Lecture 12-13: Basic Neural Nets

Deep Feedforward Networks
CS 109B, STAT 121B, AC 2098, CSE 109B

Mark Glickman and Pavlos Protopapas

IACS [l U3 50; B

NAVAY
EEED
AR

* http://video.arstechnica.com/watch/sunsprin
g-sci-fi-short-film

Today’s news

A amimem | mmmd A i e 1 meimam o mm ik ks

An Al just beat top lawyers at their own
game

IMAGE: BOB AL-GREEN/MASHABLE
The nation's
top lawyers recently battled artificial intelligence in
a competition to interpret contracts — and they
lost.

A new study, conductr e lnnnl Al nindorm
LawGeex in consultati £ Share 09016 ssors from
Stanford University, Duke University School of Law,
and University of Southern California, pitted twenty
experienced lawyers against an Al trained to
evaluate legal contracts.

Competitors were given four hours to review five
non-disclosure agreements (NDAs) and identify 30
legal issues, including arbitration, confidentiality of
relationship, and indemnification. They were scored
by how accurately they identified each issue.

SEE ALSO: Google's new Al can predict heart
disease by simply scanning your eyes

Google's new Al can predict heart
disease by simply scanning your eyes

|

KR ¢ P y 1L
IMAGE: BEN BRAIN/DIGITAL CAMERA MAGAZINE
Q VIA GETTY IMAGES
A The secret to identifying certain health conditions
‘ gy may be hidden in our eyes.

MONICA

CHIN Researchers from Google and its health-tech

E subsidiary Verily announced on Monday that they
2@2 have successfully created algorithms to predict
whether someone has high blood pressure or is at
risk of a heart attack or stroke simply by scanning a
person's eyes, the Washington Post reports.

SEE ALSO: This fork helps you stay healthy

Google's researchers trained the algorithm with
images of scanned retinas from more than 280,000
patients. By reviewing this massive database,
Google's algorithm trained itself to recognize the
patterns that designated people as at-risk.

This algorithm's success is a sign of exciting
developments in healthcare on the horizon. As
Google fine-tunes the technology, it could one day

AlphaZero (2017)

DeepMind
AlphaZero Al beats champion chess

program after teaching itself in four
hours

Google's artificial intelligence sibling DeepMind repurposes Go-playing Al to
conquer chess and shogi without aid of human knowledge

theguardian.com

AlphaGo (2015)

First program to beat a professional Go player

’5 Google DeepMind
Challenge Match

: 00:36:22)

iOS Speech Synthesis (2016-)

Trained from 20 hours of high quality speech

“Siri, what is
Deep Learning?”

machinelearning.apple.com

Google Brain (2012)

e Differentiate between human face and cat

— Neural network with 1 billion connections
— 10 million 200x200 pixel images from YouTube

Le et al., ICML 2012

Historical Trends

9 0.000250 : | 1 | |]

£ — cybernetics KJ-STM
£ 0.000200 H . PN S i
5 — - (connectionism + neural networks) | S .

o '
g0.000150_.......;........; Distributed VAR S
= : , Rgpresentgtlon ;IBackprojp

5 0.000100 |- ------ Perceptron. ..~\.... Lo i
> . ! .) . .

QO

g

)

=

o

)

=

0.000050 f--------i----- \ . ADALINE " . S o
: : : 7 :
1940 1950 1960 1970 1980 1990 2000

Year

(Goodfellow 2016)

Historical Trends

Deep Neural Network

(Pretraining)
Multi-layered m N

XOR Perceptron vy
SRALIE (Backpropagation)

Perceptron
Dark Age (“Al Winter”)

Golden Age

Electronic Brain
1986 1995

1943 1957 1960 1969
1980 1990 2000

S. McCulloch - W. Pitts F. Rosenblatt B. Widrow - M. Hoff M. Minsky - S. Papert
XAND Y XORY NOTX Foward Activity >
? % <J? g — —
+174] 2 41741 -1 . . ;
x/ l \., x/ l \,)l(€—— Backward Error
* Learnable Weights and Threshold + XOR Problem « Solution to nonlinearly separable problems « Limitations of learning prior knowledge * Hierarchical feature Learning
+ Big computation, local optima and overfitting + Kernel function: Human Intervention

