000
patients. By reviewing this massive database,
Google's algorithm trained itself to recognize the
patterns that designated people as at-risk.

This algorithm's success is a sign of exciting
developments in healthcare on the horizon. As
Google fine-tunes the technology, it could one day



AlphaZero (2017)

DeepMind
AlphaZero Al beats champion chess

program after teaching itself in four
hours

Google's artificial intelligence sibling DeepMind repurposes Go-playing Al to
conquer chess and shogi without aid of human knowledge

theguardian.com



AlphaGo (2015)

First program to beat a professional Go player

’5 Google DeepMind
Challenge Match

: 00:36:22)



iOS Speech Synthesis (2016-)

Trained from 20 hours of high quality speech

“Siri, what is
Deep Learning?”

machinelearning.apple.com



Google Brain (2012)

e Differentiate between human face and cat

— Neural network with 1 billion connections
— 10 million 200x200 pixel images from YouTube

Le et al., ICML 2012



Historical Trends
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Historical Trends

Deep Neural Network
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Historical Trends
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eep Learning vs Classica

Deep learning Example:
Shallow
Example: autoencoders
MLPs

Example: Example:

Logistic Knowledge

regression bases

Representation learning

Machine learning

(Goodfellow 2016)



Representation Matters

Cartesian coordinates

Polar coordinates

r
(Goodfellow 2016)



Neural Network
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earning Multiple Components

Output
A
Mapping fr
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Additional
Output Mapping from Mapping from layers of more
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Hand- Hand- Simple
designed designed Features R tp
program features catres
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. Deep
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machine
systems learning Representation

learning (Goodfe”OW 2016)



Depth = Repeated Compositions

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

(Goodfellow 2016)



Beyond Linear Models

* Linear models
— Can be fit efficiently (via convex optimization)
— Limited model capacity

e Alternative:

fx)=w ¢(x)

where ¢ is a non-linear transform



Traditional ML

* Manually engineer ¢

— Domain specific, enormous human effort

* Generic transform
— Maps to a higher-dimensional space
— Kernel methods: e.g. RBF kernels
— Over fitting: does not generalize well to test set

— Cannot encode enough prior information



Deep Learning

Directly learn ¢

f(x:0)=w ¢(x;0)

where @ are parameters of the transform
¢ defines hidden layers

Non-convex optimization

Can encode prior beliefs, generalizes well



SVM vs Neural Networks

* Hand-written digit recognition: MNIST data
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See illustration in notebook



Example: Learning XOR
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* Optimal linear model (sg. loss)
— Predicts 0.5 on all points



Example: Learning XOR

h =o(w, x+c)
h,=0(w,x+c,)

()
0*6 y= (W h+Db)
) &

where,

0 (z)=max4{0,z}

See illustration in notebook



Design Choices

Cost function
Output units
Hidden units
Architecture
Optimizer



Cost Function

* Cross-entropy between training data and
model distribution (i.e. negative log-likelihood)

J(H) — ﬂx,ywﬁdata 1ngmodel(y ‘ 33)

* Do not need to design separate cost functions
* Gradient of cost function must be large enough



Cost Function

 Example: sigmoid output + squared loss
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Cost Function

* Example: sigmoid output + cross-entropy loss

L.(y,2)=—(ylog(z)+(1-y)log(l-z))

log undoes exp

y=0 / \ _y=1

_Sigmoid

o [ N w = v
o - N w ) [5,]

Cross-entropy Loss

Cross-entropy Loss
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N
[=]
N
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o
o
(=]

A A A
\aturates only when the mode/

makes correct predictions



Design Choices

Cost function
Output units
Hidden units
Architecture
Optimizer



Output Units

Output Output Cost
Output Type . . . 0. ’ :
Distribution Layer Function
Binary cross-
Binary Bernoulli Sigmoid Y
entropy
) , , Discrete cross-
Discrete Multinoulli Softmax
entropy
(Gaussian cross-
Continuous (Gaussian Linear
entropy (MSE)
, Mixture of Mixture
Continuous _ , Cross-entropy
Gaussian Density
. . See part ITI: GAN, .
Continuous Arbitrary VAE, FVBN Various

(Goodfellow 2017)



Softmax Output

* Discrete / Multinoulli output distribution
* For output scores z,, ..., Z,

exp(z;)
EjeXp(zj)

* Log-likelihood undoes exp

softmax(z), =

logsoftmax(z), = z, —log E exp(z;)
j

~ 7, —Max 7,

(Score to target label — Maximum score)



Mixture Density Output

(Goodfellow 2017)



Design Choices

Cost function
Output units
Hidden units
Architecture
Optimizer



Hidden Units

h=g(W' x+b)
with activation function g

— Ensure gradients remain large through hidden unit
— Preferred: piece-wise linear activation
— Avoid sigmoid/tanh activation

* Do not provide useful gradient info when they saturate



RelLU

e Rectified Linear Units

8(z) = max<0,z}

0

v
e Gradientis 1 whenever unit is active

— More useful for learning compared to sigmoid
— No useful gradient information when z<0



Generalized RelLU

* Generalization: For «, >0,
g(z;a), =max{0,z } +a min{0,z }

* E.g. Absolute value RelU: o, =-1 = g(z)=Iz|



Maxout

* Directly learn the activation function

— Max of £ linear functions

= max oa.z.+ PD.
8(2) =g % /5’