« Adjustable Weights
« Weights are not Learned

Historical Trends

2012-2017

ArXiv papers on deep learning

number of arxiv papers submitted

2000

1500

1000

500

L102E
L10zre
L1021
9Lozrel
9L02/LL
910Z/0}
91026
91028
91L02/L
91029
91025
9L0Z1y
9loce
910z
9102/
sioerel
SL0Z/LL
S10z/0L
S10Z6
sloce
S10¢/L
S1029
$10215
SL02
sLoze
S0z
SL0ZIL
yiocrel
yLoziiL
¥LozZ/oL
¥102/6
vioze
¥102/L
L0z
yL02S
14414
vioze
viozre
viozi
€10zreL
€102/1L
€102/0L
€1026
€1028
€102/L
€1029
€125
€102k
€102
€Lz
€102
cLozrel
2ozl
cLoziol
[40v4]
44
210ziL
z10z8
TLozs
cLozy
cLoce
2Lozre
ziozi

eep Learning vs Classica

Deep learning Example:
Shallow
Example: autoencoders
MLPs

Example: Example:

Logistic Knowledge

regression bases

Representation learning

Machine learning

(Goodfellow 2016)

Representation Matters

Cartesian coordinates

Polar coordinates

r
(Goodfellow 2016)

Neural Network

&
ofo

earning Multiple Components

Output
A
Mapping fr
Output Output af')el::uiesom
4 A
Additional
Output Mapping from Mapping from layers of more
up features features abstract
features
A A
Hand- Hand- Simple
designed designed Features R tp
program features catres
A A A A
Input Input Input Input
. Deep
Rule-based Classic learning
machine
systems learning Representation

learning (Goodfe”OW 2016)

Depth = Repeated Compositions

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

(Goodfellow 2016)

Beyond Linear Models

* Linear models
— Can be fit efficiently (via convex optimization)
— Limited model capacity

e Alternative:

fx)=w ¢(x)

where ¢ is a non-linear transform

Traditional ML

* Manually engineer ¢

— Domain specific, enormous human effort

* Generic transform
— Maps to a higher-dimensional space
— Kernel methods: e.g. RBF kernels
— Over fitting: does not generalize well to test set

— Cannot encode enough prior information

Deep Learning

Directly learn ¢

f(x:0)=w ¢(x;0)

where @ are parameters of the transform
¢ defines hidden layers

Non-convex optimization

Can encode prior beliefs, generalizes well

SVM vs Neural Networks

* Hand-written digit recognition: MNIST data

O =M% b N o
O~NNMAVN Ao
Q~NMYHYVY N» o
ONNMINY NN &
QUQ-~NOTHhe Nooo
QeENARNHYY D
O~V JIT LS N
ONN O NV M~y)
Q= MT A0 N
O TV N o
QNP RL S N
Q~NM>'q9 o
Q=NMT YO Fo o
V=dmIx Yo ndyon
QN M T AN N Y

See illustration in notebook

Example: Learning XOR

10+ @ O
0.8
0.6
o
&3
0.4
0.2
00 @ Q
0.0 0.2 04 0.6 0.8 10
I

* Optimal linear model (sg. loss)
— Predicts 0.5 on all points

Example: Learning XOR

h =o(w, x+c)
h,=0(w,x+c,)

()
0*6 y= (W h+Db)
) &

where,

0 (z)=max4{0,z}

See illustration in notebook

Design Choices

Cost function
Output units
Hidden units
Architecture
Optimizer

Cost Function

* Cross-entropy between training data and
model distribution (i.e. negative log-likelihood)

J(H) — ﬂx,ywﬁdata 1ngmodel(y ‘ 33)

* Do not need to design separate cost functions
* Gradient of cost function must be large enough

Cost Function

 Example: sigmoid output + squared loss

1)
0(7)=—— L (y,2)=(y-0(z))
l+e~ !
Flat surfaces
Lo Sigmoid Lo y=0 _ / Lo \ _ y=1
08 & 0.8 8’)‘, 08
S S
S 06 8 06 _8 0.6
® o4 5 04 5 04l
0.2 8'02 g’ 0.2
(V)] (V)]

o
o
=
o
o
o
—
o
wn
=)
5
[=
o
—
o
wn
=)

10

10

08 |

0.6

0.4

0.2

0.0

Cost Function

* Example: sigmoid output + cross-entropy loss

L.(y,2)=—(ylog(z)+(1-y)log(l-z))

log undoes exp

y=0 / \ _y=1

_Sigmoid

o [N w = v
o - N w) [5,]

Cross-entropy Loss

Cross-entropy Loss

E=N
N
[=]
N
=
o
o
(=]

A A A
\aturates only when the mode/

makes correct predictions

Design Choices

Cost function
Output units
Hidden units
Architecture
Optimizer

Output Units

Output Output Cost
Output Type . . . 0. ’ :
Distribution Layer Function
Binary cross-
Binary Bernoulli Sigmoid Y
entropy
) , , Discrete cross-
Discrete Multinoulli Softmax
entropy
(Gaussian cross-
Continuous (Gaussian Linear
entropy (MSE)
, Mixture of Mixture
Continuous _ , Cross-entropy
Gaussian Density
. . See part ITI: GAN, .
Continuous Arbitrary VAE, FVBN Various

(Goodfellow 2017)

Softmax Output

* Discrete / Multinoulli output distribution
* For output scores z,, ..., Z,

exp(z;)
EjeXp(zj)

* Log-likelihood undoes exp

softmax(z), =

logsoftmax(z), = z, —log E exp(z;)
j

~ 7, —Max 7,

(Score to target label — Maximum score)

Mixture Density Output

(Goodfellow 2017)

Design Choices

Cost function
Output units
Hidden units
Architecture
Optimizer

Hidden Units

h=g(W' x+b)
with activation function g

— Ensure gradients remain large through hidden unit
— Preferred: piece-wise linear activation
— Avoid sigmoid/tanh activation

* Do not provide useful gradient info when they saturate

RelLU

e Rectified Linear Units

8(z) = max<0,z}

0

v
e Gradientis 1 whenever unit is active

— More useful for learning compared to sigmoid
— No useful gradient information when z<0

Generalized RelLU

* Generalization: For «, >0,
g(z;a), =max{0,z } +a min{0,z }

* E.g. Absolute value RelU: o, =-1 = g(z)=Iz|

Maxout

* Directly learn the activation function

— Max of £ linear functions

= max oa.z.+ PD.
8(2) =g % /5’

(a]_l Bl) (OL3, B3)

(a,, B,)

Design Choices

Cost function
Output units
Hidden units
Architecture
Optimizer

Universal Approximation Theorem

* One hidden layer is enough to
represent an approximation of @
any function to an arbitrary

degree of accuracy G °

Depth

* So why deeper? ‘
— Shallow net may need °

(exponentially) more width | Width
— Shallow net may overfit more

Exponential Gain with Depth

* Each hidden layer folds the space of activations
of the previous layer. E.g. abs activation g(z)=Iz|

Montufar (2014)

/‘——\

1. Fold along the 2. Fold along the
vertical axis horizontal axis

Exponential Gain with Depth

* With N hidden layers, there are O(4V) piecewise
linear regions

Input Space Montufar (2014)
a8 Ni‘rst Layer Space
/Si su\ /s S\

S4lS; K /’
S3[S2 \ /
S NE

2|3 Second Laver
! Sl S; y

\\Sl 7 . Space

See illustration in notebook

Better Generalization with Depth

96.5 | T ! ! T ! |
96.0
95.5
95.0
94.5
94.0
93.5
93.0
92.5

92.0 | | | | | | |
3 4 5 6 7 8 9 10 11

Test accuracy (percent)

(Goodfellow 2017)

Large, Shallow Nets Overfit More

97 | | | | |
= o6 e—e 3 convolutional
o - _
Q +—+ 3, fully connected
—
é 95 [V—V 11, convolutional [
>y
§ 94 |- i
.
S 93 | | , . -
< T !
S 92} .
91 | |] |]
0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters x10%