(a]_l Bl) (OL3, B3)

(a,, B,)



Design Choices

Cost function
Output units
Hidden units
Architecture
Optimizer



Universal Approximation Theorem

* One hidden layer is enough to
represent an approximation of @
any function to an arbitrary

degree of accuracy G °

Depth

* So why deeper? ‘
— Shallow net may need °

(exponentially) more width | Width
— Shallow net may overfit more



Exponential Gain with Depth

* Each hidden layer folds the space of activations
of the previous layer. E.g. abs activation g(z)=Iz|

Montufar (2014)
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1. Fold along the 2. Fold along the
vertical axis horizontal axis



Exponential Gain with Depth

* With N hidden layers, there are O(4V) piecewise
linear regions

Input Space Montufar (2014)
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See illustration in notebook




Better Generalization with Depth
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Large, Shallow Nets Overfit More

97 | | | | |
= o6 e—e 3 convolutional
o - _
Q +—+ 3, fully connected
—
é 95 [ V—V 11, convolutional [
>y
§ 94 |- i
.
S 93 | | , . -
< T !
S 92} .
91 | | ] | ]
0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters x10%

(Goodfellow 2017)



Design Choices

Cost function
Output units
Hidden units
Architecture
Optimizer



Gradient-based Optimizer

(e.g. stochastic gradient descent)

* “Chain rule” for computing gradients:

y=g(x) z=f(y)

a_Z=E 07 ay]'
dx, = dy; ox,
* For deeper networks Naive computation

takes exponential time

0z dz 0y,
a—%_z...zayh...&;

J Jm




Backpropagation

* Avoids repeated sub-expressions
* Uses dynamic programming (table filling)
* Trades-off memory for speed



Backprop: Arithmetic

e Jacobian-gradient products

dy dz, 0z, dy
z=8() .= N
y=/(2) 0y Jz, 0z, 0y
gr_ad w.r.t. x- - Jacobian of ‘g’ - g_rad W.rt. z

0Z ! Appl
L

X recursively!



Backprop: Overview

Forward prop: compute activations

0

Back-prop: compute derivatives

Compute
loss



Backprop: Example

¢

¢y

Linear activation functions
No bias
Squared loss



Backprop: Example

Forward prop: Propagate activations to output layer



Backprop: Example

J=L3,y)=1@-y)

Cl

C o .

2 E8=—=<=Y~)
dy

Backward prop: Compute loss and its derivative



Backprop: Example

o o] a3
dc, dy dc,
o] aJ 99
dc, 0y oc

c, 2 Y 2

C o .

2 E8=—<=YV—)

dy

Backward prop: Compute derivatives w.r.t. weights ¢, and c,



Backprop: Example

W
Jc, 1
W
dJc, ’

¢

C oJ
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Backward prop: Compute derivatives w.r.t. weights ¢, and c,



Backprop: Example

o= g
1 aZI 1

 =——=gcC
8 oz, 8C,

Backward prop: Propagate derivative to hidden layer



Backprop: Example

o _ ol oy o) oy

= — " — +

,  0J

g =—"=gc oa, dz, oda, 0z, da,
0z,

9 _ 9 9z 9] 9z
ob, dz, 0b, dz, 0b,
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0y
 =——=gcC
8> oz, 8C,

Backward prop: Compute derivatives w.r.t. weights a,, a,, b, and b,



Backprop: Example
aoJ

Y — = & X
8§ = — =8¢ da,
0z,

o
ob,

 =——=gcC
8 oz, 8C,

Backward prop: Compute derivatives w.r.t. weights a,, a,, b, and b,



Backprop: Example

0J oz 0J oz
' dJ T 8% T 849
8 =——=8¢ e Jac,
0z,
U g Y g
> da, ' ob




Computation Graphs

Multiplication

© 9

ReLU layer = : :
@ Linear regression
(5 %Wi b & and weight decay

(Goodfellow 2017) (o) ()

>



Repeated Sub-expressions

0z

ow
0z 0y Ox

- Oy Ox Ow
=f'"(y) f'(z)f (w)
=f"(f(f ) f'(f(w))f (w)

ol

Back-prop avoids computing this twice

1050

(Goodfellow 2017)



Backprop on Computation Graph

/ Maintain grad table

1: Initialize g € R" where g, denotes gui
u
2: for j=n-1 to 1 do:
ou'
3 8j = Ei:jEPa(ui)gi o’
4: return g \

Parents of u'



Symbol-to-symbol Differentiation

Derivatives as computation graphs

— Same language for both forward and back-
propagation

During execution, replace symbolic inputs

with numeric value

Used by Theano and TensorFlow

Symbol-to-number differentiation: e.g. Torch
and Caffe



Symbol-to-symbol Differentiation




Training Feed-forward Nets

cross_entropy +

matmul

G @ sqr @ sum
relu

matmul

"HHI” Sqr“llii" sum"l!ll)

(Goodfellow et al. 2017)

X
—k‘llii" 4‘llll’

%ational cost for I

forward/back prop: O(#num-
weights)

Memory cost:
\_O(#tnum-layers x minibatch-size) /