(Goodfellow 2017)

Design Choices

Cost function
Output units
Hidden units
Architecture
Optimizer

Gradient-based Optimizer

(e.g. stochastic gradient descent)

* “Chain rule” for computing gradients:

y=g(x) z=f(y)

a_Z=E 07 ay]'
dx, = dy; ox,
* For deeper networks Naive computation

takes exponential time

0z dz 0y,
a—%_z...zayh...&;

J Jm

Backpropagation

* Avoids repeated sub-expressions
* Uses dynamic programming (table filling)
* Trades-off memory for speed

Backprop: Arithmetic

e Jacobian-gradient products

dy dz, 0z, dy
z=8() .= N
y=/(2) 0y Jz, 0z, 0y
gr_ad w.r.t. x- - Jacobian of ‘g’ - g_rad W.rt. z

0Z ! Appl
L

X recursively!

Backprop: Overview

Forward prop: compute activations

0

Back-prop: compute derivatives

Compute
loss

Backprop: Example

¢

¢y

Linear activation functions
No bias
Squared loss

Backprop: Example

Forward prop: Propagate activations to output layer

Backprop: Example

J=L3,y)=1@-y)

Cl

C o .

2 E8=—=<=Y~)
dy

Backward prop: Compute loss and its derivative

Backprop: Example

o o] a3
dc, dy dc,
o] aJ 99
dc, 0y oc

c, 2 Y 2

C o .

2 E8=—<=YV—)

dy

Backward prop: Compute derivatives w.r.t. weights ¢, and c,

Backprop: Example

W
Jc, 1
W
dJc, ’

¢

C oJ

dy

Backward prop: Compute derivatives w.r.t. weights ¢, and c,

Backprop: Example

o= g
1 aZI 1

 =——=gcC
8 oz, 8C,

Backward prop: Propagate derivative to hidden layer

Backprop: Example

o _ ol oy o) oy

= — " — +

, 0J

g =—"=gc oa, dz, oda, 0z, da,
0z,

9 _ 9 9z 9] 9z
ob, dz, 0b, dz, 0b,

g—ﬁi—ﬁ—y
0y
 =——=gcC
8> oz, 8C,

Backward prop: Compute derivatives w.r.t. weights a,, a,, b, and b,

Backprop: Example
aoJ

Y — = & X
8§ = — =8¢ da,
0z,

o
ob,

 =——=gcC
8 oz, 8C,

Backward prop: Compute derivatives w.r.t. weights a,, a,, b, and b,

Backprop: Example

0J oz 0J oz
' dJ T 8% T 849
8 =——=8¢ e Jac,
0z,
U g Y g
> da, ' ob

Computation Graphs

Multiplication

© 9

ReLU layer = : :
@ Linear regression
(5 %Wi b & and weight decay

(Goodfellow 2017) (o) ()

>

Repeated Sub-expressions

0z

ow
0z 0y Ox

- Oy Ox Ow
=f'"(y) f'(z)f (w)
=f"(f(f) f'(f(w))f (w)

ol

Back-prop avoids computing this twice

1050

(Goodfellow 2017)

Backprop on Computation Graph

/ Maintain grad table

1: Initialize g € R" where g, denotes gui
u
2: for j=n-1 to 1 do:
ou'
3 8j = Ei:jEPa(ui)gi o’
4: return g \

Parents of u'

Symbol-to-symbol Differentiation

Derivatives as computation graphs

— Same language for both forward and back-
propagation

During execution, replace symbolic inputs

with numeric value

Used by Theano and TensorFlow

Symbol-to-number differentiation: e.g. Torch
and Caffe

Symbol-to-symbol Differentiation

Training Feed-forward Nets

cross_entropy +

matmul

G @ sqr @ sum
relu

matmul

"HHI” Sqr“llii" sum"l!ll)

(Goodfellow et al. 2017)

X
—k‘llii" 4‘llll’

%ational cost for I

forward/back prop: O(#num-
weights)

Memory cost:
_O(#tnum-layers x minibatch-size) /

